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Abstract

Localized states of Harper’s equation correspond to strange nonchaotic at-

tractors (SNAs) in the related Harper mapping. In parameter space, these

fractal attractors with nonpositive Lyapunov exponents occur in fractally or-

ganized tongue–like regions which emanate from the Cantor set of eigenvalues

on the critical line ǫ = 1. A topological invariant characterizes wavefunctions

corresponding to energies in the gaps in the spectrum. This permits a unique

integer labeling of the gaps and also determines their scaling properties as a

function of potential strength.
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The Harper equation [1],

ψn+1 + ψn−1 + V (n)ψn = Eψn, (1)

where ψn denotes the wave-function at lattice site n, and V (n) = 2ǫ cos 2π(nω+φ0) with ω ir-

rational has been extensively studied in the context of localization. This discrete Schrödinger

equation for a particle in a quasiperiodic potential on a lattice, arises in a number of differ-

ent problems [2–4]. It is known [5] that the eigenstates can be extended (ǫ < 1), localized

(ǫ > 1), or critical (ǫ = 1 ≡ ǫc), when the eigenvalue spectrum is singular–continuous [6],

and the states are power–law localized [7,8]. Renormalization group studies [9–11] of this

model have been very effective in establishing the multifractal nature of the wavefunctions

of such states and of the eigenvalue spectrum [12].

On transforming to Ricatti variables [13] ψn−1/ψn → xn, Eq. (1) reduces to the (equiv-

alent) Harper map [14],

xn+1 = −[xn − E + 2ǫ cos 2πφn]
−1 (2)

φn+1 = {ω + φn} (3)

where {y} ≡ y mod 1. Viewed as a skew–product dynamical system, this is now a driven

mapping of the infinite strip (∞,∞) ⊗ [0, 1] to itself. Irrational ω implies that the forcing

in Eq. (2) is quasiperiodic, the lattice site index n in the quantum problem becoming the

iteration or time index in the map.

The Harper map, which we study in this Letter, provides an alternate means of analyzing

the eigenvalue spectrum of the Harper equation. Boundary conditions that must be imposed

on Eq. (1) in order to determine eigenstates become conditions on the dynamical states in the

map, Eqs. (2-3), where E now appears as a parameter. Note that since the map is reversible,

there is no chaotic motion, and furthermore, because the driving is quasiperiodic, there are

also no periodic orbits. For large enough ǫ, the attractor of the dynamics is a fractal, and

on this attractor, the dynamics is nonchaotic [14,15]: these are therefore strange nonchaotic
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attractors (SNAs) [16] which are generic in quasiperiodically forced systems. In addition

there can be a variety of other nonfractal quasiperiodic (torus) attractors.

When E is an eigenvalue, a correspondence relates localized states of the quantum prob-

lem to SNAs in the associated map. This equivalence that was first noted by by Bondeson,

Ott and Antonsen [17] in a study of the continuous version of the same problem. The

wavefunctions for critical and extended states have a quasiperiodic symmetry [15], while the

fractal fluctuations of the amplitudes of the localized states [11] appear as fractal density

fluctuations in the attractors of the map. The nontrivial Lyapunov exponent of the system

is given by

λ = lim
N→∞

1

N

N∑

i=1

yn, (4)

where yn = ln x2
n+1, the so–called stretch exponent, is the derivative of the mapping, Eq. (2).

At ǫc, if E is an eigenvalue of the quantum problem, then this quantity is exactly zero [15];

see Fig. 1. Above ǫc, the localization length for quantum states, γ, is inversely related to

the Lyapunov exponent [5], λ−1 = −γ/2. Knowledge of this equivalence thus permits the

complete determination of the quantum spectrum of the Harper system through a study

of the Lyapunov exponents of the Harper map. At every eigenvalue (Fig. 1) there is a

bifurcation from a quasiperiodic attractor to a SNA, when the Lyapunov exponent becomes

zero [18].

The spectrum of the Harper equation is invariant under the transformation ω → 1 − ω,

and is symmetric about E = 0, so it suffices to consider only positive eigenvalues and

ω > 1/2. The behaviour of the spectral gaps has been of considerable interest [4], and we

study this here by describing the phase–diagram of this system for ωg = (
√

5 − 1)/2, the

inverse golden–mean ratio.

At ǫ = 0, the states of the quantum system form a band between energies 0 ≤ E ≤ 2.

As ǫ is increased, the gaps open up and merge as ǫ → ǫc, giving a singular continuous

spectrum. Below ǫc, when the states are extended the dynamics of the classical system is

on “three–frequency” quasiperiodic orbits [17] with Lyapunov exponent equal to 0. Above
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ǫc, localized states correspond to SNAs with negative Lyapunov exponent (see Fig. 2a for

an example), while critically localized states at ǫc are exceptional and correspond to SNAs

with a zero Lyapunov exponent [15]. For energies in the gaps, λ < 0, and the motion is on

two–frequency quasiperiodic (1–dimensional) attractors (an example is shown in Fig. 2b),

which wind across the (x, θ) plane an integral number of times. Wavefunctions of Eq. (1) at

these energies do not satisfy the appropriate boundary conditions and are non–normalizable.

The number of windings of the corresponding attractor, N is a topological invariant for all

orbits in the gaps. This integer index for each gap [19] counts the number of changes of sign

(per unit length) of the wavefunction, and is thus related to the integrated density of states

(IDS) [20]. The gap–labelling theorem [20] states that each gap can be labeled by the value

that the IDS takes on the gap; in the Harper system, this is also the winding number [19],

and (for E ≥ 0) on the gap labeled by the index N , this takes the value

ΩN (E) = max({Nω}, 1 − {Nω}). (5)

(The symmetrically located gap with E ≤ 0 with index N has winding number ΩN (E) =

min({Nω}, 1 − {Nω})).

There is thus a 1–1 correspondence between the gaps and the integers. Furthermore,

since the IDS is a continuous nondecreasing curve, it is possible to specify the gap ordering:

this depends on the continued fraction representation of ω. This latter problem has been

studied earlier by Slater [21], and is also encountered in the context of level statistics of two–

dimensional harmonic oscillator systems [22,23]. Consider the set of numbers yj = {jω}, j =

1, 2, . . . , m. For any ω and any m, it has been shown [21,22] that an “ordering function” can

be defined, giving a permutation of the indices, j1, j2, . . . , jm, such that yji
≤ yjk

if i < k.

This result can be directly adapted to the present problem so as to obtain the complete

ordering of gap labels with E [24].

The resulting structure of the gaps can be described via a simpler construction for the

case of ω = ωg. Recall that ωg = limk→∞ Fk−1/Fk, where the Fibonacci numbers Fk are

defined by the recursion Fk+1 = Fk−1 + Fk, with F0 = 1, F1 = 2. Now consider a Cayley
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tree, arranged as shown in Fig. 3, with each node (except the origin, labeled 0) having two

successors. Nodes at the same horizontal level are at the same generation. The rightmost

node at each generation is labeled by successive Fibonacci integers, while the leftmost are

half the successive even Fibonacci integers. The non–Fibonacci numbers are then identified

with nodes as follows: for given label m, the parent node im is the smallest available such

that the sum (im + m) is a Fibonacci number. The sub–tree rooted at node Fk contains a

sequence FjFj+k, j = 1, . . . which are placed alternately to the left and right; this suffices in

determining the placement of all other integers within that subtree [25].

Every pair of integers, i1 and i2, with i2 > i1, has two possibilities as to how they are

relatively placed on this graph. Either

1. i1 is an ancestor of i2, i.e. there is a directed path connecting i2 to i1. If this path is

to the left at node i1, then i2 ≺ i1. (If to the right, then i1 ≺ i2.)

or

2. i0 is the most recent common ancestor of i1 and i2. If the path from i0 to i1 is on the

left at i0, then i1 ≺ i2. (Similarly, if it is to the right, then i2 ≺ i1.)

This gives a unique ordering of the integers (see Fig. 3) with the relation ≺ being transitive

(if i ≺ j and j ≺ m then i ≺ m),

. . . ≺ 4 ≺ . . . ≺ 9 ≺ . . . ≺ 1 ≺ . . . ≺ 7 ≺ . . . ≺ 2 ≺ . . . ≺ 11 ≺ . . . ≺ 21 ≺ . . . ≺ 0.

The gaps appear in precisely this order: if k ≺ ℓ, then gap k precedes gap ℓ in the

positive energy spectrum of the critical Harper map (Fig. 1b). Following the procedure

which is described in detail in [22,23], similar Cayley trees can be constructed for any other

irrational frequency. For each ω, depending on its continued fraction representation, there

is a unique reordering of the integers corresponding to the ordering of the gaps.

Each gap is further characterized by its width, wm and by its depth dm both of which

are functions of ǫ. The depth has no obvious quantum–mechanical interpretation, −dm

merely being the minimum value that the Lyapunov exponent takes in the mth gap, and
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it decreases with order dm > dn if m < n, scaling, at ǫc as dN ∼ 1/N (see Fig. 4a).

The behaviour of the gap widths is more complicated and depends on the details of the

Cayley tree. These are nonnmonotonic as a function of gap index, but come in families:

gaps belonging to a given family scale as a power, wN ∼ 1/Nθ. The fastest decreasing

are the Fibonacci gaps, 1,2,3,5,8,. . . ,Fk,. . . (θ ≡ θr ≈ 2.3), while the slowest is the family

1,4,17,. . . ,F1+3k/2,. . . (θ ≡ θl ≈ 1.88): these are respectively the successive rightmost and

leftmost nodes on the Cayley tree in Fig. 3 (see Fig. 4b). Other families, which can be

similarly defined on subtrees, also obey scaling, with exponents between θl and θr. When

the gaps are ordered by rank r, then they scale as wr ∼ 1/r2: this is consistent with the

previously (numerically) obtained [4] gap distribution ρ(s) ∼ s−3/2, which has also been

derived exactly through the Bethe ansatz [26].

Above ǫc, the states are exponentially localized. For all localized states, irrespective

of energy, the localization length or Lyapunov exponent is identical [5]. The gaps which

dominate the spectrum at ǫc, persist for larger ǫ, but decrease in width according to the

(empirical) scalings (see Fig. 4b)

wN ∼ 1

N θǫN−1
(6)

dN ∼ 1

NǫN
, (7)

(where θ is particular to the family to which the gap belongs).

The dynamics of the Harper map corresponding to localized states is on SNAs [14],

while that in the gaps continues to be on 1–dimensional attractors similar to those below

ǫc. However, since the gaps decrease in width, most of the dynamics is now on SNAs.

By continuity, therefore, the SNA regions must start at each eigenvalue at ǫc, and widen

gradually since for large ǫ the spectrum lies in the range 0 ≤ E ≤ 2ǫ. A phase–diagram for

this system in the E − ǫ plane is shown schematically in Fig. 5. The dynamics is entirely

on fractal attractors with a negative Lyapunov exponent in the tongue–like regions, each

of which starts at an eigenvalue at ǫc. The fractal (Cantor set) spectral structure is thus

reflected in the hierarchically organized fractal “tongues”.
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The equivalence between the Harper equation and the Harper map thus provides a new

mode of analysis of this problem which arises in numerous contexts [1–9]. The singular

continuous nature of the eigenvalue spectrum, which has been the subject of considerable

theoretical study, has been detected in experiments [27] as well, and therefore an under-

standing of the gap widths and their variation with energy and potential strength is of

importance.

The present technique gives a simple but powerful method for the study of the spectrum

to a finer level of detail than has hitherto been available. As we have demonstrated, in this

problem the details are crucial: although the spectrum of the Harper equation at ǫc is a

Cantor set, the gaps may be labeled through a topological invariant of orbits of the Harper

map which is related to previously described rotation numbers for such systems [19] and to

the integrated density of states [20]. The ordering of the gaps depends on number–theoretic

properties of particular irrational frequency ω [21,24], while the gap indices determine the

exponents for the scaling of gap widths as a function of potential strength. The phase

diagram for the Harper system will consist of fractal tongues for all irrational frequencies

ω, and in the tongues, the dynamics of the Harper map is on SNAs. The ubiquity of

such attractors and their correspondence with localized states further underscores their

importance [14,15].
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FIGURE CAPTIONS

Figure 1: The Integrated density of states (IDS) (scale on the right) and Lyapunov expo-

nent (λ) (scale on the left) versus energy at ǫc. The gap labels k are indicated for the largest

visible gaps. At every bifurcation, when λ = 0, the dynamics is on a SNA. On the gaps, the

IDS takes the constant value Ωk specified by Eq. (5).

Figure 2: (a) A strange nonchaotic attractor for ǫ=2, E = 3. (b) The attractor for a

value of E corresponding to the gap N = 5. Note that the orbit has 5 branches that tra-

verse the range −∞ < x <∞.

Figure 3: Ordering of the gaps for ω the golden mean. Only part of the Cayley tree

described in the text is shown for clarity. Each node has two daughters except for 0, which

has only one.

Figure 4: (a) Scaling of the gap widths, wN (•), and depths dN (⋄) as a function of

gap index, N , at ǫ = ǫc. For clarity, the depths have been multiplied by a factor of 10. The

dashed line fitting the depths has slope -1. The dotted lines show the scaling of the two

families of gaps; see the text for details. (b) Scaling of the gap widths, wN for the largest

few gaps as a function of ǫ above ǫc. The solid lines are the power–laws given in Eq. (6).

Figure 5: Phase diagram for the Harper map showing, below ǫc (the dotted vertical line)

the regions of three–frequency quasiperiodic (Q) orbits or extended states, 1–d attractors or

gaps (G), and above ǫc, regions of SNAs (S), and gaps (G). Only the largest gaps are visible

at this scale. All the gaps persist above ǫc, decreasing in width according to Eq. (6), but the

measure of the SNA region (shaded) increases with ǫ, as does the range of the spectrum.
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