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A duality for Spin Verlinde spaces and Prym theta functions

C. Pauly and S. Ramanan

February 1, 2008

Abstract

We prove canonical isomorphisms between Spin Verlinde spaces,i.e., spaces of global sec-

tions of a determinant line bundle over the moduli space of semistable Spinn-bundles over

a smooth projective curve C, and the dual spaces of theta functions over Prym varieties of

unramified double covers of C.

1 Introduction

To any smooth, projective curve C, one classically associates a collection of principally polarized
abelian varieties: the Jacobian JC, parametrizing degree zero line bundles, as well as, for any
unramified double cover C̃η → C, depending on a 2-torsion point η ∈ JC[2], a Prym variety Pη.
The projective geometry of the configuration JC∪

⋃

η Pη has been much studied [M1], [vGP], [B1]
and encodes e.g. the Schottky-Jung identities among theta-constants [M1].

Less classically, one can consider the moduli space M(G) of semistable principal G-bundles
over the curve C, where G is a simple and simply-connected algebraic group. For some ample
line bundle L over M(G), the vector space of global sections H0(M(G),L) has been identified to
a space of conformal blocks arising in conformal field theory (see e.g.[S] for a survey or [LS] for
a proof), which made the computation of its dimension possible. This is the celebrated Verlinde
formula.

In this paper we are interested in dualities between Verlinde spaces H0(M(G),L) and spaces
of abelian theta functions ,i.e.,sections of some multiple of a principal polarization over JC or,
more generally, JC ∪

⋃

η Pη. Such dualities were first proved for the structure group G = SL2 and

the line bundles Ll for l = 1, 2, 4 [B1], [B2], [OP] or, more generally, G = SLn and the line bundle
L [BNR], where L is the ample generator of the Picard group of M(SLn).

In the articles [O1] and [O2], W.M. Oxbury constructs linear maps between a Verlinde space
for the complex spin group,i.e.,G = Spinn, and a space of abelian theta functions over JC∪

⋃

η Pη.
Our main theorem states that these linear maps are actually isomorphisms. More precisely we
show

1.1. Theorem. For any curve C and any integer m ≥ 1, we have canonical isomorphisms

(1)
∑

s±η :
∑

η∈JC[2]

H0(P ev
η , (2m+ 1)Ξη)

∨
±

∼
−→ H0(M±(Spin2m+1),Θ(C2m+1)) (1.1)

(2)
∑

s±η :
∑

η∈JC[2]

[

H0(P ev
η , (2m)Ξη)

∨
± ⊕H0(P odd

η , (2m)Ξη)
∨
±

] ∼
−→ H0(M±(Spin2m),Θ(C2m))

(1.2)
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We refer to section 2 and 3 for the rather technical details encoded in the notation.
We note that theorem 1.1 for the group Spin3 coincides with the above mentioned duality for

the Verlinde space H0(M(SL2),L
4) under the exceptional isomorphism Spin3 = SL2. In this case

theorem 1.1 was proved in [R2] for all curves and in [OP] for the generic curve.
The proof of the theorem essentially goes as follows: first, we construct maps from products of

Prym varieties, called SCHn, into the moduli space M(Spinn). This is done by induction on n,
exploiting the exceptional isomorphisms of Spinn with algebraic groups for small values of n. For
example, SCH3 is isomorphic to the union JC ∪

⋃

η Pη. Next, we observe that the divisor in the
product M(Spinn) × (JC ∪

⋃

η Pη), which induces the pairing of the theorem, decomposes when
restricted to the variety SCHn. Hence we obtain a factorization of the linear map of theorem
1.1. As our auxiliary variety SCHn is constructed from abelian varieties, we can use theorems
on multiplication of theta functions (proposition 4.1 and 4.2) and dualities for second order theta
functions (Prym-Wirtinger duality, proposition 5.1) in order to show, again inductively, that all
maps of the factorization are injective. By the Verlinde formula, this will be enough to deduce
the theorem.

It is legitimate to ask whether the isomorphism of theorem 1.1 is a particular case of more
general duality. Indeed, in the case G = SLn, one constructs ([B3] section 8 and [DT]), via
canonical theta divisors, pairings among SLn (and GLn)-Verlinde spaces, the so-called “strange
duality” or “rank-level duality”. Some evidence (see [O2] remark 3.4 and [OW]) suggests that this
“strange duality” phenomenon should also occur for Spinn-bundles.

As we have remarked above, the duality was proved in [R2] in the case of SL2 and the proof
was later generalized by the first author to the case of Spin groups. In order to minimize the
number of papers, we decided to publish our results together.

It is a pleasure to thank W.M. Oxbury for many useful discussions.

2 Notation and preliminaries

2.1 Prym varieties

Given a nonzero ζ ∈ JC[2], the group of 2-torsion points of the Jacobian JC, we consider its
associated two-sheeted étale cover πζ : C̃ζ → C and the norm map Nm : Pic(C̃ζ) → Pic(C).
Mumford [M1] introduced the following (isomorphic) subvarieties of Pic(C̃ζ), called Prym varieties

Nm−1
ζ (O) = P 0

ζ ∪ P ′
ζ , Nm−1

ζ (ω) = P ev
ζ ∪ P odd

ζ , (2.1)

where P 0
ζ is the connected component containing the origin O ∈ JC and P ′

ζ is the other component.

The line bundle ω is the canonical line bundle on C. For a description of Nm−1
ζ (ω), see section

2.3.1 Example a). The Galois involution σζ of C̃ζ acts by pull-back on the four Prym varieties.
We shall also denote the corresponding involutions by σζ . On P 0

ζ ∪ P ′
ζ , we have σζ(L) = L−1 and

on P ev
ζ ∪ P odd

ζ , we have σζ(ξ) = ωξ−1. In this paper we will also use

P ζ
ζ = one connected component of Nm−1(ζ).

In order to have a consistent notation, we put P 0
0 = JC and P ′

0 = ∅, P ev
0 = Picg−1(C) and

P odd
0 = ∅. On the finite group JC[2] we have the skew-symmetric Weil pairing which we denote by

〈η, ζ〉 ∈ {±1}. The group of 2-torsion points P 0
ζ [2] of the Prym P 0

ζ is isomorphic to the annihilator
(w.r.t. the Weil pairing) of ζ ∈ JC[2],i.e.,

P 0
ζ [2]

π∗
ζ

−→ 〈ζ〉⊥/〈ζ〉. (2.2)
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Consider η ∈ JC[2] with 〈η, ζ〉 = 1. We also denote by η ∈ P 0
ζ [2] the corresponding element under

isomorphism (2.2) and by Tη the translation by η acting on P 0
ζ as well as on the other three Prym

varieties (2.1).
The Prym variety P ev

ζ comes equipped with a naturally defined reduced Riemann theta divisor
Ξζ , whose set-theoretical support equals

Ξζ := {ξ ∈ P ev
ζ | h0(C̃ζ, ξ) > 0}. (2.3)

A translate by a theta-characteristic (resp. a 2-torsion point) of Ξζ gives (non-canonically) a
symmetric theta divisor on P 0

ζ and P ′
ζ (resp. P odd

ζ ) (see also section 2.2), which we also denote by
Ξζ .

Given η ∈ P 0
ζ [2], we define the line bundle on Pζ

Lηζ := OPζ
(Ξζ + T ∗

ηΞζ).

Here Pζ stands for any of the four varieties in (2.1). We note that Ξζ is only canonically defined
on P ev

ζ (2.3), but the line bundle Lηζ over any Pζ does not depend on the choice of Ξζ . Moreover
the involutions σζ of Pζ lift canonically to a linear involution σ∗

ζ of H0(Pζ ,L
η
ζ). The subscript +

(resp. −) will denote the + (resp. −) eigenspace of σ∗
ζ .

2.2 Theta-characteristics

In this section we recall some basic results on theta-characteristics on Prym varieties. Let ϑ(C)
be the set of theta-characteristics on C,i.e., ϑ(C) = {κ ∈ Picg−1(C) | κ⊗2 ∼

−→ ω}, which comes
equipped with a parity map ǫ : ϑ(C) → {±1}; ǫ(κ) = (−1)h

0(κ). There is a 1-to-1 correspondence
between κ ∈ ϑ(C) and functions κ̃ : JC[2] → {±1} which satisfy ∀η, ζ ∈ JC[2]

κ̃(η + ζ) = κ̃(η)κ̃(ζ)〈η, ζ〉. (2.4)

The correspondence associates to κ ∈ ϑ(C) the function κ̃(η) = (−1)h
0(κ⊗η)+h0(κ). The group

JC[2] acts on ϑ(C) by tensor product and we have ǫ(ηκ) = ǫ(κ)κ̃(η). We define the set ϑ(P 0
ζ )

of theta-characteristics on P 0
ζ to be the set of functions κ̃ : P 0

ζ [2] ∼= 〈ζ〉⊥/〈ζ〉 → {±1} satisfying
(2.4). Then we have, using the correspondence between κ and κ̃,

ϑ(P 0
ζ ) = {κ ∈ ϑ(C) | κ̃(ζ) = 1}/〈ζ〉

Note that we have an equivalence κ ∈ ϑ(P 0
ζ ) ⇐⇒ π∗

ζκ ∈ P ev
ζ . Given κ ∈ ϑ(P 0

ζ ), we consider
the symmetric theta divisor TκΞζ on P 0

ζ . We shall write κ instead of π∗
ζκ. Let ι be the unique

isomorphism of σ∗
ζO(TκΞζ) with O(TκΞζ) which induces the identity at the origin, then we have

ι(σ∗
ζsκ) = ǫ(κ)sκ (2.5)

where sκ is the unique global section of O(TκΞζ). We have similar results for the component P ′
ζ.

We define
ϑ(P ′

ζ) = {κ ∈ ϑ(C) | κ̃(ζ) = −1}/〈ζ〉 = {κ ∈ ϑ(C) | π∗
ζκ ∈ P odd

ζ }

We choose a 2-torsion point α ∈ P ′
ζ [2], which allows us to define uniquely an isomorphism ι by

the same condition at α. Then we still have equality (2.5).

2.3 Mumford’s parity conservation theorem and Pfaffian line bundles

We recall here Mumford’s parity conservation theorem [M2] which says that the parity of h0 of
vector bundles on C is preserved under deformation, if there exists a non-degenerate quadratic
form on the family with values in ω.
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2.3.1 Examples

a) ∀ξ ∈ P ev
ζ ∪ P odd

ζ , the rank 2 vector bundle E = πζ∗ξ carries a quadratic form given by the

Norm homomorphism Nm : πζ∗ξ → ω. This explains the notation P ev
ζ and P odd

ζ , since the two

components of Nm−1(ω) may be distinguished by the property that h0(πζ∗ξ) is even for ξ ∈ P ev
ζ

and odd for ξ ∈ P odd
ζ .

b) Consider η, ζ ∈ JC[2] with 〈η, ζ〉 = 1. ∀ξ ∈ P ev
η ∪ P odd

η and ∀L ∈ P 0
ζ ∪ P ′

ζ , the rank 4 vector
bundle πη∗ξ ⊗ πζ∗L has a quadratic form, which is obtained by multiplying the ω-valued form on
πη∗ξ and the O-valued form on πζ∗L (see example a).

c) Consider the rank 2n vector bundle πζ∗ξ ⊗ F , where πζ∗ξ is as in a) and F is an orthogonal
vector bundle,i.e., equipped with an O-valued quadratic form. Multiplying the two forms gives
the required ω-valued form on πζ∗ξ ⊗ F .

2.3.2 Pfaffian line bundles

Given a family E of vector bundles over C with an ω-valued quadratic form and parametrized by
an integral variety S, one can construct a Pfaffian line bundle PF(E) over S and a Pfaffian divisor
divPF(E), which are square roots of the determinant line bundle DET(E) and determinant divisor
divDET(E),i.e.,

DET(E) = PF(E)⊗2 2divPF(E) = divDET(E)

For the construction of PF(E) and divPF(E) we refer to proposition 7.9 of [LS]. The support of
the Cartier divisor divPF(E) equals

supp divPF(E) = {s ∈ S | h0(Es) > 0}. (2.6)

Thus, the Pfaffian divisor associated to the family πζ∗ξ with ξ ∈ P ev
ζ (example a) is the Riemann

theta divisor Ξζ in (2.3). The Pfaffian divisors associated to the families of example b) (resp.
example c) will appear in the proof of proposition 5.1 (resp. in the construction of the Prym-Spin
duality, see section 3).

3 Prym varieties and the moduli of Spinn-bundles

In this section we recall the definition of the linear maps of theorem 1.1 (see [O1],[O2]). Let SCn

be the special Clifford group of a non-degenerate quadratic form of dimension n and M(SCn)
be the moduli space of semistable principal SCn-bundles. The spinor norm induces a surjective
morphism Nm : M(SCn) → Pic(C) and we define

M+(Spinn) = M(Spinn) = Nm−1(O), M−(Spinn) = Nm−1(O(p)),

where p is a fixed point on C. In section 6 we shall give examples of the moduli spaces M+(Spinn)
for low values of n. We denote by V ∼= Cn the standard orthogonal representation of SCn and by
S (if n is odd) and S± (if n is even) the spinor and half-spinor representations. Given a Clifford
or Spin-bundle A, we shall denote by A(V ), A(S), A(S±) the induced vector bundles.

There is a natural action of JC[2] on the moduli spaces M±(Spinn) and we recall that there
are natural Galois covers

M±(Spinn)
JC[2]
−→ M±(SOn), A→ A(V ). (3.1)
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The Galois action of JC[2] on the moduli M±(Spinn) is given by A 7→ α.A for α ∈ JC[2] with

(α.A)(V ) = A(V ) (α.A)(S±) = A(S±) ⊗ α (3.2)

The two components M±(SOn) of the moduli of semistable orthogonal bundles are distinguished
by the second Stiefel-Whitney class of the bundles. For some general facts on orthogonal bundles,
see [R1].

To construct the linear maps of theorem 1.1, it will be enough to exhibit effective Cartier
divisors in the right linear systems

D±
2m+1,η ⊂ P ev

η ×M±(Spin2m+1), D±
2m,η ⊂ (P ev

η ∪ P odd
η ) ×M±(Spin2m).

We already observed in 2.3.1 example c) that the family E := {πη∗ξ ⊗A(V )} carries an ω-valued
form, so we define Dn,η := divPF(E). By (2.6) we have (e.g. for n odd)

supp D±
2m+1,η = {(ξ, A) ∈ P ev

η ×M±(Spin2m+1) | h0(C, πη∗ξ ⊗A(V )) > 0}. (3.3)

We shall use the abreviated notation Dη, if there is no ambiguity. We notice that the divisor Dη

does not descend to a Cartier divisor on Pη ×M±(SOn). We denote by s±η their associated linear
maps. The details of this construction are worked out in [O2] section 6.

Given a pair of semistable orthogonal vector bundles (E,E ′) in M±(SOn) × M+(SOn′) we
can associate its orthogonal direct sum E ⊕ E ′ ∈ M±(SOn+n′), which gives rise to a morphism
M±(SOn)×M+(SOn′) → M±(SOn+n′). In the next lemma we will show that this morphism lifts
to the moduli spaces of Spin-bundles.

3.1. Lemma. For any n,m ≥ 1, there are natural morphisms

1. M±(Spin2n) ×M+(Spin2m)
ι

−→ M±(Spin2n+2m) (3.4)

2. M±(Spin2n+1) ×M+(Spin2m)
ι

−→ M±(Spin2n+2m+1) (3.5)

which are lifts via (3.1) of the direct sum morphisms for orthogonal vector bundles. Given a pair
(A,A′) of Spin-bundles, then its sum A+ A′ := ι(A,A′) has the following properties

1. the two associated half-spinor vector bundles are

(A+ A′)(S+) = A(S+) ⊗ A′(S+) ⊕ A(S−) ⊗ A′(S−)

(A+ A′)(S−) = A(S+) ⊗ A′(S−) ⊕ A(S−) ⊗ A′(S+)

2. the associated spinor vector bundle is

(A+ A′)(S) = A(S) ⊗ (A′(S+) ⊕ A′(S−))

Moreover the pull-back by ι of the determinant line bundle decomposes (l = 2n or 2n+ 1)

ι∗Θ(Cl+2m) = Θ(Cl) ⊠ Θ(C2m) (3.6)

Proof. The natural homomorphism of algebraic groups SCl × Spin2m → SCl+2m induces a mor-
phism at the level of Clifford (and Spin)-bundles. By [R1] prop.4.2 and [O1] lemma 1.2 semistabil-
ity is preserved under this operation. Thus, taking into account that the spinor norm is preserved
under the above group homomorphism and that M±(Spinn) is a coarse moduli space, we get
the above claimed morphisms. The expressions of the associated (half-)spinor bundles are easily
deduced from the definitions of the (half-)spinor representations of the Spin groups.
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4 Multiplication of theta functions

In this section we recall some facts on theta functions over an abelian variety. Let (A,Θ) be a
principally polarized abelian variety, where Θ is a symmetric divisor representing the polarization.
The subscript ± denotes the ±eigenspaces of H0(A,mΘ) under the canonical involution of A.
Recall that H0(A, 2Θ)+ = H0(A, 2Θ). We will need the following facts on multiplication maps

4.1. Proposition. If l ≥ 2 and m ≥ 3, then the multiplication maps

1. H0(A, lΘ) ⊗H0(A,mΘ) −→ H0(A, (l +m)Θ)

2. H0(A, 2lΘ)+ ⊗H0(A,mΘ) −→ H0(A, (2l +m)Θ)

are surjective.

For a proof of 1, we refer e.g. to [K]. For a proof of 2, see prop. 1.4.4 [Kh].

The symmetric theta divisor Θ allows us to identify A with its dual variety Â. Let m be the
isogeny

m : A× A −→ A× A (4.1)

(x, y) 7−→ (x+ y, x− y)

then it is well-known that for any α ∈ A[2] = Â[2], we have

m∗OA(2Θ ⊗ α) ⊠ OA(2Θ ⊗ α) = OA(4Θ) ⊠ OA(4Θ)

We take global sections and take the sum over all α ∈ A[2] to get the direct sum decomposition

m∗ :
∑

α∈A[2]

H0(A, 2Θ ⊗ α) ⊗H0(A, 2Θ ⊗ α)
∼

−→ H0(A, 4Θ) ⊗H0(A, 4Θ) (4.2)

Since m is equivariant for the canonical involution of A×A, we obtain the following decomposition
into ±eigenspaces

∑

α∈A[2]

H0
+ ⊗H0

+ ⊕H0
− ⊗H0

− =
[

H0(A, 4Θ) ⊗H0(A, 4Θ)
]

+
(4.3)

∑

α∈A[2]

H0
+ ⊗H0

− ⊕H0
− ⊗H0

+ =
[

H0(A, 4Θ) ⊗H0(A, 4Θ)
]

−
(4.4)

In particular, if we restrict m to the diagonal A →֒ A × A we get the direct sum decomposition
(in this case we get the duplication map m|A = [2] : A→ A ; x 7→ 2x)

[2]∗ :
∑

α∈A[2]

H0(A, 2Θ ⊗ α)
∼

−→ H0(A, 8Θ) (4.5)

In the next proposition we will need a more general version, ∀n ≥ 1

[2]∗ :
∑

α∈A[2]

H0(A, nΘ ⊗ α)
∼

−→ H0(A, 4nΘ) (4.6)

Via the Weil pairing we can identify A[2] with the group of characters Hom(A[2],C∗); α 7→
〈α, ·〉. The natural action of the group A[2] on A and A×A lifts canonically to a linear action on
the RHS spaces of (4.2), (4.5) and (4.6). Then the direct sum decompositions of (4.2), (4.5) and
(4.6) are precisely the character space decompositions of this group action.
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4.2. Proposition. The following multiplication maps are surjective

1.
∑

α∈A[2]H
0(A, 2Θ ⊗ α)± ⊗H0(A,Θ ⊗ α) −→ H0(A, 3Θ)±

2.
∑

α∈A[2]H
0(A, 2Θ ⊗ α)+ ⊗H0(A, 2Θ ⊗ α)± −→ H0(A, 4Θ)±

Proof. First let us prove 1. By proposition 4.1.1 (l = 4, m = 8), the multiplication map

H0(A, 4Θ) ⊗H0(A, 8Θ) −→ H0(A, 12Θ) (4.7)

is surjective. Consider the character space decomposition (4.6) of the two spaces. Since the above
tensor product is compatible with the linear action of the group A[2], we get a surjective map
between the two character spaces of (4.7) corresponding to the zero character,i.e.,

∑

α∈A[2]

H0(A, 2Θ ⊗ α) ⊗H0(A,Θ ⊗ α) −→ H0(A, 3Θ)

Considering ±eigenspaces proves assertion 1. By proposition 4.1.2 (l = 4, m = 8), the multiplica-
tion map

H0(A, 8Θ)+ ⊗H0(A, 8Θ) −→ H0(A, 16Θ)

is surjective. Considering the zero character space and ±eigenspaces, we will prove 2.

Finally, let us denote by Heis the Heisenberg group associated to the line bundle O(2Θ) (see
[M3] or [B2] page 280),i.e. a central extension of A[2] by C

∗

0 −→ C
∗ −→ Heis −→ A[2] −→ 0 (4.8)

We recall that Heis acts linearly on H0(A, 2Θ), its unique (up to conjugation) representation of
level 1.

5 The Prym-Wirtinger duality

Consider η, ζ ∈ JC[2] such that 〈η, ζ〉 = 1. We recall the definition of the line bundle Lηζ =
OPζ

(Ξζ + T ∗
ηΞζ) = OPζ

(2Ξζ ⊗ η). In the next proposition we show that exchanging the roles of η
and ζ will establish a duality at the level of global sections of Lηζ . We may view this duality as an
analogue for Prym varieties of the well-known Wirtinger duality (put η = ζ = 0) for Jacobians (see
[M1] page 335). This Prym-Wirtinger duality is at the heart of the proof of theorem 1.1 (section 7),
as the Prym-Spin pairing “restricts” to the Prym-Wirtinger duality for suitably chosen (products
of) Prym varieties in M(Spinn).

5.1. Proposition. We have the following canonical isomorphisms for any η, ζ ∈ JC[2] such that
〈η, ζ〉 = 1

H0(P ev
η ,L

ζ
η)

∨
+
∼= H0(P 0

ζ ,L
η
ζ)+ H0(P odd

η ,Lζη)
∨
+
∼= H0(P 0

ζ ,L
η
ζ)− (5.1)

H0(P ev
η ,L

ζ
η)

∨
−
∼= H0(P ′

ζ ,L
η
ζ)+ H0(P odd

η ,Lζη)
∨
−
∼= H0(P ′

ζ,L
η
ζ)− (5.2)

7



Proof. We will show that the duality between the above vector spaces is given by a reduced Cartier
divisor, whose set-theoretical support equals

∆Wirt
η,ζ := {(ξ, L) ∈ (P ev

η ∪ P odd
η ) × (P 0

ζ ∪ P ′
ζ) | h

0(C, πη∗ξ ⊗ πζ∗L) > 0}. (5.3)

Indeed, as shown in example b) of 2.3.1, the family E of rank 4 vector bundles πη∗ξ ⊗ πζ∗L
parametrized by (P ev

η ∪ P odd
η ) × (P 0

ζ ∪ P ′
ζ) is equipped with an ω-valued quadratic form. Hence,

by 2.3.2, we can consider its associated Pfaffian divisor ∆Wirt
η,ζ := divPF(E). By (2.6) its support

equals the set in (5.3) and an easy computation shows that O(∆Wirt
η,ζ ) = Lζη⊠Lηζ . Hence we obtain

a pairing

H0(P ev
η ∪ P odd

η ,Lζη)
∨ ψ
−→ H0(P 0

ζ ∪ P ′
ζ ,L

η
ζ). (5.4)

First we will show that ψ is an isomorphism. We verify that both sides of (5.4) are Heis-modules
(4.8) of level 1 and that ψ is Heis-equivariant. Hence, since ψ is nonzero, it is an isomorphism.

To finish the proof we have to analyze how ψ acts on the ±eigenspaces of the linear involutions
σ∗
η (resp. σ∗

ζ ). Let us restrict attention to the duality on the component P ev
η × P 0

ζ . Consider the
rational map, induced by the divisor ∆Wirt

η,ζ

∆ : P ev
η −→ PH0(P 0

ζ ,L
η
ζ)

ξ 7−→ ∆(ξ) := ∆Wirt
η,ζ |{ξ}×P 0

ζ

We observe that, ∀ξ ∈ P ev
η , the divisor ∆(ξ) is invariant under the (projective) involution σ∗

ζ .
Consider κ ∈ ϑ(C) such that κ ∈ ϑ(P 0

ζ ) ∩ ϑ(P 0
η ),i.e., κ̃(η) = κ̃(ζ) = 1. Then it follows from the

definition of ∆Wirt
η,ζ that ∆(π∗

ηκ) = T ∗
κΞζ + T ∗

ηκΞζ . By (2.5) and with the notation as above, we
have

ισ∗
ζ (sκ · sηκ) = ǫ(κ)ǫ(ηκ)sκ · sηκ = κ̃(η)sκ · sηκ = sκ · sηκ

So we get ∆(π∗
ηκ) ∈ PH0(P 0

ζ ,L
η
ζ)+. Hence im ∆ ⊂ PH0(P 0

ζ ,L
η
ζ)+. On the other hand, we

see that the divisor ∆(L) := ∆Wirt
η,ζ |P ev

η ×{L}
for L ∈ P 0

ζ is symmetric and, take e.g. L = O,

∆(L) ∈ PH0(P ev
η ,L

ζ
η)+. Hence the pairing (5.4) splits as follows

H0(P ev
η ,L

ζ
η)

∨
+

∼
−→ H0(P 0

ζ ,L
η
ζ)+

By the same reasoning as above, one gets the other three isomorphisms as stated in the proposition.
We leave the details to the reader.

6 The Schottky variety SCHn

In this section we are going to define maps from products of Prym varieties into M±(Spinn). The
disjoint union of these products will be called the Schottky variety, denoted by SCHn. Let us start
with the first cases n ≤ 6, which will serve as a pattern to construct by induction the Schottky
variety for any integer n.

6.1 n = 2

This case has been extensively discussed in [O2] section 4.2. Unlike in [O2], we will define
M+(Spin2) to be the degree 0 component of M(C∗) = Pic(C),i.e., M+(Spin2) = JC. We
also put M−(Spin2) = ∅. We define the Schottky variety by SCH2 := JC and the map φ2 is the
identity φ2 : JC = M+(Spin2). Given A ∈ M+(Spin2), we denote the line bundle A(S+) ∈ JC
by N . Then we have A(S−) = N−1 and A(V ) = N2 ⊕N−2.
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6.2 n = 3

In this case (see [O2] section 4.3) we have the isomorphisms M+(Spin3) = SUC(2,O) and
M−(Spin3) = SUC(2,O(p)), where we used the exceptional isomorphism Spin3

∼= SL2 at the level
of algebraic groups. Here SUC(2, L) denotes the moduli space of semistable rank 2 vector bundles
with fixed determinant equal to L ∈ Pic(C). To a semistable Spin3-bundle A ∈ M+(Spin3) we
associate two semistable vector bundles A(S) (resp. A(V )) induced by the spinor (resp. orthog-
onal) representation. In particular the isomorphism M+(Spin3)

∼
−→ SUC(2,O) is given by the

map A 7→ A(S). Then the orthogonal rank 3 bundle is given by

A(V ) = End0(A(S)).

We choose a point p̃ ∈ C̃ζ lying over p. Taking direct image gives the following maps

φ+
3,ζ : P ζ

ζ −→ M+(Spin3)
L 7−→ πζ∗L = A(S)

φ−
3,ζ : P ζ

ζ −→ M−(Spin3)
L 7−→ πζ∗L(p̃) = A(S).

If ζ = 0, we define φ+
3,0(L) = L ⊕ L−1 and φ−

3,0(L) is the unique stable rank 2 bundle, which fits
into the exact sequence (see [B2] section 3)

0 −→ L⊕ L−1 −→ φ−
3,0(L) −→ Cp −→ 0.

6.1. Lemma. Given M ∈ Pic(C̃ζ). Then the orthogonal bundle End0(πζ∗M) is an orthogonal
direct sum

End0(πζ∗M) = ζ ⊕ πζ∗

(

M2 ⊗ π∗
ζ (NmM)−1

)

.

Proof. Since π∗
ζζ = OC̃ , we have an isomorphism ζ⊗πζ∗M

∼
−→ πζ∗M , which gives rise to a homo-

morphism ζ → End0(πζ∗M). Since both ζ and End0(πζ∗M) have degree 0 and since End0(πζ∗M)
is poly-stable, it follows that ζ is a subbundle of End0(πζ∗M). It remains to determine its supple-
ment bundle. There is a natural homomorphism of Sym2(πζ∗M) into πζ∗M

2. Using the isomor-
phism End0(πζ∗M) ∼= Sym2(πζ∗M)⊗ (NmM)−1 ⊗ ζ , we get a homomorphism of End0(πζ∗M) into
πζ∗M

2 ⊗ (NmM)−1. A pointwise check shows that this is a surjective homomorphism and that it
is supplementary to ζ .

In particular, we have for L ∈ P ζ
ζ

End0(πζ∗L) = ζ ⊕ πζ∗L
2 End0(πζ∗L(p̃)) = ζ ⊕ πζ∗(L

2(p̃− σp̃)) (6.1)

We define the Schottky variety and the morphism φ±
3

SCH3 :=
∐

ζ∈JC[2]

P ζ
ζ , φ±

3 :=
∐

ζ

φ±
3,ζ : SCH3 −→ M±(Spin3)

6.3 n = 4

In this case (see [O2] section 4.4) we have the isomorphisms M+(Spin4) = SUC(2,O)×SUC(2,O)
and M−(Spin4) = SUC(2,O(p)) × SUC(2,O(p)), where we used the exceptional isomorphism
Spin4 = SL2 × SL2. The previous isomorphism is given by sending a Spin4-bundle A to the pair
of rank 2 bundles (A(S+), A(S−)). Consider the maps

φ±
4,ζ : P ζ

ζ × P ζ
ζ −→ M±(Spin4)

(L,M) 7−→ φ±
4,ζ(L,M) := (φ±

3,ζ(L), φ±
3,ζ(M))

where we use the previous isomorphisms.
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6.2. Lemma. Given a pair (L,M) ∈ P ζ
ζ ×P ζ

ζ , we consider their associated Spin4-bundles A± :=

φ±
4 (L,M). Then we have

A+(V ) = πζ∗(LM) ⊕ πζ∗(LM
−1), A−(V ) = πζ∗(LM(p̃− σp̃)) ⊕ πζ∗(LM

−1).

Proof. We know that the orthogonal bundle A±(V ) is the tensor product A±(S+)⊗A±(S−)∨. Let
us do the computations for A+(V ).

A+(V ) = A+(S+) ⊗A+(S−) = πζ∗L⊗ πζ∗M = πζ∗(L⊗ π∗
ζπζ∗M)

where we used the fact that A+(S−) is self-dual and the projection formula for the map πζ . Now
by example a) 2.3.1, π∗

ζπζ∗M is a semistable orthogonal bundle over C̃ζ, hence this bundle splits
π∗
ζπζ∗M = M ⊕M−1. The computations for A−(V ) are similar.

We define the Schottky variety and the morphism φ±
4 by

∐

φ±
4,ζ : SCH4 :=

∐

ζ∈JC[2]

P ζ
ζ × P ζ

ζ −→ M±(Spin4).

6.4 n = 5

We define φ±
5,ζ to be the composite map (see sections 6.1, 6.2 and lemma 3.1)

P ζ
ζ × JC

φ±
3,ζ

×φ2

−→ M±(Spin3) ×M+(Spin2)
ι

−→ M±(Spin5)

For example, given (L,N) ∈ P ζ
ζ × JC, the Spin5-bundle A := φ+

5,ζ(L,N) satisfies

A(S) = (N ⊕N−1) ⊗ πζ∗L A(V ) = ζ ⊕N2 ⊕N−2 ⊕ πζ∗L
2 (6.2)

We remark that in this case we have an isomorphism M+(Spin5) = M+(Sp4), A 7→ A(S). The
symplectic form on the bundle A(S) in (6.2) is the obvious one. We define the Schottky variety
by

φ±
5 : SCH5 :=

∐

ζ∈JC[2]

P ζ
ζ × JC −→ M±(Spin5)

6.5 n = 6

Consider the composite map (see sections 6.1, 6.3 and lemma 3.1)

φ±
6,ζ : P ζ

ζ × P ζ
ζ × JC

φ±
4,ζ

×φ2

−→ M±(Spin4) ×M+(Spin2)
ι

−→ M±(Spin6)

which associates to the triple (L,M,N) ∈ P ζ
ζ × P ζ

ζ × JC the Spin6-bundle A, which verifies

A(V ) = N2 ⊕N−2 ⊕ πζ∗LM ⊕ πζ∗LM
−1

A(S+) = (N ⊗ πζ∗M) ⊕ (N−1 ⊗ πζ∗L) A(S−) = (N ⊗ πζ∗L) ⊕ (N−1 ⊗ πζ∗M)

We define the Schottky variety by

φ±
6 : SCH6 :=

∐

ζ∈JC[2]

P ζ
ζ × P ζ

ζ × JC −→ M±(Spin6)

10



6.6 the general case

Now we will define by induction the Schottky variety SCHn for any integer. We put for n ≥ 3

SCHn+4,ζ := P ζ
ζ × P ζ

ζ × SCHn SCHn+4 :=
∐

ζ∈JC[2]

SCHn+4,ζ

and define on each component SCHn+4,ζ the morphism φ±
n+4,ζ as the composite map (see lemma

3.1)
SCHn+4,ζ

φ+

4,ζ
×φ±n

−→ M+(Spin4) ×M±(Spinn)
ι

−→ M±(Spinn+4)

Note that for n ≥ 5 the image of SCHn is contained in the semistable boundary of M±(Spinn).

7 Proof of theorem 1.1

As in the previous section, we first will prove the cases n ≤ 6 separately and then proceed by
induction to prove the duality for any integer n.

7.1 n = 2

For the details see [O2] section 4.2. In this case M+(Spin2) = JC and Θ(C2) = OJC(8Θ). The
morphism (1.2) decomposes as follows: by the Prym-Wirtinger duality (5.1) with ζ = 0, we have

∑

η∈JC[2]

H0(P ev
η , 2Ξη)

∨ ⊕H0(P odd
η , 2Ξη)

∨ =
∑

η∈JC[2]

H0(JC, 2Θ ⊗ η)+ ⊕H0(JC, 2Θ ⊗ η)−,

which by (4.5) equals H0(JC, 8Θ).

7.2 n = 3

First we shall consider the duality on M+(Spin3). By the first equality in (6.1), we have ∀L ∈
P ζ
ζ , ∀ξ ∈ P ev

η

h0(C,End0(πζ∗L) ⊗ πη∗ξ) = h0(C̃η, ξ ⊗ π∗
ηζ) + h0(C, πζ∗L

2 ⊗ πη∗ξ) (7.1)

Hence we claim that the pull-back of the divisor D+
η (3.3) by the morphism

id × φ+
3,ζ : P ev

η × P ζ
ζ −→ P ev

η ×M+(Spin3)

splits into two divisors

(id × φ+
3,ζ)

∗(D+
η ) = p∗1(T

∗
ζ Ξη) + (id × [2])∗(∆Wirt

η,ζ ) (7.2)

where p1 is the projection onto the first factor P ev
η , [2] : P ζ

ζ → P 0
ζ is the duplication map L 7→ L2,

and ∆Wirt
η,ζ is the divisor defined in (5.3). Indeed, by (7.1) the decompositon (7.2) follows set-

theoretically and since (id × φ+
3,ζ)

∗(D+
η ) ∈ |3Ξη ⊠ 8Ξζ|, the equality (7.2) also holds scheme-

theoretically. The next lemma is an immediate consequence of this decomposition.

7.1. Lemma. For any η, ζ satisfying 〈η, ζ〉 = 1, the linear map s+
η composed with the pull-back

induced by φ+
3,ζ

H0(P ev
η , 3Ξη)

∨
+

s+η
−→ H0(M+(Spin3),Θ(C3))

φ+∗

3,ζ
−→ H0(P ζ

ζ , 8Ξζ)+

11



factorizes as follows

H0(P ev
η , 3Ξη)

∨
+

+T ∗
ζ Ξη

−→ H0(P ev
η ,L

ζ
η)

∨
+

(5.1)
−→ H0(P 0

ζ ,L
η
ζ)+

[2]∗

−→ H0(P ζ
ζ , 8Ξζ)+

where the first map is the dual of the multiplication map D 7→ D + T ∗
ζ Ξη.

We are now in a position to prove (1.1) for m = 1. The main idea of the proof is to show that
the composite map

∑

η

H0(P ev
η , 3Ξη)

∨
+

∑

s+η
−→ H0(M+(Spin3),Θ(C3))

φ+∗

3−→
∑

ζ

H0(P ζ
ζ , 8Ξζ)+ (7.3)

is injective, which immediately implies that
∑

s+
η is an isomorphism, since the first two spaces

have the same dimension ([O2] theorem 3.1).
By lemma 7.1, the linear map (7.3) factorizes as follows

∑

η∈JC[2]

H0(P ev
η , 3Ξη)

∨
+

(1)
−→

∑

η∈JC[2]

∑

ζ∈P 0
η [2]

H0(P ev
η ,L

ζ
η)

∨
+

(2)
−→

∑

ζ∈JC[2]

∑

η∈P 0
ζ [2]

H0(P 0
ζ ,L

η
ζ)+

(3)
−→

∑

ζ∈JC[2]

H0(P ζ
ζ , 8Ξζ)+

The arrows are as follows: (1) is the dual of the multiplication map in proposition 4.2.1, which
is injective; (2) is the Prym-Wirtinger duality (5.1), which is an isomorphism and (3) is the
isomorphism induced by the duplication map (4.5). Finally we observe that we can invert the
indices of summation in (2), since both sets of indices are in 1-to-1 correspondence with the set
of isotropic (w.r.t the Weil form) Klein subgroups of JC[2]. Since the three maps (1),(2),(3) are
injective, their composite map (7.3) is also injective and we are done.

Let us briefly indicate how to adapt the previous proof to the moduli M−(Spin3). First, using
the second equality in (6.1), we easily see that the analogue of (7.2) is

(id × φ−
3,ζ)

∗(D−
η ) = p∗1(T

∗
ζ Ξη) + (id × (Tp̃ ◦ [2]))∗(∆Wirt

η,ζ )

where Tp̃ : P 0
ζ → P ′

ζ denotes translation by OC̃(p̃− σp̃) ∈ P ′
ζ . Let us choose a square-root δ ∈ P 0

ζ

of O(2p̃− 2σp̃) ∈ P 0
ζ . Then we have the equality T ∗

p̃L
η
ζ = T ∗

δ L
η
ζ among line bundles over P 0

ζ . We
also recall the equality [2] ◦ Tǫ = Tδ ◦ [2], where ǫ ∈ P 0

ζ is a square-root of δ. Using this notation,
one easily verifies that the composite map φ−∗

3,ζ ◦ s
−
η factorizes as follows (analogue of lemma 7.1)

H0(P ev
η , 3Ξη)

∨
−

+T ∗
ζ Ξη

−→ H0(P ev
η ,L

ζ
η)

∨
−

(5.2)
−→ H0(P ′

ζ,L
η
ζ)+

(T−1

δ
◦Tp̃)∗

−→ H0(P 0,Lηζ)±
[2]∗

−→ H0(P ζ
ζ , 8Ξζ)±

T ∗
ǫ−→ H0(P ζ

ζ , T
∗
ǫ 8Ξζ)± (7.4)

We note that the linear isomorphism (T−1
δ ◦Tp̃)

∗ depends on the choice of the square-root δ, which
implies the indeterminacy in the sign ± of the eigenspaces. This sign is irrelevant for the rest of
the proof. The factorization (7.4) allows us to conclude as above.
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7.3 n = 4

As in the previous section, we first consider the duality on M+(Spin4). Let (L,M) ∈ P ζ
ζ × P ζ

ζ

and A = φ+
4,ζ(L,M) ∈ M+(Spin4). Then we have an equality, which is a consequence of lemma

6.2: ∀(L,M) ∈ P ζ
ζ × P ζ

ζ , ∀ξ ∈ P ev
η ∪ P odd

η ,

h0(C,A(V ) ⊗ πη∗ξ) = h0(C, πζ∗(LM) ⊗ πη∗ξ) + h0(C, πζ∗(LM
−1) ⊗ πη∗ξ)

Hence the pull-back of the divisor D+
η (3.3) by the morphism

(id × φ+
4,ζ) : (P ev

η ∪ P odd
η ) × (P ζ

ζ × P ζ
ζ ) −→ (P ev

η ∪ P odd
η ) ×M+(Spin4)

splits into two divisors

(id × φ+
4,ζ)

∗(D+
η ) = (id ×m)∗

[

p∗12∆
Wirt
η,ζ + p∗13∆

Wirt
η,ζ

]

(7.5)

where m is the isogeny P ζ
ζ × P ζ

ζ → P 0
ζ × P 0

ζ defined in (4.1) and pij is the projection of (P ev
η ∪

P odd
η ) × P 0

ζ × P 0
ζ onto the i-th and j-th factors. The decomposition (7.5) leads to the following

factorization.

7.2. Lemma. For any η, ζ satisfying 〈η, ζ〉 = 1, the linear map s+
η composed with the pull-back

induced by φ+
4,ζ

H0(P ev
η , 4Ξη)

∨
+ ⊕H0(P odd

η , 4Ξη)
∨
+

s+η
−→ H0(M+(Spin4),Θ(C4))

φ+∗

4,ζ
−→ H0(P ζ

ζ × P ζ
ζ , 4Ξζ ⊠ 4Ξζ)

factorizes as follows

H0(P ev
η , 4Ξη)

∨
+ ⊕H0(P odd

η , 4Ξη)
∨
+

−→
[

H0(P ev
η ,L

ζ
η)

∨
+ ⊗H0(P ev

η ,L
ζ
η)

∨
+

]

⊕
[

H0(P odd
η ,Lζη)

∨
+ ⊗H0(P odd

η ,Lζη)
∨
+

]

(5.1)
−→

[

H0(P 0
ζ ,L

η
ζ)+ ⊗H0(P 0

ζ ,L
η
ζ)+

]

⊕
[

H0(P 0
ζ ,L

η
ζ)− ⊗H0(P 0

ζ ,L
η
ζ)−

]

m∗

−→ H0(P ζ
ζ × P ζ

ζ , 4Ξζ ⊠ 4Ξζ)+

where the first map is the dual of the multiplication map.

As in the n = 3 case, it will be enough to show that the composite map
∑

η

H0(P ev
η , 4Ξη)

∨
+ ⊕H0(P odd

η , 4Ξη)
∨
+

∑

s+η
−→ H0(M+(Spin4),Θ(C4))

φ+∗

4−→
∑

ζ

H0(P ζ
ζ × P ζ

ζ , 4Ξζ ⊠ 4Ξζ)+ (7.6)

is injective. By lemma 7.2 this linear map (7.6) factorizes as follows

∑

η∈JC[2]

H0(P ev
η , 4Ξη)

∨
+ ⊕H0(P odd

η , 4Ξη)
∨
+

(1)
−→

∑

η∈JC[2]

∑

ζ∈P 0
η [2]

[

H0(P ev
η ,L

ζ
η)

∨
+ ⊗H0(P ev

η ,L
ζ
η)

∨
+

]

⊕
[

H0(P odd
η ,Lζη)

∨
+ ⊗H0(P odd

η ,Lζη)
∨
+

]

(2)
−→

∑

ζ∈JC[2]

∑

η∈P 0
ζ
[2]

[

H0(P 0
ζ ,L

η
ζ)+ ⊗H0(P 0

ζ ,L
η
ζ)+

]

⊕
[

H0(P 0
ζ ,L

η
ζ)− ⊗H0(P 0

ζ ,L
η
ζ)−

]

(3)
−→

∑

ζ∈JC[2]

H0(P ζ
ζ × P ζ

ζ , 4Ξζ ⊠ 4Ξζ)+
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Map (1) is the dual of the multiplication map in proposition 4.2.2, hence is injective. Map (2)
is the Prym-Wirtinger duality (5.1), and map (3) is the isomorphism (4.3). Hence the composite
map is injective.

In order to avoid repetition, we will just indicate the changes to be done to adapt the previous
proof to M−(Spin4). The analogue of (7.5) is

(id × φ−
4,ζ)

∗(D−
η ) =

(

id × (Tp̃ × id) ◦m
)∗

[

p∗12∆
Wirt
η,ζ + p∗13∆

Wirt
η,ζ

]

where the RHS-divisor is taken in (P ev
η ∪ P odd

η ) × P ′
ζ × P 0

ζ . This implies that the composite map
φ−∗

4,ζ ◦ s
−
η factorizes as follows (analogue of lemma 7.2)

H0(P ev
η , 4Ξη)

∨
− ⊕H0(P odd

η , 4Ξη)
∨
−

−→
[

H0(P ev
η ,L

ζ
η)

∨
− ⊗H0(P ev

η ,L
ζ
η)

∨
+

]

⊕
[

H0(P odd
η ,Lζη)

∨
− ⊗H0(P odd

η ,Lζη)
∨
+

]

(5.1)(5.2)
−→

[

H0(P ′
ζ,L

η
ζ)+ ⊗H0(P 0

ζ ,L
η
ζ)+

]

⊕
[

H0(P ′
ζ ,L

η
ζ)− ⊗H0(P 0

ζ ,L
η
ζ)−

]

(T−1

δ ◦Tp̃)∗⊗id
−→

[

H0(P 0
ζ ,L

η
ζ)± ⊗H0(P 0

ζ ,L
η
ζ)+

]

⊕
[

H0(P 0
ζ ,L

η
ζ)∓ ⊗H0(P 0

ζ ,L
η
ζ)−

]

m∗

−→ H0(P ζ
ζ × P ζ

ζ , 4Ξζ ⊠ 4Ξζ)±
(Tǫ×Tǫ)∗

−→ H0(P ζ
ζ × P ζ

ζ , T
∗
ǫ 4Ξζ ⊠ T ∗

ǫ 4Ξζ)±

where we used the equality (Tδ × id) ◦m = m ◦ (Tǫ × Tǫ). Now we conclude as above.

7.4 n = 5

Since the method of the proof is the same as for n = 3 and n = 4, we will just indicate the main
steps. Again we start with M+(Spin5). As a consequence of (6.2), we see that the pull-back of
the divisor D+

η by the morphism id × φ+
5,ζ splits as follows (notation as above)

(id × φ+
5,ζ)

∗(D+
η ) = p∗1(T

∗
ζ Ξη) + p∗23((id × [2]∗)(∆Wirt

η,0 )) + p∗13((id × [2]∗)(∆Wirt
η,ζ ))

This decomposition implies that the composite map φ+∗
5,ζ ◦ s

+
η factorizes as follows

H0(P ev
η , 5Ξη)

∨
+

+T ∗
ζ
Ξη

−→ H0(P ev
η , 2Ξη)

∨ ⊗H0(P ev
η ,L

ζ
η)

∨
+

(5.1)
−→ H0(JC, 2Θ ⊗ η)+ ⊗H0(P 0

ζ ,L
η
ζ)+

[2]∗

−→ H0(JC, 8Θ)+ ⊗H0(P ζ
ζ , 8Ξζ)+

As in the previous sections, the composite map φ+∗
5 ◦ (

∑

η s
+
η ) factorizes

∑

η∈JC[2]

H0(P ev
η , 5Ξη)

∨
+

(1)
−→

∑

η∈JC[2]

H0(P ev
η , 2Ξη)

∨ ⊗H0(P ev
η , 3Ξη)

∨
+

(2)
−→

∑

η∈JC[2]

∑

ζ∈P 0
η [2]

H0(P ev
η , 2Ξη)

∨ ⊗H0(P ev
η ,L

ζ
η)

∨
+

(3)
−→

∑

ζ∈JC[2]

∑

η∈P 0
ζ
[2]

H0(JC, 2Θ ⊗ η)+ ⊗H0(P 0
ζ ,L

η
ζ)+

(4)
−→

∑

ζ∈JC[2]

H0(JC, 8Θ)+ ⊗H0(P ζ
ζ , 8Ξζ)+

The map (1) is the dual of the (even part) multiplication map in proposition 4.1.1 (l =
2, m = 3). The map (2) is the dual of the multiplication map in proposition 4.2.1 tensored with
H0(P ev

η , 2Ξη)
∨. Map (3) is Prym-Wirtinger duality (5.1) (take ζ = 0 on the first factor), and map

(4) is an injection, by (4.5). Since all four linear maps are injective, we are done.

The proof of the duality for M−(Spin5) does not present any difficulty and we leave it to the
reader.
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7.5 n = 6

The duality for M+(Spin6) can be proved by induction (see next section) since we know that it
holds for M+(Spin2). Since M−(Spin2) = ∅, we have to deal with this case separately. Again the
proof is similar to the previous ones and we will omit it.

7.6 the general case

In this section we shall prove theorem 1.1 by induction on n. We will also denote by Θ(V ) the
pull-back by φ±

n of the determinant line bundle Θ(V ) = Θ(Cn) to the Schottky variety SCHn.
Our induction hypothesis Hn will be the following

Hn for n odd:

φ±∗
n ◦ (

∑

s±η ) :
∑

η

H0(P ev
η , nΞη)

∨
± −→ H0(SCHn,Θ(V )) is injective

Hn for n even:

φ±∗
n ◦ (

∑

s±η ) :
∑

η

H0(P ev
η , nΞη)

∨
± ⊕H0(P odd

η , nΞη)
∨
± −→ H0(SCHn,Θ(V )) is injective

Since ([O2] theorem 3.1) the LHS-space and H0(M±(Spinn),Θ(V )) have the same dimension
(see remark 3 of section 8 for M−(Spinn)), the assumption Hn implies theorem 1.1. We already
proved Hn for 2 ≤ n ≤ 6. Let us assume Hn and prove Hn+4. First we easily verify that the
pull-back of the divisor D±

n+4,η under the natural map (e.g. for n odd) (see lemma 3.1)

id × ι : P ev
η ×M+(Spin4) ×M±(Spinn) −→ P ev

η ×M±(Spinn+4)

splits into two divisors

(id × ι)∗(D±
n+4,η) = p∗12(D

+
4,η) + p∗13(D

±
n,η). (7.7)

We distinguish two cases.

7.6.1 n odd

As a consequence of the decomposition (7.7) and the proof of the n = 4 case, the map φ±∗
n+4◦(

∑

s±η )
factorizes as follows

∑

η∈JC[2]

H0(P ev
η , (n+ 4)Ξη)

∨
±

(1)
−→

∑

η∈JC[2]

H0(P ev
η , 4Ξη)

∨
+ ⊗H0(P ev

η , nΞη)
∨
±

(2)
−→

∑

η∈JC[2]

∑

ζ∈P 0
η [2]

H0(P ev
η ,L

ζ
η)

∨
+ ⊗H0(P ev

η ,L
ζ
η)

∨
+ ⊗H0(P ev

η , nΞη)
∨
±

(3)
−→

∑

ζ∈JC[2]

∑

η∈P 0
ζ
[2]

H0(P 0
ζ ,L

η
ζ)+ ⊗H0(P 0

ζ ,L
η
ζ)+ ⊗H0(P ev

η , nΞη)
∨
±

(4)
−→

∑

ζ∈JC[2]





∑

η∈P 0
ζ
[2]

H0(P 0
ζ ,L

η
ζ)+ ⊗H0(P 0

ζ ,L
η
ζ)+



 ⊗





∑

η∈JC[2]

H0(P ev
η , nΞη)

∨
±





(5)
−→

∑

ζ∈JC[2]

H0(P ζ
ζ × P ζ

ζ , 4Ξζ ⊠ 4Ξζ) ⊗H0(SCHn,Θ(V )) = H0(SCHn+4,Θ(V ))
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The maps are as follows: (1) is the dual of the multiplication map in proposition 4.1.2 (l =
2, m = n). If n = 2, we use proposition 4.1.1 (l = 2, m = 4). (2) is the dual of the (even
part) multiplication map in proposition 4.2.2. (3) is the Prym-Wirtinger duality (5.1) tensored
with H0(P ev

η , nΞη)
∨
±. (4) is the inclusion H0(P ev

η , nΞη)
∨
± →֒

∑

ηH
0(P ev

η , nΞη)
∨
±. (5) is an injection

coming from the direct sum decomposition (4.3) tensored with the injective map of Hn. Finally
the last equality follows from the definition of SCHn+4. Since all linear maps are injective, the
composite map is injective and we have proved Hn+4.

7.6.2 n even

Since this case is similar to the odd case, we just indicate the minor changes to be done on the
sequence of maps (1),...,(5). We take into account the additional factors

∑

ηH
0(P odd, (n+4)Ξη)

∨
±,

for which we can write down the maps (1),...,(4) with P ev
η replaced by P odd

η and H0(P 0
ζ ,L

η
ζ)+ by

H0(P 0
ζ ,L

η
ζ)− (see (5.1)). Thus adding the two copies of map (5) (written for P ev and P odd), we

observe that we still have an injection coming from (4.3).

8 Final remarks

1. Let us briefly indicate why we used the name “Schottky variety” for the products of Prym
varieties. Indeed, for n = 3, the image of φ3 consists of a union of Kummer varieties of Pryms
(resp. of the Jacobian) which intersect along some 4-torsion points (resp. 2-torsion points). We
refer to [vGP], [D1], [P] for a proof of these intersection properties, which may also be deduced
from lemma 6.1. The coordinates of the intersection points may be interpreted as the famous
Schottky-Jung identities among theta-constants. Let us call the image φ3(SCH3) ⊂ SUC(2,O)
the Schottky configuration, which we embed in projective space P2g−1 = |L|∨, where L is the
ample generator of Pic(SUC(2,O)). In particular, we have Θ(C3) = L4. Then we can deduce
from the injectivity of (7.3)

8.1. Corollary. If a quartic in P2g−1 vanishes on the Schottky configuration, then it vanishes on
the whole of SUC(2,O).

This corollary was already proved in [vGP] corollary 2. Moreover we have been able to show
that SUC(2,O) ⊂ P2g−1 is defined by quartic equations. One can thus recover SUC(2,O) from the
Schottky configuration purely geometrically. One might speculate whether, given the Schottky
configuration of abelian varieties, one might reconstruct the curve C. This is the “small Schottky”
conjecture, see [D2].

2. As observed in [O2] remark 1.2 and [LS] section 7.10, the reduced divisors D
(n)
κ , with κ ∈ ϑ(C),

whose support is given by

supp D(n)
κ = {A ∈ M+(Spinn) | h

0(C,A(V ) ⊗ κ) > 0},

are elements of the linear system PH0(M+(Spinn),P). Here P is a Pfaffian square-root of
Θ(V ),i.e., P2 = Θ(V ). To avoid existence problems, we work over the moduli stack. Then
we shall prove

8.2. Proposition. A basis of the linear system |P| is given by the divisors D
(n)
κ with κ ∈ ϑ(C),

if n is even, and κ ∈ ϑ(C) with ǫ(κ) = 1, if n is odd.
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Proof. It is enough to prove linear independence, which is done by induction on n. For the
first cases we refer to [B2] proposition A.8 (n = 2), theorem 1.2 (n = 3), proposition A.5 (n =

4). The statement for n = 5 will follow by pulling back D
(5)
κ ⊂ M+(Spin5) under the map

M+(Spin3)×M+(Spin2)
ι

−→ M+(Spin5). We observe that ι∗(D
(5)
κ ) = p∗1(D

(3)
κ ) + p∗2(D

(2)
κ ). Since

the D
(3)
κ form a basis, we can conclude. Let us assume that the D

(n)
κ ’s are independent. Then the

equality ι∗(D
(n+4)
κ ) = p∗1(D

(n)
κ ) + p∗2(D

(4)
κ ) implies that the D

(n+4)
κ ’s are also independent.

3. The “twisted” Verlinde formula given in [O2] conjecture 1.1, which computes the dimension
of H0(M−(Spinn),Θ(V )), can be deduced from a forthcoming work by Y. Laszlo and C. Sorger.
Following the techniques of the paper [LS], the authors show that the “twisted” Verlinde space
can be identified to a conformal block, whose dimension (worked out by C. Woodward) is given
by Oxbury’s formula.

4. We can prove a refinement of theorem 1.1 by considering the linear action of the Heisenberg
group Heis on H := H0(M±(Spinn),Θ(V )). By induction, we check that H is a Heis-module of
level 4 for the JC[2]-action described in (3.2). Hence the linear action of Heis factors through
JC[2] and we can consider its character space decomposition H =

∑

η∈JC[2]Hη. One proves that

the image of s±η is contained in Hη. Since
∑

η sη is surjective, we get equality im (sη) = Hη. So,
we have isomorphisms, e.g. for n odd,

∀η ∈ JC[2] s±η : H0(P ev
η , (2m+ 1)Ξη)

∨
±

∼
−→ H0(M±(Spin2m+1),Θ(C2m+1))η
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