PHYSICAL REVIEW E 68, 037201 (2003
Strange nonchaotic attractors in driven excitable systems
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Through quasiperiodic forcing, an excitable system can be driven into a regime of spiking behavior that is
both aperiodic and stable. This is a consequence of strange nonchaotic dynamics: the motion of the system is
on a fractal attractor and the largest Lyapunov exponent is negative.
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Many physical and physiological systenj4,2] show the dropouts has also been discus3jdThe phase diagram
spontaneous spiking behavior. Theseexeitabledynamical for the unforced system in theg-e, plane[1] has four sepa-
systemd3]: for external perturbation below a threshold the rate regions based on the number and type of fixed points. In
dynamics remains in a quiescent state, whereas drasticallyne such region a saddle coexists with a stable node, and Fig.
different dynamics results for perturbation above the threshi shows the phase curves. The unstable manifatd line)
old. Excitability has been observed in numerous fields, e.g.¢f the saddle £) terminates in a stable nod@{, while the
chemical reaction kinetics, solid state physics, biology, etcstable manifold of the saddl¢ghe dashed lineconnects to
[4]. The well-known neuronal Fitzhugh-Nagumo systesh  the coexisting unstable focu®)(. Since the only attractor is
has been studied extensively in this context. Irregular intenthe stable node, any trajectory that is made to cross the stable
sity dropouts in feedback lasers have also been modeled asanifold of the saddle by a perturbation necessarily makes a
an excitable systerf6]. Under the effect of external noise long excursion to reach the attractor. This dynamical behav-
such systems have dynamics with an aperiodic sequence ffr, which is independent of the strength of the perturbation
spikes. There can be stochastic or coherence resohdna@e  so long as it is above the threshold, makes this system excit-
well. able.

The simplest models showing excitable dynamics are Forcing is introduced into this system through time de-
forced systems with two spatial freedoff® so that in the pendence in the control parameter:
absence of perturbation the dynamics is entirely periodic or
quasiperiodic. It is also necessary that there be a saddle as e—F(t)eg, 2)
well as other fixed points so that the system can be driven

from the vicinity of one node to another by the dynani@ |\ here the modulationF (t) = 1+ e(cost-+coset) will be
In systems that have been studied so far, both periodic driv

. - . ‘quasiperiodic in time ifw is chosen to be an irrational num-
|[ng asj well as noise have been used to cause perturbatloaﬁr_ We take this frequency to be the inverse golden-mean
8-10].

Here we examine the effect of quasiperiodic forcing inratIO (5-1)/2.

. L . Compared to the periodic or noise driven cg3k quasi-
excitable systems. The motivation for this stuc_jy comes iro eriodic forcing drastically alters the characteristic behavior
the experience that in numerous other dynamical systems the

effect of quasiperiodic driving is to create attractors that are 5

both stable and fractdlll]. Quasiperiodicity is in some
sense intermediate in effect between purely periodic driving . _
and noise, and generically appears to create strange noncha-
otic attractorgSNASs). We are therefore interested in the na- ol .
ture of the attractors and excitable dynamics under quasip-
eriodic driving in the present work. > -1 -

Our first application is made on a system introduced by
Eguia, Mindlin, and Giudici6] that models low-frequency 2 -
fluctuations in a semiconductor laser with optical feedback, ;

X=Y,
43 -|1 (I) I1 5 3
y=X—y—X3+Xy+ €3+ €,%°. 1) X

FIG. 1. Phase curves in the excitable regionegt 0.08 and
This set of equations, when driven by noise, has beer,=1 in Eq.(1). The symbolsx, O, and® represent the saddle,
shown to simulate the observed irregular pattern of intensityinstable focus, and stable node, respectively, as discussed in the
fluctuations reasonably well, and a statistical description ofext.
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FIG. 2. (a) The largest Lyapunov exponent afig) its variance
as a function ofe. P and C indicate the periodic and chaotic re-
gimes, respectively.
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of the spiking. Complex attractors that are geometrically time

strange can be created, and on these the dynamics can be- o o

come chaotic or remain nonchaotic, depending on the mag- F!G: 3. The Poincaresection in the phase plane &) e=5
nitude of e. We present detailed numerical resyli€] for (periodic attractor (@ is the stable node f(_)r the unforced case,
representative values of the parameters, here taken tq be —0) @nd(b) €=5.08 (SNA), and(c) the difference between the
=0.08 ande,=1. In Fig. 2a) the largest Lyapunov expo- .S'.g.nzlils of dFV.VO unCﬁUpl.ed 'dem'hcal systems &L, with different
nent(LE) is plotted as a function of. In order to detect the Initial conditions, showing synchronization.

occurrence of complex dynamical behavior, we also examine

the variance of a set of finite-time estimates of the Lyapunov

exponent, shown in Fig.(B). A significant increase in the

fluctuations is observed at a sharp transition valueeof

~5.02 even though the LE remains negative. This is charac- T ' ' ' T

teristic of SNAs[13]. Shown in Fig. 8a) is the limit cycle I I
. . . 2 —

for the system ae=5 with the unstable node indicated by T % | T (W] T Tl T i

@. Under quasiperiodic forcing, this limit cycle transforms 1H -
into a fractal attractofat a transition value oé~5.02). This
attractor is shown in Fig.(8) at e=5.08, slightly above the
transition. The Lyapunov exponent being negative, the dy-
namics remain stable: the synchronization of two trajectories
with very different initial conditions is shown in Fig.(&.

This is a very robust property of strange nonchaotic attrac-
tors[14].

The transition from a limit cycle attractor to a SNA is
detected using the observation that, although the largest LE
remains negative, its varian¢ebtained, say from a sample
of finite-time Lyapunov exponentsshows an abrupt and
sharp increasgsee Figs. @) and 2b)]. This coincides with
a crisislike behaviof15], i.e., a sudden expansion of the
attractor. In this case this increase in the volume of the at-
tractor occurs through a sharp transition from a limit cycle to
a fractal attractor. As in all SNAs, the motion is intermittent
[13,16,17 and nearby trajectories with different initial con-  F|G. 4. (a) The variation ofx with time. 7, and 7, are two
ditions synchronize in timgFig. 3(c)]. characteristic time durations in which the trajectory remains close

Because of the combination of intermittency and excit-to the periodic attractotb) The distributionN(7) of durationsr on
ability, the present system does, however, exhibit an importhe SNA with e=5.081. The interspike intervals are measured by
tant difference from other SNAs that have been studied eathreshold crossingksee the dashed line i@)].
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lier. Excitable SNAs have an unusual distribution of 0

interspike intervals. The variation of plotted in Fig. 4a),

shows these characteristic bursts or spikes. In the interspike

region the trajectory remains near the fixed point of the un-

perturbed system while spiking takes the system along the <<

main part of the attractor. The interspike intervét$ have

the characteristic distribution shown in Figb#t N(7) is the

number of intervals of duratior= 7. Two distinct scaling

regimes are evident, in contrast to other examples of inter-

mittent SNAs[16,18 or chaotic attractors in other nonexcit-

able systemg$19]. 0.15
The mechanism for the interspike plateaus shown in Fig.

4(b) is the following. The two time scales originate from the b 01

two different circuits on the attractor. The system stays

mostly in the vicinity of the fixed point or on the limit cycle. 0.05

This is the low-amplitude fluctuations in Figa. The bursts

or spikes occur when the trajectory goes onto the fractal

attractor. The long interspike interval, occurs when the

motion goes from the vicinity of the fixed point to the fractal €

attractor and the short interspike interwaloccurs when the )

motion on the fractal attractor originates from the limit cycle. ~ F'G- 5. The(@ largest Lyapunov exponent afio) variance as a
This behavior appears to be a common feature of othefunction of e in the Fitzhugh-Nagumo model, EGH).

quasiperiodically driven excitable systems as well. We ex-

tend our study to the van der Pol-Fitzhugh—Nagumo equa-

tions[5,7] which model excitable neuronal dynamics. This is

'
—

b ' ' ' '
m O H w N

also a system with two freedoms, which in reduced form is 03l-a) ' ' ' ' i
given by ol ]
. x3 >.03} -
MX=X=Z7Y, 0.6 —_—
09 | | | | -
. T 1 | | [
y=x+a. ) %) S ]
0 ~ . -
The fast variablex corresponds to the membrane potential > o3| \ .
and the slow variablg is related to recovery or refractori- 06 ) i
ness. This system has a fixed point aty)=(—a,— « 09l | | | | 4
+a®/3). Fora<1, there is a well-defined natural frequency 2 38 A6, 14 2 .
since the dynamics is oscillatory, while far>1 the dynam- -1 I ./_._ T T T
ics is stable, although any finite perturbation will produce a 27 . .
large pulse. Thus the system satisfies the criteria of excitabil- 14N — —
ity. In Fig. 5(a) the variation of the Lyapunov exponent with * 16k M /n -
parameter is shown for the modulated system with param- a8l M i
eterse=1.05, ©=0.01, 2 ! ! N ! ! I
0 1 2 3 4 5 6 7
x3 8
)-(_ X— = — y 0 d I I I —
MX= 1
3 109 .
X
. % -20 —
y=x+F(8)a, =
£ b _
b 1 | |
0=1. (4) 400 10 20 30 40
[The variabled plays the role of time; trivially, the last of the time
equations integrates t=t. In Fig. 6c) we consider the FIG. 6. The Poincarsection in the phase plane @ e=0.02
variable # modulo 2. ] (periodic attractor (@ is the stable node for unforced cages 0)

The sudden increase in fluctuations in the finite-timeand (b) e=0.1 (SNA); (c) the x— 6 phase portrait of a typical tra-
Lyapunov exponent above~0.039 clearly signifies a tran- jectory, showing the discontinuities on the SNA; addithe differ-
sition in the dynamics, which we confirm as being from pe-ence between the signals of two uncoupled identical systems Eq.
riodic motion[Fig. 6(a)] to a SNA[Fig. 6b)]. The strange- (4), with different initial conditions, showing synchronization on
ness of the SNA can be clearly observed in Fig) Gvhere  the SNA.
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2 ' ' - ' All forced excitable systems show spiking phenomena,

| although as pointed out above the histogram of interspike

TR I ol Y i T ] intervals on the excitable SNA has a characteristic bimodal

0H - distribution. Such distributions and return maps constructed

1 from time series data for have been extensively used in the

'1? /) /\) / /‘J/J V analysis of spike data from experimental signgdsch as

2k - electroencephalogram{EEGS]. In this context, it was pro-

- 1 posed earlier by Mandell and Sdl20], who analyzed EEG

B Toe0 20(')0%_ —Iow 0000 data for signatures of SNAs, that quasiperiodic forcing may

w—pme be a relevant internal mechanism for neuronal dynamics. Al-
though the analysis of a spectral distribution function for
SNAs|[21] was not conclusive, there was some evidence for
a fractal attractor with zero Lyapunov exponent.

In summary, we have shown here that with quasiperiodic
driving the simple attractors of excitable systems become
geometrically strange and dynamically nonchaotic. In con-
trast to previously studied systeifi3], SNAs do not emerge
in the transition from periodic to chaotic dynamics: in the
absence of driving, the dynamics is nonchaotic. The present
scenario can therefore find application where the contrasting

q features of aperiodic bursting as well as dynamical stability
are simultaneously necessary.

300 —

Z 200

100 -

FIG. 7. (a) The variation ofx with time and(b) the distribution
N(7) on the SNA ate=0.1. The interspike intervals are measure
by threshold crossingsee the dashed line i@)].

discontinuities in @,x) are shown. The variation ofand the
distribution N(7) of interspike intervals is shown in Figs.
7(a) and (b), respectively. The general behavior, including This research was supported by grants from the Depart-
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