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Collision and symmetry–breaking in the transition to strange nonchaotic attractors
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Strange nonchaotic attractors (SNAs) can be created due
to the collision of an invariant curve with itself. This novel
“homoclinic” transition to SNAs occurs in quasiperiodically
driven maps which derive from the discrete Schrödinger equa-
tion for a particle in a quasiperiodic potential. In the clas-
sical dynamics, there is a transition from torus attractors to
SNAs, which, in the quantum system is manifest as the lo-
calization transition. This equivalence provides new insights
into a variety of properties of SNAs, including its fractal mea-
sure. Further, there is a symmetry breaking associated with
the creation of SNAs which rigorously shows that the Lya-
punov exponent is nonpositive. By considering other related
driven iterative mappings, we show that these characteristics
associated with the the appearance of SNA are robust and
occur in a large class of systems.

The unexpected—and fascinating—connection be-
tween strange nonchaotic dynamics [1] and localization
phenomena [2,3] brings together two current strands of
research in nonlinear dynamics and condensed matter
physics. The former describes temporal dynamics con-
verging on a fractal attractor on which the largest Lya-
punov exponent is nonpositive [1] while the later involves
exponentially decaying wave functions. Recent work [4]
has shown that the fluctuations in the exponentially de-
caying localized wave function are fractal, and this ap-
pears in the classical problem as an attractor with fractal
measure. Here we exploit this relationship further to un-
derstand the mechanism for the transition to SNA, which
is a subject of continuing interest [5].

In this Letter, we show that the transition to SNAs
has two unusual and general features. Firstly, SNAs
can be created by the homoclinic collision of invariant
curves with themselves. Secondly, the bifurcation to
SNAs, when occurring such that the largest nontrivial
Lyapunov exponent passes through zero, is accompanied
by a symmetry–breaking. These features provide us with
a novel way to characterize and quantify the transition to
SNA. Furthermore, by considering a variety of quasiperi-
odic maps, we demonstrate that these aspects of the SNA
transition are generic.

The quasiperiodically forced dynamical system under
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investigation here is the Harper map [3],

xn+1 = f(xn, φn) ≡ −[xn − E + 2ǫ cos 2πφn]−1, (1)

with the rigid–rotation dynamics φn = nω + φ0 giving
quasiperiodic driving for irrational ω. This map is ob-
tained from the Harper equation [6],

ψn+1 + ψn−1 + 2ǫ cos[2π(nω + φ0)]ψn = Eψn, (2)

under the transformation xn = ψn−1/ψn. Note that the
lattice site index of the quantum problem is the time (or
iteration) index in the classical problem. The Harper
equation is a discrete Schrödinger equation for a particle
in a periodic potential on a lattice. The wavefunction
at site n of the the lattice is ψn, and E is the energy
eigenvalue. The parameters ǫ, ω, and φ0 determine the
strength, periodicity and phase (relative to the under-
lying lattice) of the potential. For irrational ω (usually
taken to be the golden mean, (

√
5 − 1)/2), the period of

the potential is incommensurate with the periodicity of
the lattice. For the classical map, both ǫ and E are im-
portant parameters, but the quantum problem is mean-
ingful only when E is an eigenvalue of the system, so
we limit our discussion of the classical system to these
special values of E. However, as we discuss below, this
restriction can lifted when we consider perturbations of
the map which are not related to the eigenvalue problem.
For most of our work we set E = 0 which is an eigenvalue.

The Harper equation [6] is paradigmatic in the study
of localization phenomena in quasiperiodic systems [7],
exhibiting a localization transition at ǫ = 1. For ǫ < 1,
all eigenstates are extended and hence are characterized
by an infinite localization length, while for ǫ > 1, eigen-
states are localized with localization length γ−1 = ln ǫ.
As we discuss below, the fact that the Lyapunov expo-
nent of Harper equation is known exactly is crucial in
establishing the existence of SNA in the Harper map.

Of the two Lyapunov exponents for the Harper equa-
tion, that corresponding to the φ dynamics is 0, while
the other can be easily calculated as

λ = lim
N→∞

1

N

N∑

i=1

yi (3)

where yi is the “stretch exponent” defined through
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yi = ln |f ′(xi)| = lnx2
i+1

= −2 ln |xi − E + 2ǫ cos 2πφi|. (4)

It is easy to see that in the localized state,

λ = −2γ, (5)

and therefore, the localized wave function of the Harper
equation corresponds to an attractor with negative Lya-
punov exponent for the Harper map.

The second important point in establishing the exis-
tence of SNA in Harper equation stems from the fact that
the fluctuations about the localized wave function in the
Harper equation are fractal. This result, based on renor-
malization studies [4] of the Harper equation, suggests
that the corresponding attractor in the Harper map has
a fractal measure and hence is an SNA. Furthermore, a
perturbative argument starting from the strong coupling
limit provides a rigorous proof for the existence of SNA
for E = 0 [3], making the Harper mapping one of the few
systems where the existence of SNA is well established.
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FIG. 1. (a) Invariant curves for the Harper map with E = 0
at ǫ = 0.3 (thin line) and ǫ = 0.65 (thick line) with initial
conditions x0 = 0.5 and φ0 = 0.4. (We plot tanh(x) rather
than x on the ordinate so that the entire range of x can be
depicted.) For different initial conditions we will get different
curves. As ǫ is increased, the two branches of a given curve
approach each other and eventually collide as ǫ → 1 as indeed
do all the other curves as well. The Central and Noncentral
branches of these curves are marked C and N respectively. (b)
The SNA that is born at ǫ = 1.

We now discuss the scenario for the formation of SNAs
in this system when E = 0. For ǫ < 1, the phase space
is foliated by invariant curves, each parametrized by the
initial conditions. It is important to note that for ǫ < 1
there are no attractors in the system since all the curves
are neutrally stable. However, at ǫ = 1, trajectories con-
verge on an attractor. The convergence is power-law and

hence the Lyapunov exponent is zero: we can character-
ize this via a power-law exponent

β = lim
N→∞

1

lnN
ln

N−1∏

i=0

exp yi (6)

the transition from a family of invariant tori to an at-
tractor being signaled by a non-zero value of β.

The transition from an invariant curve to the attractor
can be described as a collision phenomenon as we discuss
below. For ǫ < 1, the invariant curves have two branches
[see Fig. 1(a)] deriving from the fact that for ǫ = 0, the
map does not have a period–1 fixed point for real x but
has instead a period–2 orbit. As ǫ→ 1, the two branches
approach each other and collide at ǫ = 1, the point of
collision being a singularity. Since the dynamics in φ is
ergodic, the collision occurs at a dense set of points. Fur-
thermore, this happens for each invariant curve, and in
effect all invariant curves approach each other and col-
lide at ǫ = 1, forming an attractor [see Fig. 1(b)]. We
quantify this collision by demonstrating that as ǫ → 1,
the distance d between the two branches goes to zero as
a power–law.

When the quasiperiodic forcing frequency ω is the
golden mean ratio, the distance between the two branches
of an invariant curve can be calculated by first noting
that a point (xi, φi) and its successive Fibonacci iterates,
(xi+Fk

, φi+Fk
), where Fk is the k′th Fibonacci number,

are closely spaced in φ [8]. If the two branches of the in-
variant curve are labeled C (for central) and N (for non-
central) [see Fig. 1(a)], the sequence of Fibonacci iterates
follows the symbolic coding CCNCCNCCNCCN . . . or
NNCNNCNNCNNC. . .. This follows from the fact that
the Fibonacci numbers are successively even, odd, odd,
even, odd, odd,. . .. Thus, if k is chosen appropriately,
such that Fk is even and Fk+1 is odd (or vice-versa),

dk(i) = |xi+Fk
− xi+Fk+1

| (7)

measures the approximate vertical distance between the
curves at (xi, φi). Minimizing this distance along the
invariant curve, we find that the closest approach of the
two branches decreases as a power,

d = min[ lim
k→∞

dk(i)] ∼ (1 − ǫ)δ. (8)

Our results, given in Fig. 2, provide a quantitative char-
acterization of the transition to SNA in this system.

For eigenvalues other than E = 0, the scenario for
SNA formation may be different. When the eigenvalue E
is at the band–edge, the SNAs appear to be formed via
the fractalization route, namely by gradually wrinkling
and forming a fractal [9]. The reason for this difference
can be traced to the simple fact that unlike the E = 0
case, below ǫ = 1 the invariant curve for the minimum
eigenvalue has a single branch which originates from a
fixed point for ǫ = 0.
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The self–collision of invariant curves to form SNAs is
a general mechanism. Consider a family of maps,

xi+1 = −[xi + αxν

i + 2ǫ cos 2πφi]
−1

φi+1 = φi + ω mod 1 (9)

which bear no relation to an eigenvalue problem. For ν
an odd integer, the above map is invertible and hence
does not have any chaotic attractors. Numerical results
for ν = 3 show that in these perturbed maps, an SNA is
also born after the attractor collides with itself. Similar
results are obtained for other polynomial or sinusoidal
perturbations.
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FIG. 2. The minimum vertical distance d between the
branches of invariant curves in the Harper map as a func-
tion of the parameter (1−ǫ), for the eigenvalue E = 0 and for
the Fibonacci iterates (see the text) Fk and Fk+1 with k = 23.
Since this quantity depends on the particular curve chosen,
an average is taken over 12 different invariant curves, which
gives the average behaviour and the variance. The resulting
exponent [the solid line is a fit to a power–law; see Eq. (8)] is
δ ≈ 1.4.

A more fundamental characteristic of this route to
SNAs is a dynamical symmetry–breaking. Although the
dynamics is nontrivial for the variable x, the Lyapunov
exponent is exactly zero for ǫ < 1. To understand this
from a dynamical point of view, we first note that for
finite times along a trajectory, the local expansion and
contraction rates vary. It turns out that a meaningful
way to understand the role of the parameter ǫ is to study
the return–map for the stretch exponents,

yi+1 = −2 ln |sgn(xi) exp(yi/2)− E + 2ǫ cos 2πφi|. (10)

Shown in Fig. 3(a) is the above map for E = 0 and
ǫ = 0.5. There is a reflection symmetry evident, namely
(x, y → −y,−x) although this symmetry is not easy to
see directly in the mapping, Eq. (10) itself owing to the
quasiperiodic nature of the dynamical equations. How-
ever, as a consequence of the symmetry, the positive and
the negative terms cancel exactly in Eq. (3), giving a zero
Lyapunov exponent. All finite sums of the stretch expo-
nents, namely the finite–time Lyapunov exponents [10]
also share the same symmetry features.
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FIG. 3. The return map for the stretch exponents,
Eq. (10) (a) for E = 0, ǫ = 0.5, with initial conditions,
x0 = 0.2, φ0 = 0.7, (b) for E = 0, ǫ = 2, and (c) at the
band edge, E = Em = −2.597515185 . . . , ǫ = 1.

This symmetry is maintained for 0 < ǫ ≤ 1, above
which this symmetry is broken [Fig. 3(b)]. When the
negative stretch exponents exceed the positive ones, the
Lyapunov exponent λ therefore becomes negative; cou-
pled with the fact that the attractor has a dense set of
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singularities [3], this rigorously confirms the existence of
strange nonchaotic dynamics.

Symmetry–breaking appears to be operative in a large
class of systems, including the mapping where SNAs were
first shown to exist [1], viz. xn+1 = 2ǫ cos 2πφn tanhxn,
and similar systems where the transition to SNA is via
the blowout bifurcation [11]. In all these instances, the
largest Lyapunov exponent goes through zero when the
SNA is born.

When the eigenvalue E differs from 0, say at the band–
edge, the attractor in the localized state is also a SNA
which is born at ǫ = 1, with zero Lyapunov exponent.
Again [see Fig. 3(c)] there is the symmetry in the return
map for the stretch exponents which is broken for ǫ > 1.

In summary, our work shows that the fractal measure
of the trajectory has its origin in the homoclinic collisions
of an invariant curve with itself. This characterization
of the transition to SNAs can be quantified, and may
serve as a useful scenario for the appearance of SNAs in
a variety of nonlinear dissipative systems.

Furthermore, we demonstrate that the transition from
an invariant curve to a SNA proceeds via a symmetry–
breaking. A zero value for the Lyapunov exponent of a
system can arise in a number of ways, and the present
instance, namely the exact cancelation of expanding and
contracting terms is very special. (There is similar sym-
metry breaking at all period–doubling bifurcations in
such systems as well, but these points are of measure
zero.) It is conceivable that there are more complex sym-
metries in other systems which similarly lead to a zero
value for the Lyapunov exponent. The significance of this
symmetry and its breaking in the corresponding quantum
problem may be an important question in characterizing
the localization transition itself.

There are numerous lattice models exhibiting localiza-
tion in aperiodic potentials [12], including the quantum
kicked rotor [13,14]. The corresponding derived aperiodic
mappings are worthy of further study and might well ex-
tend the subject of SNA to systems beyond quasiperi-
odically driven maps. In addition, there are interesting
open questions regarding localization and its absence in
quasiperiodic potentials with discrete steps [15]. It is
conceivable that this type of mapping of the quantum
problem onto the classical problem may provide better
understanding of localization phenomena.
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