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On the behaviour of small clusters near the spinodal decomposition’
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Abstract. The canonical average of the Boltzmann factor of the interaction potential, as
measured by a test particle, is shown to be equal to the inverse of the fraction of the
average number (i7,) of 1-particle Mayer clusters. The potential distribution theory is
used to derive an analytic expression for a mean number of small clusters (171,,1 < n < N,
in an N-particle system) in the mean-field expression. Near the spinodal density, the
average number of small clusters undergo a sharp change. Computation of pressure shows
that only the first four clusters produce surprisingly good agreement with known pressure
even beyond the spinodal density.
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1. Introduction

The mean number, /,;, of l-particle clusters plays a very important role in the
theories of nucleation and metastability (Becker and Doring 1935; Abraham 1971;
Kalos et al 1978; Penrose and Lebowitz 1979; Shing and Gubbins 1981 & Garcia
and Soler Torraja 1981). In the statistical mechanical theories of nucleation, the
mean numbers 7, of the larger clusters are usually written in the following form
(Abraham 1971)

m, = my exp [—~AF(n,p,0)/kgT], n=2, (1)

where AF(n,p,T) is the difference between the free energy of a cluster of n
particles and that of a vapour of » monomers at temperature T and pressure p.
Equilibrium solutions of the Becker-Doring type of kinetic equation theories of
nucleation also give r, in terms of 1, (Becker and Déring 1935; Penrose and
Lebowitz 1979),

mn = Cn (ml)ns ‘ (2)
where C,, is a function of the size n of the cluster. Recent computer simulations

(Penrose and Lebowitz 1979) of cluster size distribution on lattices have also
re-emphasized the importance of 71, in the nucleation process.
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It is well-known that there is no unique way to define a cluster for continuous
systems, although there exist several different prescriptions for dom_g.so. These
prescriptions differ from each other in some fundamental aspects, but it is believed
that well below the critical temperature, when the attractive forces are important,
these different prescriptions give qualitatively the same result. Recently it has been
shown that the mean cluster size distribution (Bagchi 1980; Donoghue and Gibbs
'1981; Gibbs et al 1981), defined by a reformulation of Mayer’s theory of
condensation (Mayer and Mayer 1980), can successfully describe the condensation
process. Below the critical temperature, the cluster integrals are positive and a
mean number of Mayer clusters of certain size can be defined rigorously. However,
the clusters arising in the Mayer theory may not always be interpreted as an
aggregate of molecules, the members of which remain within the sphere of
influence of each other for a time appreciably larger than the duration of a
bimolecular collision time. This is especially true at high temperatures. The
formulation of a satisfactory definition of physical cluster concept has drawn
considerable attention in recent years (Lee et al 1973; Gills et al 1977; Powless 1980;
Lockett 1980). In this paper, however, we consider only the Mayer clusters and
show that an expression like (2) can also be derived for Mayer clusters in the
mean-field approximation. It is interesting to find that the Mayer clusters, which
are usually called mathematical clusters because of their apparent lack of physical
reality, can so easily be substituted for physical clusters. We have already seen that
near the condensation density the size distribution of these mathematical clusters
suddenly becomes bimodal, signalling the appearance of large clusters in the
system. Thus, these “mathematical” clusters seem to parallel the real physical
clusters in more than one respect. '

In this paper, we present the following results. We demonstrate that the
canonical average of the Boltzmann factor of the interaction potential (Widom
1963; Hansen and McDonald 1976), (BFT), as measured by a test particle, is equal
to the inverse of the fraction of the mean number 7, of 1-particle Mayer clusters.
Since recent advances in computer simulations have made it possible to calculate
(BFT) directly (Adams 1974; Romano and Singer 1979), our result could be of use
in computing 7, . Mean-field approximations to (BFT), as developed by Widom
(1963), is then used to derive an analytic expression for 77, . In the limit of infinite
system at fixed density, an accurate expression for the mean number of clusters
1, (n = 2) can be derived for clusters whose sizes are much smaller than the total
number of particles in the system. We find that the 7, undergo a sharp change near
the spinodal density. We have also computed the pressure from the mean number
of these clusters and found that even by including only the first four clusters, good
agreement with the exact pressure can be obtained even beyond the spinodal
density.

In the next section, we derive the expressions necessary to evaluate 1, . In §3, we
present the results. Section 4 concludes with a brief discussion.

2. Theory

In the potential distribution theory (Hansen and McDonald 1976; Widom 1963), an
expression for the canonical average of the Boltzmann factor of the interaction
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energy of a test particle with all other particles of the system is derived. The
configurational partition function Zy for a system of N-particles is given by

) |
ZN=~A~”f....fexp[—'—ﬁUN]d"rl...d'rN, (3)

where Uy is the energy of interaction of N-particles, ; is the element of volume
i-th particle and B8 = (kzT)™', T being the temperature and kz the Boltzmann
constant.

Equation (3) can also be written in the following form
V .
ZN=—]\7‘ f....fexp["B(UN_1+¢I)]dTI...dTN_1, (4)

where one of the particles is labelled as a test particle and ¢ is the energy of
interaction between this test particle and the rest of the system. Equation (4) can be
written in the form (Hansen and McDonald 1976).

V .
Zn = I (N=1)! Zy_, (e P, &)

where (...... ) indicates a canonical average in the (N—1) particle system.
An interesting relation, which is inverse of (5), has recently been derived

/

V(N-1)!

ZN—] -

Zn (P, | | (©6)

where ((...... )) is a canonical average in the N-particle system and the particle that
experiences the potential ¢ is one of the N-particles and not a test particle.
We will discuss Widom’s mean-field approximation to (BFT) later. First, let us
show how (5) can be used to relate BFT to the mean number /1, of one particle
clusters.
We start with the Mayer-Ursell cluster expansion (Mayer and Mayer 1980) for
the function Zy, given by

N Vb T,V my
S B ACIEN2) | )

{m} =1 m[!

with >  Im;y=N. _ (7a)
I=1

The b;(T, V) is the Ith connected cluster integral and m,’s are positive integers or
zero. Recently it has been shown that the cluster expansion (7) is related to a
general class of polynomials known as the Bell-polynomials (Gibbs et al 1981).
These polynomials arise in the task of simplifying the nth derivative of a composite.
function.

As long as the b/’s are positive, a mean number 7, for the population of the
clusters of size k can be defined as (Donoghue and Gibbs 1981; Gibbs et al 1981;
Hill 1956);
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‘N Vb nu :
(TN = S me [T 20 / Zn(r.). ®)
{m} I=1 my!
N
Z lml = N.

=1

We note that as long as b/s are positive, the statistical weight factor

N
[T (Vb)Y™im,! is well defined.
I=1

There is considerable amount of controversy in the literature (Hill 1956) over the
nature of the clusters as defined through (8). Above the critical temperature,
b;(T,V) may become negative and 77, may not represent the occupation number of
areal cluster. As explained in the introduction, Mayer clusters are considered to be
mathematical rather than physical, but these clusters have many properties which
parallel the properties expected of real physical clusters.

By exploiting the properties of the Bell-polynomials (Bell 1934; Riordan 1978),
we can express (8) in the following simple and elegant form (Gibbs et al 1981),

Zn_i(T,V
e = Vb (T, V) Zn-i(LV) | )
Zn(T,V)
A comparison of (5) with (9) immediately gives
my
— = (e YkT), (10)
N

where we have used the fact that b, = 1.

Equation (10) expresses the mean number in terms of the canonical average,
(BFT). We shall now use (10) to derive an expression for #1;/N. We now show that
one can easily derive a mean-field approximation to (BFT). In this approximation,
one starts by separating the potential into the hard core repulsive and the attractive
parts, and one replaces the attractions by a mean-field. If W is the probability that
the hard spherical core of the test particle will fit at an arbitrary point without
overlapping with the hard cores of any other molecules that are already there, and

if Yy, is the attractive part of the potential felt by the test particle, then we can
write

(e™YIkT) = W(e™ %/kT). (llj

The probability W is identified as p/zy, where Zys is the fugacity of the hard
sphere fluid at density p. We replace the average of the exponential on the right
hand side of (11) by the exponential of the average which we denote by Y, »
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'1{/mf = pfr)cr ¢attr(r) dr = 2a. . (12)

¢ (r) is the attractive component of the inter-molecular potential, o is the
diameter of the hard core, and

a=—3f Suir (1) dr | (13)
2 1n

is van der Waals’ parameter a. Combining (11)-(13), we get
(e YkT) = plzys €7 (14)

For hard sphere fluid, the density expansion provides a very good approximation to
zys even at fairly high densities. Formally this is obtained by inverting the
well-known (Hill 1956; Mayer and Mayer 1980) fugacity expansion of density

p(z) = 2 Ib(T) 7, (15)

I=1

which can be inverted to give

zus(p) = pe TP, (16)

At very low densities, z and p are practically identical, so the function F (p) must
tend to zero as p — 0. Therefore, it can be expressed as a power series in

F(p) = kZ BHS pt. ’ (17
=1

The B’s can be identiﬁed as star (or irredusible cluster) integrals (Hill 1956; Mayer
and Mayer 1980). ‘
By combining (10), (14), (16) and (17) we obtain

-3 B
___1 — e(mztzp/kT) e k=1 (18)

N

For temperatures below the critical temperature, (18) predicts an exponential fall
~ with increasing density at lower densities. This behaviour has been observed in
recent numerical calculations (Donoghue and Gibbs 1981).

We can also calculate the occupation number 7, for cluster sizes larger than
single particle if we make the following appreximation

Zn-x  Zn-1 _ Zn—2 Zn—k
= X b G X
Zn Zn ZN-1 Zn-k+1
Tk
z(_ii);k<w, | (19)
Zn

The approximate relation (19) is reasonable for large systems so long as cluster size
k is much smaller than total number of particles in the system. In this paper we shall
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use (19) to compute #, only for very small values of k. Now, 172,’s are given by the
following expression '

¥y : ny VK
——=b.“'«_). 4 20
N kP N ( )

Equation (20) is very much similar to (2) which is the equilibrium solution of the
kinetic equation of Becker and Doring (1935) for the time evolution of cluster sizes
in nucleation. A closed form expression for the cluster integrals are given by
(Mayer and Mayer 1980),

1 N my .
b, = E‘[I(k@> /mm:Lmu=k—L 21)

2
k fmtp 1

Pressure can be expressed as the sum of the mean cluster sizes

hT=p S
pIxr pi:; ( N

Next, we present a calculation of the mean number of these cluster sizes for van
der Waals’ fluid. The reason for choosing van der Waals’ fluid is three-fold. First,
all of the irreducible cluster integrals are available. Second, an extensive numerical
calculation of the mean cluster size distribution for this system has recently been
carried out by Donoghue and Gibbs (1981) who used the exact relation (9) to
evaluate all the r,’s. Their calculation was done numerically and was limited to
small system sizes. Third, the mean-field argument is exact for this system.

The star integrals, B,’s, can be found by expanding the van der Waals’ equation
of state,

— (22)

I ’7‘1[\ )

(p+§?)(%—b)=@T. (23)

For convenience, dimensional variables are introduced,

b? ~ Nb bk T
p*= p’ p*=~_r T*: i - (24)
a |4 a
In this reduced unit
7 = -2, | o (25a)
; k+1
Bﬁz=~(m—). (25b)
k .
One can easily sum the series (17) to obtain |
F(p*) = —p*1-p*+In(1-p*), (26)

so that (18) becomes,

m
X,i(r*,p*) = (U1=p*) exp(=2p*/T* +p*/1—p*). (@)
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Other m,’s are given by (20).

Equation (26) gives the explicit dependence of the fraction of monomers on the
temperature and density of the system. This equation should prove useful in the
study of nucleation phenomena, especially where the van der Waals’ equation
provides a good description for the gas phase.

We note that the above mean-field approximation can further be improved if we
do a judicial separation of the total potential, e.g. the separation of potential
introduced by Weeks, Anderson and Chandler (WCA) (Weeks er al 1971). This

will lead to an augmented van der Waals’ type description (Hansen and McDonald
1976) of the cluster sizes.

3. Results _

Figure 1 describes the dependence of m,/N on the density at three temperatures
below the critical point (7'} = 0-296). At low densities, m;/N decreases rapidly
with increasing density. In the intermediate region, which is bounded by the two
spinodal densities, the dependence of n1;/N on p* is almost linear. This is in
agreement with the numerical calculations of Donoghue and Gibbs {1981) who
observed that large clusters appear in the system near the spinodal density. The
larger clusters grow in the system as the population of the single particle clusters get
depleted.

r,/N shows an increase at still higher densities. We have found that the density
at which 1,/ N again starts to rise is very close to the density at which p* also starts
to rise. However, Mayer’s theory with volume independent clusters cannot be
trusted near the pure liquid density where very large clusters appear in the system,
and Mayer’s theory breaks down.

=z |§\

Figure 1. The vanation of the number-fraction of monomers (ray/N) with the reduced
density (p*) at three different temperatures, all below the critical point.
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Figure 2. The variation of the number fractions of 2-particle (#712/N ), 3-particle (723/N),
and 4-particle (1,/N) clusters with the reduced density at a temperature below the critical
point.

Figure 2 describes the variation of the average occupation numbers 5/ N, i/ N
and /N with density at a temperature below the critical point. As expected, all of
them increase rapidly with density when the density of the system is small. Then
they all reach maximum at densities which are little lower than the spinodal density.
Beyond the spinodal density, there is a sharp drop in the population of these
clusters and they pass through a linear region before they start rising again at a
density close to the liquid density.

The sharp decrease in the population of these small clusters near the spinodal
density indicates that the population is being shifted to the larger cluster sizes. The
sudden appearance of these larger clusters indicates the onset of condensation.

Figure 3 depicts the variation of pressure with density; the pressure is computed
from the mean numbers of the first four clusters with the help of (22). We see that
the agreement of this pressure with the van der Waals’ pressure is very good, even
beyond the spinodal density. There is a small loop present in this pressure which is,
of course, expected due to the mean-field approximation used in deriving (14) for.
(BFT). It is rather surprising that so few cluster sizes can give such a good
description of the pressure of the system, even beyond the spinodal density.

From figure 1 and from (10), we can learn about the density dependence of
(BFT). As density is increased past the spinodal density, (BFT) undergoes a sharp
increase indicating the rapid increase of the attractive interactions in the system.

4. Discussion

There are two main results that have come out of the present work. First, we have
shown that simple analytic expressions for the average number of small Mayer
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Figure 3. The pressure computed from the average numbers of the first four clusters is
plotted against the reduced density (dashed line). Also shown in van der Waals pressure
with the Maxwell tie line (solid line). The arrow indicates the- first spinodal point.

clusters can be obtained in the mean-field limit. Thus, in order to obtain the
population of these small clusters, we do not need to evaluate the full partition
function as was done by Gibbs er al (1981) and by Donoghue and Gibbs (1981).
Second, the main contribution to pressure at densities near the spinodal density
arises only from the very small clusters. :

The pressure computed from (22) becomes very large at a density p} which is
given by the solution of the following equation '

* *

. Pl 2pj
1n(1—p, )+ = e (28)

The solution of this equation in fact coincides with the density at which (dp/dv )+
becomes zero for the second time i.e. at the spinodal point of the superheated van
der Waals’ liquid. The large liquid like clusters comparable in size to the volume of
the system become important at this density and this gives rise to an explosive rise
in the value of the pressure.

In conclusion, we want to re-empbhasize that the clusters considered in this work
are mathematical clusters. However, we -have found that these clusters in many
respects mimic the behaviour of real physical clusters. We have recently shown
(Bagchi 1987) that Mayer’s theory breaks down when large mathematical clusters
appear in the system which happens near the condensation density. There are,
however, some systems for which Mayer clusters do represent the physical reality,
Bose-Einstein condensation in ideal Bose gas (Bagchi and Mohanty 1982; Mohanty
et al 1982). In these cases, the symmetry properties of the wave function of Bose
particles give rise to an effective attraction among the particles and large clusters
appear precisely at the condensation density (Bagchi and Mohanty 1982; Mohanty
et al 1982). In these cases, volume dependent cluster integrals are always positive
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and since there is no hard-core repulsion, the difference between mathematical and
physical clusters do not exist. In the presence of hard core interactions in realistic
systems, mathematical and physical clusters may have similar properties at low
temperatures (T ( T.) where the attractive part of the potential plays important
role.
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