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Abstract. In this paper, we extend and analyse spatial smoothing with uni-
form circular arrays (UCA’s). In particular, we study the performance of the
Root-MUSIC with smoothing in the presence of correlated sources, finite data
perturbations and errors in transformed steering vector that arise due to some
approximations made to enable the extension of the Root-MUSIC and smooth-
ing to UCA. Expressions are derived for the asymptotic performance of the
Root-MUSIC with smoothing applied to the transformed UCA data. An attempt
has been made to bring out the impact of both forward and forward-backward
smoothing. Computer simulations are provided to demonstrate the usefulness
of the analysis.
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1. Introduction i
Uniform circular arrays (UCA’s) are commonly employed when 360° coverage is required
in the plane of the array. Circular arrays are non-uniform linear arrays, and hence, the
rooting techniques and preprocessing schemes like spatial smoothing cannot be directly
applied to these arrays. Tewfik & Hong (1992) showed that it is possible to extend the
Root-MUSIC to UCA using the phase mode excitation concept. Mathews & Zoltowski
(1994) proposed real beamspace MUSIC to UCA (UCA-RB-MUSIC) which yields re-
duced computation and better resolution. They also studied the direction of arrival (DOA)
estimation performance of the UCA-RB-MUSIC. '
‘While extending the rooting techniques to UCA, all the authors assumed that some of the
terms in the transformed steering vector of UCA, where the transformation is performed
with phase mode excitation vectors, are negligible when the circumferential spacing be-
tween the elements is less than half wavelength. These approximations cause errors in the
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DOA estimates obtained with the Root-MUSIC even when the number of snapshots tends
to infinity, and we analyse the effect of these errors in this paper. We also extend spatial
smoothing to UCA and analyse the effect of smoothing in the presence of correlated sources
and finite data perturbations. We discuss the impact of both forward and forward-backward
~smoothing. _

In § 2, we provide a brief background. We propose in § 3 forward spatial smoothing
highlighting the assumptions made for extending the Root-MUSIC and spatial smoothing
to UCA and the errors associated with these assumptions. In § 4, we analyze the perfor-
mance of the Root-MUSIC with forward and forward-backward smoothing applied to the
transformed UCA data. We present the results of computer simulations in § 6 and conclude

the paperin § 7.

2. Background

Consider a UCA with L identical and omni-directional sensors. Let  be the radius of the
array and d be the circumferential spacing between the elements. Let 6 denote the angle
(azimuth angle) measured in the plane containing the elements. We assume for simplicity
that the sources are in the same plane as the UCA. The steering vector of the UCA wi.r.t.

the centre of the array can then be expressed as ! ’

ac(g) — [ejéf cosO, ejé’ cos(@——er/L)’ . ejé cos(9~2n(L~—1)/[,)]T (1)

where & = 2mrr/A, A is the wavelength and )T represents the transpose of (.).

Consider the phase mode excitation of the UCA. The weight vector that excites the
array with mth phase mode is given by (Davies 1983) wil = (j—Iml/Ly[1, ¢/2nm/L
¢/27m(L=1/L] The array pattern for the mth phase mode can be shown to be given by
(Davies 1983; Mathews & Zoltowski 1994)

Fn (@) =wHa (8) = Jim (£)e/™

o0
+TMN 8 T )e T + Iy €)e"], D <m <D, ()
g=1 .

where D is the maximum number of phase modes given by (Davies 1983) D =~ |2xr/A],
Jm (£) is the Bessel function of the first kind of order m, h = Lg +m, g = Lg — m, ()B
represents the complex conjugate transpose of (.) and [ x| denotes the largest integer less
than or equal to x. The first term in (2), the principal term, becomes dominant if d is less
than 0.5A. In our analysis, we consider d < 0.5X and assume the second term of (2) to be
negligible.

The normalised transformation matrix F to excite the array patterns corresponding to
(2D + 1) phase modes is given by F = VL [W_p, ..., W0, ..., Wp]. Using this transfor-
mation, we express

a,(8) = Fac(9) = Jea(8) + Aa(9) (3)

LIf the sources are at some elevation angle, say ¢, the steering vector can still be expressed by (1) with & defined as

£= 2—75%“—% where ¢ is measured w.r.t. the perpendicular to the array.
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where

Je = VL diag[Jp(&), ..., Ji(E), Jo&), L&), ..., Jo(®)],

a@) =[e7/P?, eI P=D0 1, L, el (PTDE QIPOYT @

and Aa(f) is the contribution due to the second term in (2). Note that the vector a(6)
has a structure similar to that of the steering vector of a uniform linear array (ULA). This
suggests that we can extend the spatial smoothing to UCA provided the term Aa(d) is

negligible. We treat Aa(f) as the error in the transformed steering vector, caused due to
approximation.

3. Forward spatial smoothing with UCA

Assume that M sources are impinging on the UCA and the DOA’s of these sources are
01, 6a,..., Bp. If we assume that the signal and noise are uncorrelated and noise is

spatially white with variance o2, then the covariance matrix at the output of UCA can be
expressed as

R. = ASAY 4067, (5)

where S is the signal covariance matrix, I is an identity matrix and A, is the matrix of
direction vectors of the UCA. From (5) and (3), the covariance matrix that we obtain after
applying the transformation F can be shown to be

R’ = FUR.F = J:A S AHJ¢ + 0?1+ AR, (6)

where A = [a(61), ...,a(0y)]and AR = AAS AHJg +J:A S AAH+ AA S AAH with
AA = [Aa(8)), ..., Aa(By)]. Note that the size of R is (2D + 1) x (2D + 1), and hence,
the number of sources (M) should be less than (2D + 1) for any MUSIC-type algorithm
to be applied to R’.

Spatial smoothing is a preprocessing scheme originally proposed for ULA to alleviate
the ill effects of correlation. This scheme can be extended to UCA by applying the transfor-
mation ng to the covariance matrix R? provided the term AR is negligible. If the sources
are in the same plane as the UCA or if all the sources are at the same but known elevation
angle, then ng is a known matrix.

Let K be the number of virtual subarrays (since the subarrays are not physically avail-
able). Then, the forward smoothed covariance matrix R} is given by

1K
R, =— Y Z]J;'R'Y;'Z, 7
f K;le Iz @)

where Z; = [e], €41, - .-, €4+L,—1] with e denoting the /th column of the identity matrix
of size 2D+ 1, L, is the virtual subarray dimension with L, = 2D — K +2. It may be noted
from (7) and (6) that the noise part of R} is diagonal but not of the form o21. For conve-
nience, we use prewhitening before applying the Root-MUSIC (assuming once again AR
to be negligible). The forward smoothed covariance matrix after prewhitening is given by

RY)y = R RiRy, ®)
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where the prewhitening matrix Ry, = [ 3/, 2135 137 ' Zi17'/2. I K is greater than or
equal to the number of coherent signals present, then the forward spatial smoothing builds
up the rank of the smoothed signal covariance matrix and makes it nonsingular (Shan et al

1985).
Using the structure of a(9) as given in (4), it can be shown (Reddy er al 1987) that the

effective correlation coefficient (py) between the sources after forward smoothing, in the
case of UCA, is given by (assuming AR to be negligible)

sin(K (6; — 6;)/2)

P11 = P R sin(@ - 6)/2) | ®

where 6; and 0; are the DOA’s of the ith and jth sources respectively, and p is the correlation
coefficient between these sources before smoothing. Note from (9) that pr is not dependent
on the individual directions of the sources, but is dependent only on their angular separation.
If this angular separation is 90°, then pr becomes zero for K =4. On the other hand, if the
separation is 180°, then two subarrays (K'=2) are enough to force p; to zero. Note also
from (9) that pr is independent of the spacing between the elements provided d is much
less than A/2 (making Aa(f), and hence, AR to be negligible). In contrast, when the
forward spatial smoothing is applied to ULA, the effective correlation between the sources
is dependent on the individual directions of the sources and also on the spacing between

the elements.
4. Performance of the Root-MUSIC with smoothing

In this section, we analyze the performance of the Root-MUSIC with forward and forward-
backward smoothing applied to the transformed UCA data.

4.1 Forward spatial smoothing

Consider the smoothed covariance matrix after prewhitening (see (8)). Combining this
with (6) and (7), we obtain

1 K
Ry = = Y RuwZTASAHZRE 4 021
=1

] _ _
+2 2 RuwZ] I ARY;'ZIRY,
I=1
=Rr + ARp, (10)

where

1 K
Re=— Y RuuZTASAHZRY 1 521
=1
= RnwAfoA;{RH + 020 (11)

nw
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and

K
1 _ -
ARy = — > RuuZ{J;'ARJ;'ZRE,
I=1

1 K :
= >_RuuZ[ [J7 ' AASA™ + ASAARy1Z/RE, . (12)
I=1 '

S is the smoothed signal covariance matrix and A 1 1s the virtual subarray direction matrix.
In writing the RHS of (12), we assumed AA to be small and neglected the terms containing
more than one AA. Note that Ry is the smoothed covariance matrix that we would get if
Aa(f) (see (3)) is zero. In practice, however, this term may be small but non-zero, thereby
resulting in errors in the DOA estimates when we apply the Root-MUSIC to (R})w. We
now analyse the effect of this term (i.e., ARy) and that due to finite data perturbations on
the DOA estimates.

Let (fl})w denote the estimated covariance matrix from finite number of snapshots. This
can be expressed as

(R%)y = (R})y + AR, = Rp + ARf + AR, (13)
f f P

where AR, represents the perturbation due to finite data. Note that AR, is random while
ARy is deterministic. If we assume that the noise at the output of the sensors is complex
circularly Gaussian distributed, then the mean square error (MSE) in ith DOA estimate,
due to both the finite data perturbations and the error due to approximation (i.e. due to
ARp), can be shown to be (Rao & Hari 1990)

Caaps + Re(Topap) + 2[Re(a ARpB)?

E[A0F]f = (14)
i 2V (6)REL P, R, v, (61
Poapp = —5 Z Z "Ry 0 RypB;
NK
p=1g=1
1 K K
NK? =
o =PuRuyVr, 61); B = Re)IRnvr(6);
(Re)s = RuwArSrAFRY, (16)

where Ry; = R}} = Ely, )y ()], y,(t) is the output vector obtained from the pth
virtual subarray after prewhitening, N is the number of snapshots, P, is the projection
matrix onto the noise subspace of Ry, v 7, () is the derivative of v¢(9) w.r.t. 6 with vr(6)
denoting the normalised virtual subarray steering vector, Re(.) represents the real part of
(), (¥ denotes pseudo inverse of (.) and E(.) denotes the expectation of (.).

When d is much less than 1/2, AR is very small and error in the DOA estimate is
mainly because of the noise perturbations due to finite data. This error is given by

Faaﬁﬂ + Re(raﬂaﬂ)

E[A6?]r = )
T 2V GORE PR v, BT

(17)
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Reddy & Reddy (1996a) showed that the smoothing reduces the noise perturbations due
to finite data in addition to reducing the correlation among the impinging sources.

As the number of snapshots tends to infinity, the MSE in the DOA estimate is mainly
because of the error due to the approximation (cf. (3)). This error, which we refer to as the
- asymptotic error in the DOA estimate, is deterministic and given by

[Re(aH ARgB)J?

E[A6?]r = AG? = .
T V@R, P R vy, 60)

(18)

Note that this error increases as d tends to A /2 since AA becomes larger with increasing
values of d. Let us first assume that the sources are uncorrelated. Then the asymptotic error
can be shown to be (see Reddy & Reddy 1996b)

np2_ L [Re@ Ru, A0 (6T
" Lo [VE(G)RE, PuRy vy, (6)

(19)

where

K
1 - —i(=1)8:
Aas(6) = = Y Z[T; da@)e (20)
I=1

which we define as the effective error along the direction of the i th source in the transformed
steering vector due to the approximation. Note from (19) that the asymptotic error in the
ith DOA estimate is dependent only on the effective error vector Aay(6;). The norm of this
vector can be shown to decrease with spatial smoothing (see Appendix A of Reddy & Reddy
1996b). Thus, we can expect the smoothing to improve the asymptotic performance of the
Root-MUSIC applied to the transformed UCA data. Expression (19), however, holds good
only when the sources are uncorrelated. For the case of correlated sources, simplification of
(18) leads to lengthy expressions even for a two-source case, and hence, is not considered
here.

4.2 Forward-backward spatial smoothing

Forward-backward spatial smoothing (William e al 1988) can also be extended to UCA
by applying the transformation J £ ! to the covariance matrix R’ (given in (6)) provided the
term AR is negligible. If X is the number of virtual subarrays, then the forward-backward
smoothed covariance matrix is given by

1 & _ 1 % ~1\*%
R, = .2_[.{.l§;z}‘[tr§IR’J‘,S +107 'R H 1z, @

where I is the exchange matrix and (.)* denotes complex conjugate of (.). The prewhitening
matrix in this case is also given by Ry, (defined in § 3) because T ] g lJJ’;'I)"‘ I= Jg IJgI.
Note also from (4) that TA* = A. Hence, when the signal covariance matrix S is real
(either the signals are uncorrelated or the correlation between the signals is real), it is easy
to see that R}b reduces to R}. This suggests that the forward-backward smoothing gives the
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same performance as the forward smoothing when S is real. When S is complex, it can be
shown (Williams ez al 1988; Pillai & Kwon 1989) that the forward-backward smoothing
can handle up to |2(2D + 1)/3] coherent signals in contrast to the forward smoothing
which handles up to | (2D + 1)/2] coherent signals only.

Taking into account the structure of a(8) given in (4), it can be shown that the effective
correlation coefficient (psp) between the sources after forward-backward smoothing, in
the case of UCA, is given by (assuming AR to be negligible)

sin(K (8; — 6;)/2) cos ¢
K sin((6; — 6;)/2) '

lesol = ol (22)

where p = |p| e/¥. Observe from (22) and (9) that the effective correlation with forward-
backward smoothing is same as that with forward smoothing only, when v is zero, i.e., p
isreal. When v is an odd multiple of 7 /2, the effective correlation with forward-backward
smoothing reduces to zero for all K.

The mean square error (MSE) in the ith DOA estimate that we obtain by applying the
Root-MUSIC with forward-backward smoothing to the transformed UCA data, due to both
the finite data perturbations and the error due to approximation (cf. (3)), can be shown to
be (see Rao & Hari 1990)

2 1
A = R 2T GO RE, PRy, GO
K K
x Y > e RpgaB Ry, B + [P Ry 121
p=1g=1
+2[Re(@TARgpS)]. (23)
@ =P,Ruwv; 6); B = Ren)! Ruwvr (6)), ‘ (24)
(Ren)s =Ru ArSpATRY,:  ARgy = S0 ORI, (25)

where Py, and Sp, are the noise projection matrix and the signal covariance matrix, respec-
tively, obtained with the forward-backward smoothing. The first two terms in (23) are due
to finite data perturbations and the third term is because of the error due to the approxima-
tion. The performance with forward-backward smoothing is the same as that with forward
smoothing when S is real. Hence, the expression (19) can be used for the asymptotic per-
formance of the Root-MUSIC with forward-backward smoothing also, when the sources
are uncorrelated.

The analysis carried out, so far, assumes omni directional sensors. Spatial smoothing
can also be extended to UCA with directional sensors (see Reddy & Reddy 1998) and the
analysis of Section 4 is applicable for UCA with directional elements.

5. Numerical and simulation results

In the simulations and numerical evaluation, a UCA with identical elements was consid-
ered. We considered two sources with equal powers in all the simulations. The snapshot -
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Figure 1.  Norm of the effective error vector in the transformed steering vector of UCA as
a function of circumferential spacint (L = 30).

vector was the sum of noise and signal vectors which were generated separately. The noise
vector consisted of zero mean, unit variance, independent complex circularly Gaussian
random variables. In the case of uncorrelated signals, the signal vector consisted of two
zero mean, independent complex circularly Gaussian random variables of equal variance
a}, where osz was chosen to give the desired signal powers. In the case of correlated sig-
nals, the second signal s, (¢) was generated as s3(2) = psi(r) ++/1 — | 0|25 (t) where s1(t)
and s(¢) are zero mean, independent complex circularly Gaussian random variables with
variance ors2 and p is the correlation coefficient between 51(2) and s (¢).The estimates of the
DOA’s were obtained by averaging over 100 Monte Carlo runs. The number of snapshots,
the number of virtual subarrays, the total array size and the particulars of signal scenario
are described in the captions of figures and tables. The SNR indicated in the figures refers
to the value at the input of the sensor element. For spectral MUSIC, the search for DOA’s
was conducted in steps of 0.002°.

Figure 1 shows variation of the norm of the effective error vector in the transformed
steering vector (see (20)). Note that as the spacing between the elements increases, the
norm of the error vector increases and becomes quite large when the spacing approaches
A/2. Also, the norm decreases with smoothing. This behaviour is in accordance with our
predictions.

Table 1 compares the performance of the spectral MUSIC applied to the UCA output with
that of the Root-MUSIC (without smoothing) applied to the transformed data for various
values of d (circumferential spacing between the elements). We note the following from
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Table 1. Performance of the Root-MUSIC applied to transformed UCA data as a function of the cir-
cumferential spacing between the elements (without smoothing) (L = 30, N = 100, DOA’s = 0° and 7°,
SNR=3dB, p = 0.0).

Circumferential MSE in DOA estimate (deg?)

spacing between Spectral MUSIC applied Root-MUSIC applied to
the elements to UCA data transformed UCA data

d) Simulation Evaluation of (14)
0.32A 0.2275 0.07972 0.08477
0.34% 0.1570 0.06487 0.05793
0.36) 0.1104 0.06454 0.05382
0.38A 0.07045 0.04952 0.03762
0.40) 0.04468 0.03284 0.02803
0.42) 0.03259 0.03140 0.02736
0.44) 0.02222 0.04897 0.03515
0.462, 0.01627 0.08968 0.07188
0.48X1 0.01116 0.30931 0.25090

the results. The performance of the spectral MUSIC improves as the spacing increases.
This is because of the increased aperture that we get with increasing value of 4. The
performance of the Root-MUSIC is better than that of the spectral MUSIC when the
spacing between the elements is less than 0.42). But, as the spacing is increased further,
the Root-MUSIC performance degrades and becomes worse as d approaches A /2. This is
because, at larger spacings, the error in the transformed steering vector is quite large (see
figure 1). The simulation results agree reasonably well with the theoretical values obtained
from the numerical evaluation of (14) when d is less than 0.46). For larger values of d,
however, the difference between the two increases since the theoretical expression (14) is
less accurate when the term AR becomes large.

To see if the smoothing reduces the effect of the error introduced due to the approximation
(cf. (3)) in the case of both uncorrelated and correlated scenarios, and to evaluate the
utility of the theoretical result (18) and (19), we applied the Root-MUSIC with forward
smoothing to the covariance matrix (Rj’c)w. The result so obtained from this is referred to
as the asymptotic performance from the algorithm. Table 2 gives this result along with the
theoretical values evaluated from (18) and (19) for various values of subarrays. Note from
the results of table 2 that the MSE is maximum for K = 1 (no smoothing) and it drops
significantly with smoothing. Consider the results shown in the table for uncorrealted
source scenario. As the smoothing is increased beyond K = 8, the performance starts
deteriorating because of the reduction in the aperture. The results predicted from (19) are
not identical to those obtained from the algorithm since the theoretical expressions are
accurate for small values of errors and Aa(8), the error in the present case, is not small as
d is close to 1 /2. The small fluctuations in the values with K are because of the fact that the
rate at which the norm of the effective error vector (cf. (20) ) and the effective correlation
(with smoothing) fall varies with K. In fact, the fall in the effective correlation with X is
not monotonic (cf. (9)); it is rather oscillatory, tending to zero only as K tends to infinity.
This explains why the performance for K=7 is inferior to that for K=5 and 6. Since the
forward-backward smoothing gives the same performance as the forward smoothing when
S is real, these results also hold for the forward-backward smoothing case.The results for
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Table 2. Asymptotic performance of the Root-MUSIC with forward smoothing applied to transformed
UCA data for two-source case. (L = 30, d = 0.46Ax, DOA’s = 0° and 7°, SNR =3 dB)

Number of Asymptotic performance of the Root-MUSIC

virtual with forward smoothing (A9i2 in deg?)

subarrays, p =00 p =09

(K) From the algorithm  Evaluation of (19)  From the algorithm  Evaluation of (18)
1 0.4852 x 107! 0.5359 x 107! 0.4852 x 10~! 0.4893 x 10-!
2 0.1110 x 10! 0.1148 x 107! 0.2929 x 10! 0.3105 x 10-!
3 0.2002 x 10~1 0.2018 x 10! 0.4686 x 10~! 0.4791 x 10~
4 0.4491 x 10~2 0.4684 x 1072 0.2819 x 10! 0.2951 x 10~
5 0.3120 x 1073 0.3594 x 1073 0.7611 x 102 0.8719 x 1072
6 0.5329 x 1073 0.5958 x 103 0.9496 x 102 0.1082 x 10-!
7 0.2543 x 10~2 0.2624 x 10~2 0.2612 x 10~! 0.2737 x 10~
8 0.1255 x 1073 0.1524 x 1073 0.5241 x 102 0.6161 x 102
9 0.2663 x 103 0.3085 x 103 0.7199 x 102 0.8350 x 102

10 0.3612 x 1073 0.4167 x 1073 0.8421 x 1072 0.9799 x 102

11 0.5708 x 1073 0.6524 x 1073 0.1081 x 10~! 0.1257 x 10~!

12 0.1155 x 1072 0.1289 x 1072 0.1653 x 10~} 0.1890 x 10!

the case of correlated sources are also given in table 2. Since the correlation coefficient is
real, these results hold for both the forward and forward-backward smoothing. Smoothing
improves the performance in this case too. However, the impravement is not as much as
with uncorrelated sources.

To see the differential impact of forward and forward-backward smoothing in the pres-
ence of highly correlated and closely spaced sources with finite data, we considered a sce-
nario with p = 0.95¢/7/4 and N (number of snapshots) = 100, keeping the source spacing
nearly equal to the beamwidth of the UCA, and evaluated the MSE as a function of .
Table 3 gives the simulation results and the theoretical values predicted by (14) and (23).
Note that the forward-backward smoothin g yields much superior performance as compared

Table3. Finite data performance of the Root-MUSIC with smoothing applied to transformed UCA data
with omni directional elements for correlated sources. (L =50,d = 0.34A, N = 100, DOA’s = (° and
10°, p = 0.95¢/™/*, SNR =3 dB)

Number of MSE in DOA estimate (deg?)

virtual Spectral MUSIC Root-MUSIC with smoothing applied to transformed data

subarrays  applied to Forward-Backward smoothing Forward smoothing

(K) UCA data Simulation ~ Evaluation of (23)  Simulation Evaluation of (14)
1 0.02485 0.003313 0.003058 0.01942 0.01880
2 0.003419 0.003223 0.01737 0.01814
3 0.003568 0.003449 0.01713 0.01784
4 0.004373 0.004053 0.01694 0.01867
5 0.007673 0.007213 0.02635 0.02015
6 0.01883 0.01789 0.05958 0.06443
7 0.01569 0.01582 0.04390 0.04929
8 0.01462 0.01556 0.03724 0.04505
9 0.01817 0.02131 0.05248 0.06151

10 0.01622 0.02016 0.05238 0.05833
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to the forward smoothing only. Further, the Root-MUSIC with forward-backward smooth-
ing applied to the transformed UCA data performs better than the spectral MUSIC applied
to the UCA data for all values of K (and much better at lower values of K). When K
increases, the aperture comes down and the performance will start degrading when the
aperture effect becomes predominant. The difference between the simulation results and
the predicted values (particularly in the forward smoothing case) can be attributed to the
fact that the smoothing reduces the effect of finite data perturbations in addition to reducing
the correlation among the sources, and hence, the actual MSE will be less than the value
given by (14) (see Reddy & Reddy 1996a for discussion on this issue).

6. Conclusions

This paper extends the spatial smoothing to UCA and analyzes the DOA estimation per-
formance of the Root-MUSIC with smoothing applied to the transformed UCA data. It is
shown that the smoothing helps in reducing the effect of the errors that arise while extend-
ing the Root-MUSIC to UCA, in addition to reducing the correlation among the sources
and the éffect of noise perturbations due to finite data.
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