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Abstract

By using the Jensen-Shannon divergence, genomic DNA can be divided into

compositionally distinct domains through a standard recursive segmentation

procedure. Each domain, while significantly different from its neighbours,

may however share compositional similarity with one or more distant (non–

neighbouring) domains. We thus obtain a coarse–grained description of the

given DNA string in terms of a smaller set of distinct domain labels. This

yields a minimal domain description of a given DNA sequence, significantly

reducing its organizational complexity. This procedure gives a new means

of evaluating genomic complexity as one examines organisms ranging from

bacteria to human. The mosaic organization of DNA sequences could have

originated from the insertion of fragments of one genome (the parasite) inside

another (the host), and we present numerical experiments that are suggestive

of this scenario.
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I. INTRODUCTION

One of the major goals in DNA sequence analysis is in gaining an understanding of the

overall organization of the genome. Beyond identifying the manifestly functional regions

such as genes, promoters, repeats, etc., it has also been of interest to analyse the properties

of the DNA string itself. One set of studies has been directed towards examining the nature

of correlations between the bases. There is some evidence for long-range correlations which

give rise to 1/f spectra in genomic DNA [1,2,3]; this feature has been attributed to the

presence of complex heterogeneities in nucleotide sequences [3]. These result in hierarchical

patterns in DNA, the mosaic or ‘domain within domain’ picture [4]. This structure is most

conveniently explored through segmentation analysis based on information theoretic mea-

sures [4,5,6,7], although other schemes to uncover the correlation structure over long scales,

such as detrended fluctuation analysis of DNA walks [8] or wavelet tranform technique [9]

have also been applied. There have been some attempts to decode the biological implications

of such complexity [9,10,11], but these are incompletely understood as of now. On shorter

length scales there is a prominent 3-base correlation in coding regions of DNA; this offers

a means of locating and identifying genes [12]. There are other short–range correlations as

well [13,14] corresponding to structural constraints on the DNA double helix.

Segmentation analysis is a powerful means of examining the large–scale organization of

DNA sequences [4,5,6,15,16,17,18]. The most commonly used procedure [4,5,6] is based on

maximization of the Jensen-Shannon (J-S) divergence through which a given DNA string

is recursively separated into compostionallly homogeneous segments called domains (or

patches). This results in a coarse-grained description of the DNA string as a sequence

of distinct domains. The criterion for continuing the segmentation process is based on sta-

tistical significance (this is equivalent to hypothesis testing) [4,5] or, alternatively, within a

model selection framework based on the Bayesian information criterion [7]. This criterion

can be extended and used to detect isochores [7], CpG islands, origin and terminus of repli-

cation in bacterial genomes, complex repeats in telomere sequences, etc. [19]. Segmentation
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using a 12-symbol alphabet derived from codon usage has been shown recently to delineate

the border between coding and noncoding regions in a DNA sequence [6].

In the present work, we analyse the segmentation structure of genomic DNA for a class

of genomes ranging in (evolutionary) complexity from bacteria to human. Our motivation

is to understand the complexity of genome organization in terms of the domains obtained.

We further aim to correlate the domain picture with evolutonary biological processes.

By construction a given domain is heterogenous with respect to its neighbours, but it

may nevertheless be compositionally similar to other domains. Based on this premise, we

attempt to draw a larger domain picture by obtaining ‘domain sets’. These consist of a set of

domains which are homogeneous when concatenated. A domain set may thus be interpreted

as a larger homogeneous sequence, parts of which are scattered nonuniformly in a genomic

sequence. The number of domain sets constructed thus is found to be much fewer than

the domains obtained upon segmentation [4,5,6,7]. We propose here an optimal procedure,

starting from the domains found from one of the above segmentation methods, and building

up a domain set by adding together all its components. We then use standard complexity

measures to show that this gives a superior model in as much as the complexity is reduced.

This paper is organised as follows. In the next section, we briefly review the segmentation

methods based on the J-S divergence. Section III contains our main results. We first segment

a given genome to reveal the primary domain structure that derives from the J-S divergence.

We then show how the domain sets are constructed, and analyse the attendant decrease in

complexity. In Section IV, we speculate that such domain organization ocurred during

genomic evolution when there was lateral gene and/or DNA transfer between species. To

that end, we present the results of numerical experiments based on a host-parasite model,

where we artificially insert fragments of one genome inside another, and demonstrate that

this process can be uncovered via segmentation. Section V concludes the paper with a

summary and discussion of our results.
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II. SEGMENTATION METHODS

In this section we briefly review the segmentation methodology that is used here in order

to fragment a genome into homogeneous domains. Consider a sequence S as a concatenation

of two subsequences S(1) and S(2). The Jensen–Shannon divergence [20] of the subsequences

is

D(F (1),F (2)) = H(π(1)F (1) + π(2)F (2)) − [π(1)H(F (1)) + π(2)H(F (2))], (1)

where F (i) = {f (i)
1 , f

(i)
2 , ..., f

(i)
k }, i = 1, 2 are the relative frequency vectors, and π(1) and π(2)

their weights. In Eq. (1), H is the Shannon entropy (in unit of bits)

H(F) = −
k∑

i=1

fi log2 fi, (2)

although, as can be appreciated, a variety of other functions on the fi’s can also be used as

a criterion for estimating the divergence of two sequences.

The algorithm proposed by Bernaola-Galván et al. [4,5] proceeds as follows. A sequence

is segmented in two domains such that the J-S divergence D is maximum over all possible

partitions. Each resulting domain is then further segmented recursively.

The main issue with regard to continual segmentation is that unless the significance of

a given segmentation step is properly assessed, it is possible to arrive at segments which

have no great significance. This question is also related to a second issue, namely when one

should stop the recursion. Since we consider finite DNA sequences, it is again possible to

keep segmenting until the segments are very short. Both these questions can be answered

through one of two possible approaches which we now describe.

A. Hypothesis testing framework

The statistical significance of the segmentation is determined by computing the maximum

value of the J-S divergence for the two potential subsegments, Dmax, and estimating the
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probability of getting this value or less in a random sequence. This defines the significance

level, s(x), as

s(x) = Prob{Dmax ≤ x}. (3)

The probablility distribution of Dmax has an analytic approximation [5,6] and

s(x) = [Fν(β · 2N ln 2 · x)]Neff , (4)

where Fν is the chi–square distribution function with ν degrees of freedom, N is the sequence

length, β is a scale factor which is essentially independent of N and k and for each k,

Neff = a ln N + b. The values of β and Neff (and thus the constants a and b) are found

from Monte Carlo simulations by fitting the empirical distributions to the above expression

[5,6].

Within the hypothesis testing framework, then, the segmentation is allowed if and only if

s(x) is greater than a preset level of statistical significance. It is possible to segment a given

sequence initially at a (usually very high) significance level, and these domains are further

segmented at lower levels of significance to detect the inner structure or other patterns [15].

B. Model selection framework

A different criterion can be evolved for stopping the recursive segmentation within the

so-called model selection framework [7]. This is based on the Bayesian information criterion

[21,22,23], denoted B below,

B = −2 log(L̂) + log(N)K + O(1) + O(
1√
N

) + O(
1

N
), (5)

where L̂ is the maximum likelihood of the model, N is the sample size and K is the number

of parameters in the model.

A potential segmentation based on the J-S divergence D is deemed acceptable if B is

reduced after segmentation. From the above equation, this condition is [7]
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2ND > (K2 − K1) log(N), (6)

where K1 and K2 are the number of free parameters of the models before and after the

segmentation. This is the lower bound of the significance level; an upper bound can be

preset by using a measure of segmentation strength [7],

s =
2ND − (K2 − K1) log(N)

(K2 − K1) log(N)
. (7)

Eq. (6) is equivalent to the condition s > 0.

III. APPLICATIONS AND ANALYSIS

In the present work we consider DNA sequences as strings in a 4–letter alphabet

(A, T, C, G). In the model selection framework discussed above, therefore, the relevant

parameters are K1 = 3 (since only 3 of the 4 nucleotides are independent) and K2 = 7 (the

3 free parameters from each of the two subsegments, and in addition, the partition point

which is another independent parameter) [7]. The importance of this segmentation approach

in detecting some of the structural and functional units in DNA sequences has been demon-

strated recently [19]. The results that follow have been obtained by the application of this

approach.

A. Labeling the domains

The complete genome of a bacterium Ureaplasma urealyticum (751719 bp) and a contig

of human chromosome 22 (gi | 10879979 | ref | NT 011521.1 |, 767357 bp) were segmented

at the lower bound of the stopping criterion, namely Eq. (6). The number of segments

obtained by this procedure is 86 for the bacterium and 248 for human chromosome 22

contig. Labeling each of these segments by a unique symbol gives a coarse–grained view of

the entire sequence, say S1 · S2 · · ·SN .

While each segment Sk is heterogeneous with respect to its neighbours, Sk±1, it need

not be compositionally distinct from a non–neighbouring segment, Sj . Therefore, we now
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examine the inter se heterogeneity of all segments with respect to each other. Segments

Sk and Sj are concatenated, and if this ‘supersegment’ cannot be segmented by the same

criterion, then both Sk and Sj are assigned the same domain symbol. This is done recursively

and exhaustively, so that within the model selection framework of segmentation, all domains

that cannot be distinguished from one another are assigned the same symbol. This gives a

reduced and further coarse–grained view of the domain structure of a DNA sequence.

To ensure that the above procedure is as complete and self–consistent as possible, we

examine each segment Sk by concatenating it with Sj and all preceding distinct segments

that share the same domain symbol as Sj, and examine whether this larger sequence can be

segmented. Explicitly, if segments Si and Sj have the same symbol (following the procedure

given above) we examine the supersegment Si · Sj · Sk to determine whether segment Sk

should share the same domain symbol or not. It is further required to to consider all

possible subsets (Si ·Sk, Sj ·Sk, etc.) to ensure that all segments that are deemed to share a

given domain symbol do indeed belong to one class, namely that such superdomains do not

undergo further segmentation.

Following the above, the 86 domains obtained from the segmentation of U. ure-

alyticum are reduced to a total of 17 distinct domain types:

S1 S2 S3 S4 S5 S3 S1 S2 S1 S6 S4 S1

S6 S7 S2 S1 S6 S4 S8 S9 S4 S9 S10 S4

S9 S4 S11 S12 S6 S4 S10 S6 S10 S6 S11 S6

S7 S6 S11 S7 S3 S11 S3 S10 S6 S3 S9 S11

S10 S4 S11 S10 S13 S4 S13 S9 S11 S4 S6 S4

S11 S4 S14 S6 S8 S6 S14 S4 S6 S15 S1 S9

S4 S16 S9 S17 S15 S6 S17 S7 S17 S1 S17 S8

S16 S14

The 248 segments of human chromosome 22 also undergo simplification, to a total of 53

distinct domain types:
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S1 S2 S3 S4 S5 S4 S3 S6 S4 S6 S7 S4

S8 S4 S9 S10 S6 S4 S7 S1 S4 S7 S6 S4

S7 S11 S4 S12 S13 S4 S14 S12 S4 S15 S16 S14

S6 S9 S10 S17 S16 S10 S16 S6 S12 S18 S12 S10

S3 S1 S3 S1 S10 S9 S6 S3 S12 S16 S3 S12

S14 S1 S7 S6 S12 S7 S1 S6 S19 S6 S20 S17

S7 S21 S7 S22 S21 S22 S23 S7 S23 S24 S17 S21

S7 S21 S1 S21 S7 S21 S7 S16 S25 S1 S16 S15

S26 S8 S15 S8 S21 S8 S21 S27 S16 S12 S1 S28

S21 S28 S21 S12 S21 S16 S12 S16 S12 S28 S16 S19

S17 S27 S28 S16 S20 S21 S29 S25 S30 S25 S31 S25

S28 S8 S25 S29 S32 S3 S25 S31 S33 S8 S31 S34

S31 S29 S30 S31 S35 S36 S21 S36 S37 S36 S2 S36

S9 S1 S9 S13 S38 S13 S39 S29 S34 S37 S2 S29

S40 S41 S31 S37 S31 S13 S35 S42 S9 S5 S9 S42

S7 S41 S1 S43 S44 S45 S46 S42 S45 S47 S45 S44

S32 S44 S45 S44 S48 S43 S25 S45 S11 S49 S13 S49

S11 S49 S47 S50 S47 S13 S26 S13 S44 S13 S45 S13

S8 S9 S45 S50 S9 S51 S5 S52 S32 S51 S5 S51

S45 S9 S21 S2 S9 S21 S9 S39 S9 S43 S13 S53

S39 S13 S43 S13 S49 S13 S47 S13

This gives a maximally coarse–grained view of the DNA squence, in terms of “domain

sets”: these are the elements of a given domain type which may be scattered over the

entire genome. Examples above are domains like S1 in bacterium or S13 in human which

are widely dispersed (these are underlined for visual clarity above), suggesting that these

fragments possibly had a common origin, or that they were inserted at the same time during

evolution. Expansion–modification [24,25] and insertion–deletion [26] are thought to play
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major role in evolution: the former ensures duplication accompanied by point mutations

in genomes and the latter results in insertion of a part of chromosome inside a nucleotide

sequence or deletion of base pairs from a nucleotide sequence. An initial homogeneous

sequence may thus become heterogeneous by insertions/deletions that consistently go on

with the evolution. Insertions may cause the pieces of a homogeneous sequence to spread.

B. Insertion–deletion and heterogeneity

The process of insertion–deletion [26] has played an important role in increasing the

complexity of genomes. Motivated by the simplification of domain description as above,

we perform the following numerical experiment in order to examine the increase in com-

plexity by such processes. Fragments of the U. urealyticum bacterial sequence of total

length 80 Kbp are inserted at N random positions in the human chromosome 22 contig

(gi|10879979|ref |NT 011521.1|). The heterogeneity will naturally increase because of such

insertions.

Prior to the insertion of bacterial fragments, the total number of domains in the human

chromosome 22 contig is 248; after inserting the fragments at random positions, in a typical

realization, the number of segments obtained is 375. The results of such experiments can be

quantified through the sequence compositional complexity [18,27], denoted S,

S = H(S) −
n∑

i=1

ni

N
H(Si)

=
n∑

i=1

ni

N
[H(S) − H(Si)], (8)

where S denotes the whole sequence of length N and Si is the ith domain of length ni. This

measure, which is independent of the length of sequence quantifies the difference or dispersion

among the compositions of the domains. The higher the S, the more heterogeneous the DNA

sequence.

When fragments of very different composition are inserted into a given DNA sequence,

the complexity will necessarily increase. We compute ∆S = S
′ − S for domains obtained
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after and before the insertion for the example as above and also for a number of genomes.

In all cases ∆S > 0: the compositional complexity increases after insertion. If deletion is

also introduced, say by removing a fragment of random length from a random position (the

range of lengths being deleted is kept same as that of the ‘inserts’) in general ∆S increases

further.

C. Measuring the complexity

We quantify the simplication of domain description of the two representative genomes

by considering a complexity measure within the model selection framework, namely the

Bayesian information criterion (B). Within standard statistical analyisis, one model is

superior in comparison with another if it has a lower B. For the case of U. urealyticum ,

where the segmentation procedure gives 86 domains,

B = −2 log(L̂) + 343 log(N) (9)

where K = 343 parameters correspond to 86 × 3 base compositions and 85 borders. These

are reorganized into 17 domain sets, and thus

B
′ = −2 log(L̂′) + 136 log(N) (10)

(136 = 17 × 3 + 85). The maximum likelihood can be expressed as

L(pα) =
∏

α

pNα

α , (11)

where {pα} and {Nα} are the base composition parameter and the base counts respectively

corresponding to alphabet {α = A, T, G, C} of a sequence. ∆B = B
′ − B depends on the

relative contribution of both terms; typically L > L′ since the first segmentation uses a

more accurate measurement of base composition. The reduction in this measure comes from

the second term through the drastic reduction in the number of domains which reduces the

model complexity.
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For U. urealyticum and human, ∆B = −1709 and −4884 respectively which shows that

the model representative of the domain set is better than the original one (we use the lower

bound i.e. ∆B < 0 for determining the statistical significance [7]). As another example, we

found ∆B for Thermoplasma acidophilum (archaeabacteria, 1564906 bp) and another contig

of human chromosome 22 (gi | 10880022 | ref | NT 011522.1 |, 1528072 bp) to be −2808

and −10420 respectively. We repeated this procedure for different available genomes and

found the above results to be consistent. Note that the simplication can also be quantified

in terms of S and we observe ∆S < 0 in all cases.

IV. IN SILICO EXPERIMENTS ON DOMAIN INSERTION: A HOST–PARASITE

PERSPECTIVE

It is tempting to speculate that the heterogeneity that is uncovered by the segmentation

procedures discussed above is a reflection of the evolutionary history of the given sequence,

and in particular, that the different domains arise from insertion processes acting at different

evolutionary times. For instance, it is well–known that the human genome contains a small

fraction of bacterial genome which have most likely arisen from processes such as viral

insertion or lateral gene transfer.

To what extent can the segmentation process determine the exact pattern of insertions?

Here we describe some simple experiments that are designed to explore this question. Start-

ing with a homogeneous fragment of human DNA, we insert fragments from (a homogeneous

segment of) bacterial genomes; this increases the heterogeneity. We then apply the segmenta-

tion algorithm followed by the labeling procedure and compare the results with the (known)

control.

Experiments were done on a homogeneous domain set from the human genome, of total

length 100139 bp. Into this, fragments from a homogeneous segment of length 17584 bp from

the genome of U. urealyticum were inserted. In a representative case, we took 3 fragments

(of lengths 5000, 7000 and 5584 bp respectively) and inserted them at locations 10000, 50000
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and 92000 in the human genome domain.

Upon segmentation, all seven segments were identified, with the boundaries between the

bacterial and human DNA sequences determined as follows: 9984 (10000), 15000 (15000),

49751, 50060 (50000), 56968 (57000), 91636 (92000) and 97575 (97584), (the exact values

are given in brackets). There is thus one false positive, but otherwise all the boundaries

are determined to fairly high precision. The domain sets can also be reconstructed, and the

seven segments, S1S2S1S2S1S2S1 conform to two sets.

Shown in Fig. 1(a) is the insertion process for a case where fragments from two bacterial

genomes, Ureaplasma urealyticum and Thermoplasma acidophilum are randomly inserted in

the human genome segment. Carrying out segmentation at varying strength s gives a greater

number of segments compared to the correct value of 13. With s = 0.2, one gets 18 segments

(see Fig. 1(b)) which is the best reconstruction possible within the present framework. On

obtaining domain sets, we find that up to about 85% of human and U. urealyticum genomes

are properly identified, the errors affecting the reconstruction of T. acidophilum which is

only 67% accurate.

To summarize, our results from several numerical experiments show that the reconstruc-

tion of the fragmentation process can be done to high accuracy so long as the inserted

fragments are sufficiently long and widely separated.

V. DISCUSSION AND SUMMARY

Segmentation offers a novel view of the compositional heterogeneity of a DNA sequence.

In the present work we have applied the segmentation analysis to genomic sequences from

several organisms.

Our main focus has been on understanding the organization and to this end we have

applied a number of different analytical tools. Our main analysis has been directed towards

obtaining a coarse–grained representation of DNA as a string of minimal domain labels.

Complexity measures indicate that the reduced model in terms of domain sets is superior
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to a model where each domain is treated as independent.

Insofar as the different domains are considered, our main hypothesis is that these arise

when fragments of one (possibly homogenous) DNA sequence get randomly inserted into

another (also possibly homogenous) sequence. A controlled set of (numerical) experiments

give support to this hypothesis: we are able to identify domain boundaries to high accuracy

so long as inserted domains are not very short. The accuracy could be further increased by

improving the segmentation process, for example, using 1 to 3 segmentation rather than the

binary or 1 to 2 segmentation used here: binary segmentation is only one of several possible

segmentation procedures (see Ref. [17]).

A consequence of this analysis, and one that we are currently exploring, is that different

domains (or domain sets) in one genome can have arisen via insertion from another organism.

Homology analysis (say by the use of standard tools such as BLAST or FASTA) can help

to unravel the origins of the domains. Thus segmentation analysis can possibly help in

reconstructing the evolutionary history of the genome.
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FIG. 1. (a) Representation of a DNA sequence obtained by random insertion of fragments of

two bacterial sequences T. acidophilum (T) and U. urealyticum (U) into a human sequence (H)

(see text). (b) The domain structure as uncovered by the procedure of segmentation and labeling

(as described in the text).
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