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Abstract. The Harbola-Sahni formalism for the exchange potential of many-electron sys-

tems gives extremely accurate total energies for atoms (the energies are practically indistinguish-
able from the Hartree-Fock energies). We combine here this formalism with the usual density

functional prescription for the correlation potential, using a
recently developed optimized local

correlation functional (Gritsenko O-V et al, Phys Rev. A 47 (1993) 1811). Numerical tests

carried out for several closed shell atoms and ions indicate that the results preserve the accuracy

of the exchange-only calculations. We expect the
same

behavior to hold true for large molecules

and atomic clusters. However, similar tests for the He, Be and Ne isoelectronic series indicate

that the optimized local correlation functional is not valid for highly ionized atoms

1. Introduction

The usual way to introduce the exchange-correlation potential in density functional theory
(DFT) is through the variational derivative of the exchange-correlation energy functional [1,2]
(Hartree atomic units will be used through the paper unless explicitly stated otherwise)

~
6E~~jpj

~~~~~~~~ " 6Plr)

The main problem with this rigorous formulation is that the exact form of the energy functional

Exc[p] is unknown, and in practice, one is bound to use simple approximations like the well

known local density approximation (LDA) 11, 2]. Another alternative, pioneered by Slater [3]

has been to construct directly Vxc(r) making use of the idea of the Fermi-Coulomb hole. A

successful step in this direction has been taken via the Work-formalism developed by Harbola

and Sahni (HS) [4-7]. In this formalism, Vxc(r) is calculated as the work Wxc(r) required

to bring an electron from infinity to its position r against the force field Exc(r) of its Fermi-

Coulomb hole charge distribution

Wxc(r)
=

~

Exc(r') d( (2)
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Exc(r)
=

/
~~~~~'~/ jr r') dr'. (3)

r
r'(

In equation (3), pxc(r, r') is the Fermi-Coulomb hole charge distribution surrounding an elec-

tron placed at r Of course, this method is useful only if one is able to evaluate, or at least

set up an accurate approximation for pxc(r,r') This can be done in the exchange-only case.

px(r, r')
can be evaluated exactly in this case, and all the applications of the formalism have

been performed so far at the exchange-only level [4-7]. A consequence is that Wx(r) retains

the correct asymptotic behavior of the exchange potential in an atom, which is crucial for

an accurate description of properti~s depending on the tail of the density
Due to our lack of knowledge in constructing pxc(r, r'), it is difficult to extend the Work-

formalism beyond the exchange-only level. In principle, it is possible to study the exchange-
correlation case within the Work formalism if one writes the wavefunction as an

(infinite) linear

combination of Slater determinants [8]. As an alternative, the procedure we explore in this

paper is a combination of the Harbola-Sahni method for exchange with standard DFT for

correlation. Returning to the exchange-correlation potential Vxc(r), we first separate this out

in exchange and correlation parts

Vxcjr)
=

Vxjr) + (jr). j4)

In this paper, Vx(r) is calculated according to the Harbola-Sahni prescription, that is

Vx(r)
=

Wx(r). On the other hand, the DFT prescription I~(r)
=

~~~~~, where Ec[p] is
6p(r)

the correlation-energy functional, is employed for I~(r). This combination retains the full

exchange-correlation potential local in character. In Section 2 we give some details of the

method and indicate the approximation used for Ec [pi. In Section 3 we present results for

several free atoms, ions and isoelectronic series. Our applications are restricted to systems
with closed electronic shells, because for those spherically symmetric systems one is absolutely

sure that the work Wxc(r) of equation (2) is path-independent. For open shell systems, or

for systems with arbitrary symmetry, there is no rigorous proof that the work Wxc is path
independent. In such cases, Harbola and Sahni recommend to use an "approximate" potential
obtained from the irrotational component of the field [7]. This approximation should also be

very accurate because the solenoidal component of the electric field for non-spherical atoms

is negligible in comparison to the irrotational component. Evidently the work is also path-
independent for all atoms if

we use the central field approximation. Section 4 contains our

conclusions, as well as proposals for application of this method to interesting systems other

than atoms.

2. Method

Neglecting Coulomb correlation in the Work formalism, equations (2) and (3) are replaced by

Wx jr)
=

/[ Exjr') dl, is)

Exir)
"

/ ~~~'[~)
ir r') dr'. 16)

The properties of the system are then obtained by solving the single-particle differential equa-

tions

~~~ ~ ~~~~~ ~
~~~~~

~~~~~ ~~~~~~~' ~~~
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I)where is jr)
=

unjrj +
/ ~ ~ dr' (8j

jr r'j

is the electrostatic potential seen by the electrons. This is the sum of the external nuclear

potential and the classical Coulomb potential of the electrons.

The Fermi hole charge px(r,r')
can be rigorously expressed in terms of the one electron

orbitals of equation (7) as

~

~~~~~ ~'~
~)~~~

~~~

Here ~(r,r')
=

£ifi](r)~fi~(r') is the single-particle density matrix and the electron density

~

p(r)
=

£
(~fi~(r)(~ is just the diagonal part of ~(r,r'). These summations are extended over

~

the occupied single-particle states. The total energy of the system is easily computed as

E
=

~ It
ir) i- )v~) ifi~ir) dr +

/
unir) Pir) dr

~

~
II ~~~ ~i~

~~ ~~~ ~
II ~~~~~~)~'~

~~~~" ~~~~

Equation (9) indicates that px(r, r') is constructed exactly
in this exchange-only theory. As a

consequence of this fact, extremely accurate total ground state energies have been obtained for

neutral atoms by this approach is,6j. Those energies are virtually identical to the Hartree-Fock

ones. The results for excited states are also very encouraging [9]
As stated in the Introduction, we are interested in adding Coulomb correlation into the

formalism in the way indicated after equation (4). The usual LDA suggests itself as a possible
approximation for Ec [pi, although it is well known that LDA correlation energies based on

homogeneous electron gas data give poor results for atoms (roughly a factor of two larger) [10].
Among other possible alternatives [10-14], we have chosen a recently developed "optimized
local approximation" (OLA) [10,14] which has been successfully tested for free atoms [10,14]
and positive ions [15]. The OLA is based on an explicit modelling of the correlation hole

arising from the Coulomb repulsion between electrons. Fulfillment of the sum rule for the

normalization of this hole (zero charge) is required, in addition to the high density limit and

to some exact conditions at zero interelectronic separation. Within this approximation, we

express the Coulomb correlation energy as:

EciPi
= /Pir)EciPir))dr ill)

with

~c(P(~))
"

~ )~~ ~
~
))j ~~ (ji~~

3 2I(
~I(

~ Ii l e~11 4l(x~/~)]
~ k k ~~ ~ b ~~~~kb" (b")~~~ pl/2(r)

~
~ l~~ ~

~ ~(~~
~~~~U ~~ ~~~U ~~

~
) ((1)~ ~~

~
~

j)j
3 3 2
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~i/i~~~ iiii~iiiilli ~i/~~i~zi/~ + iiiii~iiiillil i12)

where x, y, z, Ii, I], b" and b~ are functions of the local density p(r) and a parameter k (the
interested reader is referred to [14] for details about the derivation of this functional and the

precise form of x, y, z, Ii, I], b" and bU). The value k
=

0.196 of this empirical parameter

was optimized in [14] by a global fit to the empirical correlation energies of small closed shell

atoms. Evidently, when we introduce correlation, Wx(r) in equation (7) has to be substituted

by Wx(r) + I~°~~(r) and the correlation energy term, E)~~ [pi has to be added to the total

energy in equation (10).
The fitting of the parameter k was done using for the exchange energy the non-local Weighted

Density Approximation (WDA) [14,16,17]. Since calculations using the WDA for exchange
will be also presented in this paper for comparative purposes, we briefly describe the WDA

functional. The exchange energy is expressed as

~wDAj~j ~

_i j j Pir)Pir~)gz~~iir r'ii rxir))
~~ ~~, j~~~

~ 2 jr r'j

This energy can be interpreted as the electrostatic interaction between two charge distributions:

one is the usual electron density p(r), and the other, (p(r')gf~~((r r'( rx jr ), is a non-local

charge density representing the Fermi hole around an electron placed at r. The WDA form for

the pair correlation function gx(ri, r2) is chosen as

where ~x(r), which can be interpreted as the effective

sum
iving the exact

charge
of hole:

so that the WDA exchange energy functional is completely free of parameters. Equation (15)
indicates that ~x(r) depends in a nonlocal way on the electron density.

3. Results

As a test of the Work+OLA method, we have performed nonrelativistic calculations for some

closed shell atoms and positive and negative ions in their ground state. The correlation ener-

gies obtained in this way are given in Table I. These are very close to the empirical correlation

energies (obtained by subtracting from the total experimental energy, the Hartree-Fock energy
and relativistic corrections excluding the Lamb shift) [13,18]. For comparison, we include the

correlation energies obtained from a DFT calculation in which exchange effects are treated by
the WDA of equations (13,14) and correlation is treated with the OLA functional of equa-
tions (11,12). There is a very satisfactory agreement between the two sets of theoretical

correlation energies, a fact that indicates that the electron densities obtained in both methods

are very similar. The comparison with the empirical correlation energies is also satisfactory,
although one cannot expect our DFT Coulomb correlation energies to exactly agree with the

empirical values from references [13,18]. The reason is that the DFT correlation energies in-

clude a small contribution from the difference between the kinetic energy of independent and
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Table I. Calculated co~reiation energies (m atomic units) compared to empirtcai values.

Exchange was treated by the weighted density apprommation (WDA) and Harbola-Sahm (HS)
formalisms and the OLA functional was used for correlation

m
both cases. Erro~s (calculated

ene~gy empirtcal ene~gy) are given m
brackets.

Ion WDA HS Empirical
11

3, 18]
He -0.045 (-0.003) -0.045 (-0.003) -0.042

Li+ -0.061 (-0.018) -0.061 (-0.018) -0.043

Li~ -0.082 (-0.010) -0.072

Be -0.094 (0.000) -0.094 (0.000) -0.094

B+ -0,l13 (-0.003) -0.l13 (-0.003) -0,l10

F~ -0.327 (0.064) -0.391

Na+ -0.396 (-0.017) -0.398 (-0.019) -0.379

Na~ -0.407 (0.003) -0.410

Ne -0.362 (0.018) -0.366 (0.015) -0.381

Mg -0.443 (-0.015) -0 445 (-0.017) -0.428

Al+ -0.476 (-0.034) -0.477 (-0.035) -0.442

Cl~ -0.694 (-0.012) -0.706

Ar -0.732 (0.000) -0.735 (-0.003) -0.732

Ca -0.818 -0.820

Zn -1.454 -1.461

Kr -1.816 -1.821

Cd -2.584 -2.590

Xe -2.958 -2.963

Pt -4.773 -4.799

Hg -4 932 -4.938

Rn -5.343 -5.348

interacting electrons [19], usually called correlation kinetic energy, whereas the empirical cor-

relation energies of the last column of the Table correspond to the usual quantum chemical

definition, which uses as a reference a Hartree-Fock calculation.

The empirical correlation energies given in Table I have not been corrected for the Lamb

shift. The reason is that this correction was not taken into account in the process of fitting
the free parameter k in reference [14]. Only data for atoms with low atomic number were

used for that fitting and in those cases the Lamb shift correction is small (at least generally

not larger than the errors made in the fitting). However, the Lamb shift correction becomes

important for medium Z and especially for large Z atoms. In this paper we have just tried to

be consistent with the prescription used in our previous work [14], but a new determination

of the parameter k should be done using empirical correlation energies corrected for the Lamb

shift (this is in our
plans).

The total ground state energies of closed shell neutral atoms are compared in Table II with

empirical values (experimental energy minus relativistic contributions excluding Lamb shift).
The HS energies are very accurate. The errors of the WDA calculation are also small, though

larger than the errors in the HS calculation. We ascribe this to the WDA exchange potential,
which is less accurate than Wx(r).

Table III gives an analysis of the errors in the HS calculation. The last column of this Table

IOURNALDBWYSIQURII -T 5,N°9.WWW1995 ~
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Table II. Calculated total ene~gies (m atomic units) compared to empirical values. Exchange

was t~eated by the weighted density apprommation (WDA ) and Harbola-Sahm (HS) formalisms
and the OLA functional was used for co~~elation m both cases. Errors (calculated energy

empirtcal energy)
are gwen m b~ackets.

Atom WDA HS Empirical [18]
He -2.909 (-0.005) -2.906 (-0.002) -2.904

Be -14.605 (0.061) -14.665 (0.001) -14.666

Ne -128.914 (0.011) -128.906 (0.019) -128.925

Mg -200,108 (-0.065) -200.049 (-0006) -200.043

Ar 527.680 (-0.138) -527.537 (0 005) -527.542

Ca 677.786 -677.560

Zn -1779.670 -1779.276

Kr -2753.855 -2753.854

Cd -5467.183 -5467.717

Xe -7234.101 -7235.160

Pt -17332.748 -17337.294

Hg -18410.690 -18415.554

Rn -21868.225 -21874.815

Table III. Analysis of the errors of the HS calculation. Error-c are the correlation energy

e~~o~s f~om Table I, and e~~or-zc a~e the total energy e~~o~s f~om Table II. Erro~-x are the

total ene~gy errors from an exchange-only HS calculation performed by Ha~bola and Sahm f7j.
Erro~s a~e m a,u.

Atom error-x error-c error-x+error-c error-xc

He 0.000 -0.003 -0.003 -0.002

Be 0.002 0.000 0.002 0.001

Ne 0.005 0.015 0.020 0.019

Mg 0.009 -0.017 -0.008 -0.006

Ar 0.014 -0.003 0.011 0.005

gives the error in the total energy, labelled "error-xc", taken from Table II. The first column,
labelled "error-x", gives the total energy error from exchange-only HS calculations performed

by Harbola and Sahni [7], and the second column, labelled "error-c", gives the correlation

energy error of Table I. Then we observe that error-xc is approximately equal to the sum

of error-x and error-c. On the other hand, the correlation errors are of the same order of

magnitude as the total energy errors of the exchange-only HS calculation. This indicates that

inclusion of correlation through the OLA functional preserves the extreme accuracy of the total

energies.

We present in Tables IV, V and VI the results for the ions of the He, Be and Ne isoelectronic

series. The first column gives the atomic number of the ion. The empirical non-relativistic

total energy is given in column 2 and the empirical correlation energy in column 3. In columns
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Table IV. Ene~gy dijfe~ences (m
a.u.

) between the self-consistent DFT ~esults and the non-

relatwistic empimcal values (from Ref. f20j) for the He isoelectronic series. E($~ and E(~P
are empirical total and correlation energies. AEtot

"

Ef(~ E($~, AEC
=

Ef~~ E(~P.

WDA HS
Z -E]f~ -E(~P AEtot AEC AEtat AEC
2 2.9037 0.0420 -0.0049 -0.0025 -0.0024 -0.0025

3 7.2799 0.0435 -0.0218 -0.0178 -0.0177 -0.0178

4 13.6556 0.0443 -0.0352 -0.0298 -0.0298 -0.0298

5 22.0310 0.0447 -0.0467 -0.0397 -0 0396 -0.0397

6 32.4062 0.0451 -0.0565 -0.0480 -0.0477 -0.0479

7 44.7814 0.0453 -o.0648 -o.o551 -o,o550 -o.o551

8 59,1566 o.0455 -o.0724 -o.o614 -o.o610 -o.o614

9 75.5317 o.0456 -o.0796 -o.o670 -o.0667 -o.o670

lo 93.9068 o.0457 -o.0865 -o.o721 -o o718 -o,o721

11 l14.2819 o.0458 -o.0929 -o.0768 -o 0765 -o,0767

12 136 6569 o.0459 -o.0988 -o.o810 -o.o807 -o.o810

13 161.0320 o.0459 -o.lo41 -o 0849 -0.0847 -0.0849

14 187.4071 o.o460 -o.lo88 -o.0886 -0 0885 -0.0886

15 215.7821 o.o460 -o.l133 -o.o920 -o.o919 -o.o920

16 246.1571 o o461 -o.l173 -o.0952 -0.0950 -o.0952

17 278.5322 o.o461 -o.1212 -o.0982 -o.0982 -o.0982

18 312.9072 o.o461 -o.1248 -o.lolo -o.loo9 -o.1010

19 349.2822 0.0462 -0.1288 -0.1037 -0.1037 -0.1037

20 387.6572 0.0462 -0.1324 -0.1063 -0.1063 -0.1063

4 and 5 we show the deviations of the WDA-OLA results from the empirical values, while the

last two columns present the same comparison for the HS-OLA formalism. We see again, as in

Table I, that the correlation energies are nearly the same for both methods (WDA-OLA and

HS-OLA) For the three isoelectronic series, the errors of the correlation energy increase with

Z. Those errors remain not large for the Be series, but for the Ne series, and especially for the

He series, AEC becomes unacceptably large as Z increases. The OLA is unable to reproduce
the near-constancy of Ec in each of these two series. The reason for this failure seems to be

rooted on the fact that the "free parameter" k in the OLA functional has been fixed by a

global fit to the correlation energies of some closed-shell "neutral" atoms, and is not adequate
for highly charged ions. Its use is then not recommended in the case of highly charged ions.

An obvious observation from those three Tables is that the total energy error of the HS-OLA

calculation is exclusively due to correlation.

A characteristic of the exchange-only HS calculations for neutral atoms is that the energy
eigenvalues of the highest occupied orbitals (-£Homo)

are consistently closer to the experi-
mental ionization potentials (IP) than the corresponding Hartree-Fock eigenvalues [5, 6]. Our

results from non-relativistic HS calculations with OLA correlation for closed-shell neutral atoms

and positive ions are given in Table VII, and corroborate the fact that -£Homo gives a good
approximation to IP(exp). This can be substantiated by the ionization potential theorem which

states that in exact DFT (in other words, if Vxc(r) were exactly known), then -£Homo gives
the ionization potential exactly [22]. The interpretation of the results in Table VII (where the
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Table V. Energy differences (in
a.u.

) between the self-consistent DFT ~esults and the non-

relatimstic empirtcal values (from Ref. f20j) for the Be isoelectronic series. E]QP and E(~P

are empimcal total and correlation ene~gies. AEtot
"

Et(~ E]$~, AEC
=

Ef~~ E(~P.

WDA HS

Z -E]$~ -E(~P AEtat AEC AEtat AEC

4 14.6674 0.0943 0.0625 0.0006 0.0021 0.0001

5 24.3489 0.ll14 0.0751 -0.0015 0.0003 -0.0018

6 36.5349 0.1264 0.0878 -0.0026 -0.0007 -0.0028

7 51.2228 0,1405 0,1019 -0.0024 -0.0005 -0.0026

8 68.4117 0.1540 0.1161 -0.0013 00007 -0.0014

9 88.1011 0.1671 0.1301 0.0008 0.0027 0.0006

10 l10.2909 0,1799 0,1448 0.0036 0.0055 0.0035

11 134.9809 0,1925 0.1605 0.0071 0.0090 0.0069

12 162.1711 0.2050 0.1773 0.0111 0.0141 0.0110

13 191.8614 o.2174 0.1953 0.0157 o.0185 o.o156

14 224,o517 o.2296 o.2141 o.o207 o.0234 o.o206

15 258.7421 o.2418 0 2331 o.0261 o.0287 o.o260

16 295.9326 0.2540 0.2523 0.0319 0.0383 0 0318

17 335.6231 0.2660 0.2714 0.0380 0 0403 0.0379

18 377.8136 0.2781 0.2904 0.0444 0 0466 0.0443

19 422.5042 0.2901 0.3094 0.0510 0.0538 0.0509

20 469.6947 0.3021 0.3284 0.0579 0.0605 0.0578

Table VI. Energy differences (in
a-u-

) between the self-consistent DFT results and the non-

relativistic empirical values (from Ref. f20j) fo~ the Ne isoelect~onic serves.
E[$P and E(~P

a~e empirtcal total and co~~elat~on ene~gies. AEtot
"

Et(~ E]$P, AEC
=

EfF~ E(~P.

WDA HS

Z -E~$~ -E(~P AEtot AEC AEtot AEC

10 128.939 0.392 0.025 0.030 0.033 0.026

II 162.069 0.392 0.029 -0 004 0 000 -0.007

12 199.224 0.394 0.029 -0.031 -0.027 -0.033

13 240.397 0.396 0.030 -0.055 -0.049 -0.057

14 285.579 0.398 0.029 -0.077 -0 071 -0.078

Is 334.770 0.400 0.028 -0.096 -0 090 -0.098

16 387.967 0.402 0.026 -0.l14 -0.107 -0,lls

17 445.168 0.404 0.023 -0,131 -0.124 -0,132

18 506.373 0.405 0.019 -0.147 -0,139 -0.148

19 571.581 0.406 0.016 -0,162 -0.154 -0.163

20 640.792 0.407 0.015 -0.176 -0.168 -0.177
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Table VII. Energy eigenvalue of the highest occupied atomic o~bital obtained with the HS-
OLA functional (m eV) compared to ezpemmental ionization potentials (IP) f21/.

Ion -£Homo Experimental
IP

He 25.64 24 59

Li+ 76.93 75 64

Be 8.83 9.32
Be2+ 155 36 153 89

B+ 24.42 25 IS

B~+ 260.96 259.37
C~+ 46.92 47.89

C4+ 393 74 392.08
N~+ 76.28 77.47

N~+ 553.72 552.06

O~+ l12.45 l13.90
F~+ 155.44 157 16

Ne 24.01 21 56

Na+ 50 21 47.29

Mg 7.34 7.65

Mg~+ 83.54 80 14

Al+ 18.42 18.83

Al~+ 123.83 l19.99

Si~+ 171 04 166.77

P~+ 225.12 220.43

Ar 16.57 IS 76

K+ 32.61 31.63

Ca 5.68 G-II

Sc+ 13.77 12.80

Zn 9.ll 9.39

Ga+ 20 12 20.51

Kr 14 57 14.00

Rb+ 27.95 27.28

Cd 8.24 8.99

In+ 17.77 18.87

Xe 12 67 12.13

Cs+ 23.74 25.10

Pt 9.36 9.00

Au+ 21.77 20 50

Hg 8.19 10 44

Tl+ 17.25 20.43

Rn 11.83 10.75

mean absolute error with respect to experimental IP'S is 4.7$io) is then that Wx(r) + I~(r) is

already a good approximation to the exact exchange-correlation potential of DFT. A crucial

component of the success is the correct asymptotic behavior of l§c(r) induced by Wx(r). This
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Table VIII. Ene~gy eigenvalue of the highest occupied atomic orbital of the anion obtained

with the HS-OLA functional (in eV) compared to ezpertmental electron ajJimties (EA ) f25j.

Atom -£Homo Experimental
(anion) EA

H 1.47 0.75

Li 0.37 0.62

F 5.33 3.40

Na 0.47 0.55

Cl 4.30 3.61

K 0.36 0.50

Cu lls 1.23

Br 3.90 3.36

Ag 1.02 130

3.59 3.06

Au 1,13 2.31

At 3Al 2.80

result can be useful in the study of molecules and clusters. The results for the electron affinities

(EA), which should be equal to -£Homo for the negative ion, are less accurate within the HS

formalism [23, 24]. The values of -£Homo(anion) presented in Table VIII (notice that these

anions have closed shells) have a mean absolute error of 32% with respect to experimental
EA'S. So they can only be considered as a rough estimation of the electron affinities.

4. Conclusions and Comments

In summary, we have explored a combination of the Harbola-Sahni formalism for the exchange
potential with the usual density functional prescription for the correlation potential. Corre-

lation has been treated using an optimized local-like functional. Calculations for closed shell

atoms and ions show promising results, except in the case of highly ionized atoms. The reason

is that the "free parameter" in the correlation energy functional was optimized only for neutral

atoms. Work for open-shell systems is now under progress. To our knowledge, the HS method

has been only applied to atoms (or ions) and to the jellium model of a metal surface [26].
Although the applicability of the HS method is certainly restricted, very large metal clusters

provide examples of systems where the HS method could be useful. The electronic structure

of those clusters is a topic of debate [27] and a central field approximation is enough for most

purposes. The fact that the HS method preserves the correct asymptotic behavior of Vx con-

stitutes a crucial improvement over the LDA and a key ingredient in favor of this method. Of

course, correlation should be added, using the OLA functional or any other available. The

OLA functional has only been tested for atoms and for molecules [28], but not for the valence

elctrons in large metallic clusters. So, care should be taken in using the OLA for these systems.
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