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Abstract. — The Harbola-Sahni formalism for the exchange potential of many-electron sys-
tems gives extremely accurate total energies for atoms (the energies are practically indistinguish-
able from the Hartree-Fock energies). We combine here this formalism with the usual density
functional prescription for the correlation potential, using a recently developed optimized local
correlation functional (Gritsenko O.V et al, Phys Rev. A 47 (1993) 1811). Numerical tests
carried out for several closed shell atoms and ions indicate that the results preserve the accuracy
of the exchange-only calculations. We expect the same behavior to hold true for large molecules
and atomic clusters. However, similar tests for the He, Be and Ne 1soelectronic series indicate
that the optimized local correlation functional is not valid for highly 10nized atoms

1. Introduction

The usual way to introduce the exchange-correlation potential in density functional theory
(DFT) is through the variational derivative of the exchange-correlation energy functional [1,2]
(Hartree atomic units will be used through the paper unless explicitly stated otherwise)

Vielr) = ‘Sfp—([g’] 1)

The main problem with this rigorous formulation is that the exact form of the energy functional
E,.[p] is unknown, and in practice, one is bound to use simple approximations like the well
known local density approximation (LDA) [1,2]. Another alternative, pioneered by Slater [3]
has been to construct directly Vi.(r) making use of the idea of the Fermi-Coulomb hole. A
successful step in this direction has been taken via the Work-formalism developed by Harbola
and Sahni (HS) [4-7]. In this formalism, Vi.(r) is calculated as the work Wy.(r) required
to bring an electron from infinity to its position r against the force field Ey(r) of its Fermi-
Coulomb hole charge distribution

Wie(r) = —/r E,.(r') - dl, (2)

[oe)
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!
Ey(r) = ch(#rs (r—r')dr'. (3)

v —r'|
In equation (3), pxc(r,r') is the Fermi-Coulomb hole charge distribution surrounding an elec-
tron placed at r Of course, this method is useful only if one is able to evaluate, or at least
set up an accurate approximation for py.(r,r’) This can be done in the exchange-only case.
px(r,r’) can be evaluated exactly in this case, and all the applications of the formalism have
been performed so far at the exchange-only level [4-7]. A consequence 18 that Wy(r) retains

the correct asymptotic behavior —— of the exchange potential 1n an atom, which is crucial for

an accurate description of propertigs depending on the tail of the density

Due to our lack of knowledge in constructing pyc(r,r’), it is difficult to extend the Work-
formalism beyond the exchange-only level. In principle, it is possible to study the exchange-
correlation case within the Work formalism if one writes the wavefunction as an (infinite) linear
combination of Slater determinants [8]. As an alternative, the procedure we explore in this
paper is a combination of the Harbola-Sahni method for exchange with standard DFT for
correlation. Returning to the exchange-correlation potential Vi (r), we first separate this out
in exchange and correlation parts

Vie(r) = Vi(r) + Vo (1), (4)

In this paper, Vi(r) is calculated according to the Harbola-Sahni prescription, that is
Vi(r) = Wy(r). On the other hand, the DFT prescription V.(r) = %ﬁ;k;]
the correlation-energy functional, is employed for V.(r). This combination retains the full
exchange-correlation potential local in character. In Section 2 we give some details of the
method and indicate the approximation used for E;[p]. In Section 3 we present results for
several free atoms, ions and isoelectronic series. Our applications are restricted to systems
with closed electronic shells, because for those spherically symmetric systems one is absolutely
sure that the work Wy (r) of equation (2) is path-independent. For open shell systems, or
for systems with arbitrary symmetry, there is no ngorous proof that the work W, is path
independent. In such cases, Harbola and Sahni recommend to use an “approximate” potential
obtained from the irrotational component of the field [7]. This approximation should also be
very accurate because the solenoidal component of the electric field for non-spherical atoms
is negligible in comparison to the irrotational component. Evidently the work is also path-
independent for all atoms if we use the central field approximation. Section 4 contains our
conclusions, as well as proposals for application of this method to interesting systems other
than atoms.

, where E.[p] is

2. Method

Neglecting Coulomb correlation in the Work formalism, equations (2) and (3) are replaced by

Wie) = - [ Ea)-a %)
E() = (2080 e, 6)
|r /|

The properties of the system are then obtained by solving the single-particle differential equa-
tions

Hv? T Vig(r) + Wx(r)] (1) = e (r), (7)
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where Vis (r) = v (r) + / IYP(%)’I dr’ (8)

is the electrostatic potential seen by the electrons. This is the sum of the external nuclear
potential and the classical Coulomb potential of the electrons.
The Fermi hole charge px(r,r') can be rigorously expressed in terms of the one electron
orbitals of equation (7) as
(e, ) -
2p(r)

Here v(r,r'") = Zwl* (r)4,(r') is the single-particle density matrix and the electron density

px(r’ rl) =

p(r) = 2 |, (r)|? 15 just the diagonal part of v(r,r'). These summations are extended over

the occupied single-particle states. The total energy of the system is easily computed as
X 1
> [ (r)(——v“)wz(r) ar+ [ on(e) plo) e

// lr-r’l Vgrar' + 1 // p(rlrp—X(rr'lr)d & (10)

Equation (9) indicates that px(r,r’) is constructed exactly in this exchange-only theory. As a
consequence of this fact, extremely accurate total ground state energies have been obtained for
neutral atoms by this approach [5,6). Those energies are virtually identical to the Hartree-Fock
ones. The results for excited states are also very encouraging [9]

As stated in the Introduction, we are interested in adding Coulomb correlation into the
formalism in the way indicated after equation (4). The usual LDA suggests itself as a possible
approximation for E.[p], although it 1s well known that LDA correlation energies based on
homogeneous electron gas data give poor results for atoms (roughly a factor of two larger) [10].
Among other possible alternatives [10-14], we have chosen a recently developed “optimized
local approximation” (OLA) [10,14] which has been successfully tested for free atoms [10, 14]
and positive 1ons [15]. The OLA is based on an explicit modelling of the correlation hole
arising from the Coulomb repulsion between electrons. Fulfillment of the sum rule for the
normalization of this hole (zero charge) is required, in addition to the high density limit and
to some exact conditions at zero interelectronic separation. Within this approximation, we
express the Coulomb correlation energy as:

Bdol = [ sr)eclot)ar (11)

with

Iy I3\ e*Eu(~z
ec(p(r)) = 1- 2o (1 + é)] ,,—b(u‘)

3

e I 1 e[l— 3zt
+ Ié" <I§"> 1 (1 + Iu 7r1/2kb‘u. (bu)3/2 pl/z(r)

T 2Iy I3 eVEi(—y) e*Ei(-z)
L 7 ln(”zr;)“ b b

1y 1 (213)\? I
2 _ - (22 (1
ol 2(1;) "\
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(12)

where z, y, z, I*, I', b* and b” are functions of the local density p(r) and a parameter k (the
interested reader is referred to [14] for details about the derivation of this functional and the
precise form of z, y, z, I*, I, b* and b”). The value k¥ = 0.196 of this empirical parameter
was optimized in [14] by a global fit to the empirical correlation energies of small closed shell
atoms. Evidently, when we introduce correlation, Wy(r) in equation (7) has to be substituted
by Wi(r) + VOLA(r) and the correlation energy term, EQV4[p] has to be added to the total
energy in equation (10).

The fitting of the parameter k was done using for the exchange energy the non-local Weighted
Density Approximation (WDA) [14,16,17]. Since calculations using the WDA for exchange
will be also presented in this paper for comparative purposes, we briefly describe the WDA
functional. The exchange energy is expressed as

EWDA [ =__;_//p(r)p(r’)Q}Y‘L'?A_(Irr',— Flire(0) 4o g (13)

This energy can be interpreted as the electrostatic interaction between two charge distributions:
one is the usual electron density p(r), and the other, {p(r')g¥PA(|r — r'|; 7x(r))}, is a non-local
charge density representing the Fermi hole around an electron placed at r. The WDA form for
the pair correlation function g.(ry,rz) is chosen as

__ 1[73/2
g,YVDAur—r'm(r))=—§exp{-[u] } (14)

T (r)

where 7r.(r), which can be interpreted as the effective radius of the Fermi hole, is fixed by the
sum rule giving the exact charge of this hole:

/ p(X')g¥PA (r = v'[; e (r)) dr’ = —1, (15)

so that the WDA exchange energy functional is completely free of parameters. Equation (15)
indicates that r«(r) depends in a nonlocal way on the electron density.

3. Results

As a test of the Work+OLA method, we have performed nonrelativistic calculations for some
closed shell atoms and positive and negative ions in their ground state. The correlation ener-
gies obtained in this way are given in Table I. These are very close to the empirical correlation
energies (obtained by subtracting from the total experimental energy, the Hartree-Fock energy
and relativistic corrections excluding the Lamb shift) [13,18]. For comparison, we include the
correlation energies obtained from a DFT calculation in which exchange effects are treated by
the WDA of equations (13,14) and correlation is treated with the OLA functional of equa-
tions (11,12). There is a very satisfactory agreement between the two sets of theoretical
correlation energies, a fact that indicates that the electron densities obtained in both methods
are very similar. The comparison with the empirical correlation energies is also satisfactory,
although one cannot expect our DFT Coulomb correlation energies to exactly agree with the
empirical values from references [13,18]. The reason is that the DFT correlation energies in-
clude a small contribution from the difference between the kinetic energy of independent and
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Table I. — Coalculated correlation energies (wn atomic units) compared to empirical values.
Ezchange was treated by the weighted density approzimation (WDA) and Harbola-Sahni (HS)
formalisms and the OLA functional was used for correlation in both cases. Errors (calculated
energy — emprical energy) are gwen wn brackets.

Ion WDA HS Empirical [13,18]
He ~0.045 (—0.003) —0.045 (—0.003) —0.042
Li* ~0.061 (~0.018) ~0.061 (—0.018) —0.043
Li~ — —0.082 (—0.010) ~0.072
Be ~0.094 (0.000) —0.094  (0.000) ~0.004
B+ ~0.113 (~0.003) ~0.113 (—0.003) ~0.110
F- -— —0.327 (0.064) —0.391
Nat —0.396 (~0.017) ~0.398 (~0.019) ~0.379
Na~ — ~0.407  (0.003) ~0.410
Ne ~0.362 (0.018) —0.366  (0.015) ~0.381
Mg —0.443 (-0.015) —0 445 (—0.017) —0.428
ALt —0.476 (~0.034) —0.477 (~0.035) ~0.442
cl- — —0.694 (—0.012) —0.706
Ar —0.732 (0.000) —0.735 (—0.003) —0.732
Ca -0.818 —0.820 —
Zn —1.454 ~1.461 —
Kr —-1.816 —1.821 —
Cd —-2.584 —-2.590 —
Xe —2.958 —2.963 —
Pt —4.773 —4.799 —
Hg ~4932 —4.938 —
Rn ~5.343 —5.348 —

interacting electrons [19], usually called correlation kinetic energy, whereas the empirical cor-
relation energies of the last column of the Table correspond to the usual quantum chemical
definition, which uses as a reference a Hartree-Fock calculation.

The empirical correlation energies given in Table I have not been corrected for the Lamb
shift. The reason is that this correction was not taken into account in the process of fitting
the free parameter k in reference [14]. Only data for atoms with low atomic number were
used for that fitting and in those cases the Lamb shift correction is small (at least generally
not larger than the errors made in the fitting). However, the Lamb shift correction becomes
important for medium Z and especially for large Z atoms. In this paper we have just tried to
be consistent with the prescription used in our previous work [14], but a new determination
of the parameter k should be done using empirical correlation energies corrected for the Lamb
shift (this is in our plans).

The total ground state energies of closed shell neutral atoms are compared in Table IT with
empirical values (experimental energy minus relativistic contributions excluding Lamb shift).

The HS energies are very accurate. The errors of the WDA calculation are also small, though
larger than the errors in the HS calculation. We ascribe this to the WDA exchange potential,
which is less accurate than W, (r).

Table III gives an analysis of the errors in the HS calculation. The last column of this Table

lJ()LI'RNALDE!"I-{YS(QUE 1 —T 5,N°9, SEPTEMBER 1995 50
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Table II. — Cuolculated total energies (1n atomic units) compared to empirical values. Ezchange
was treated by the weighted density approzymation (WDA) and Harbola-Sahne (HS) formalisms
and the OLA functional was used for correlation wn both cases. Errors (calculated energy —
empirical energy) are gwen in brackets.

Atom WDA HS Empirical [18]
He —2.909 (—0.005) —2.906 (—0.002) -2.904
Be —14.605 (0.061) —14.665 (0.001) —14.666
Ne —128.914 (0.011) —128.906 (0.019) —128.925
Mg —200.108 (—0.065) —200.049 (-0 006) —200.043
Ar — 527.680 (—0.138) -527.537 (0 005) —527.542
Ca — 677.786 ~677.560 —

Zn —1779.670 —1779.276 —

Kr ~2753.855 —2753.854 —

Cd —5467.183 —5467.717 —

Xe —7234.101 —7235.160 —

Pt —17332.748 —17337.294 —

Hg —18410.690 —18415.554 —

Rn —21868.225 —21874.815 —
Table III. — Analysis of the errors of the HS calculation. Error-c are the correlation energy

errors from Table I, and error-zc are the total energy errors from Table II. Error-z are the
total energy errors from an exchange-only HS calculation performed by Harbola and Sahns [7].
Errors are wn a.u.

Atom error-x error-¢c  error-x + error-¢c  error-xc

He 0.000 —0.003 —0.003 —0.002
Be 0.002 0.000 0.002 0.001
Ne 0.005 0.015 0.020 0.019
Mg 0.009 -0.017 —0.008 —0.006
Ar 0.014 -0.003 0.011 0.005

gives the error in the total energy, labelled “error-xc”, taken from Table II. The first column,
labelled “error-x”, gives the total energy error from exchange-only HS calculations performed
by Harbola and Sahni {7}, and the second column, labelled “error-c”, gives the correlation
energy error of Table I. Then we observe that error-xc is approximately equal to the sum
of error-x and error-c. On the other hand, the correlation errors are of the same order of
magnitude as the total energy errors of the exchange-only HS calculation. This indicates that
inclusion of correlation through the OLA functional preserves the extreme accuracy of the total
energies.

We present in Tables IV, V and VI the results for the 10ns of the He, Be and Ne isoelectronic
series. The first column gives the atomic number of the ion. The empirical non-relativistic
total energy is given in column 2 and the empirical correlation energy in column 3. In columns
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Table IV. — Energy differences (in a.u.) between the self-consistent DFT results and the non-
relatwistic empirical values (from Ref. [20]) for the He isoelectromac series. Epn® and ES™P
are emperical total and correlation energies. AE = EDET — Egoe?, AE, = EDFT _ pemp,

WDA S
—E° _EemP T AF,  AE. | AEw  AE.
2.9037 0.0420 -0.0049 -0.0025 —-0.0024 —0.0025
7.2799 0.0435 -0.0218 -—-0.0178 -—0.0177 —0.0178
13.6556 0.0443 —0.0352 —0.0208 -0.0208 —0.0298
22.0310 0.0447 —0.0467 -0.0397 —00396 —0.0397
32.4062 0.0451 —0.0565 —0.0480 —0.0477 —0.0479
447814 0.0453 —0.0648 —0.0551 —0.0550 —0.0551
59.1566  0.0455 —0.0724 —0.0614 —0.0610 ~0.0614
75.5317  0.0456 —0.0796 —0.0670 —0.0667 —0.0670
10 93.9068 00457 -0.0865 —0.0721 —00718 —0.0721
11  114.2819 0.0458 —0.0929 -0.0768 —-00765 —0.0767
12 1366569 0.0459 —0.0988 —0.0810 —0.0807 —0.0810
13 161.0320 0.0459 —0.1041 —-00849 —0.0847 —0.0849
14 187.4071 0.0460 —0.1088 —0.0886 —00885 —0.08%6
15 215.7821 0.0460 —0.1133 —0.0920 —0.0919 —0.0920
16 246.1571 00461 —0.1173 -0.0952 —-0.0950 —0.0952
17 2785322 0.0461 —0.1212 —0.0982 —0.0982 —0.0982
18 3129072 0.0461 —0.1248 -0.1010 —0.1009 —0.1010
19 3492822 00462 —0.1288 —0.1037 —0.1037 ~-0.1037
20 387.6572 0.0462 -0.1324 —0.1063 —0.1063 —0.1063

© 00 - O W NN

4 and 5 we show the deviations of the WDA-OLA results from the empirical values, while the
last two columns present the same comparison for the HS-OLA formalism. We see again, as in
Table I, that the correlation energies are nearly the same for both methods (WDA-OLA and
HS-OLA) For the three isoelectronic series, the errors of the correlation energy increase with
Z. Those errors remain not large for the Be series, but for the Ne series, and especially for the
He series, AE. becomes unacceptably large as Z increases. The OLA is unable to reproduce
the near-constancy of E. in each of these two series. The reason for this failure seems to be
rooted on the fact that the “free parameter” k in the OLA functional has been fixed by a
global fit to the correlation energies of some closed-shell “neutral” atoms, and is not adequate
for highly charged ions. Its use is then not recommended in the case of highly charged 1ons.
An obvious observation from those three Tables is that the total energy error of the HS-OLA
calculation is exclusively due to correlation.

A characteristic of the exchange-only HS calculations for neutral atoms is that the energy
eigenvalues of the highest occupied orbitals (—emomo) are consistently closer to the experi-
mental ionization potentials (IP) than the corresponding Hartree-Fock eigenvalues [5,6]. Our
results from non-relativistic HS calculations with OLA correlation for closed-shell neutral atoms
and positive ions are given in Table VII, and corroborate the fact that —emomo gives a good
approximation to IP(exp). This can be substantiated by the ionization potential theorem which
states that in exact DFT (in other words, if Vic(r) were exactly known), then —egomo gives
the ionization potential exactly [22]. The interpretation of the results in Table VII (where the
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Table V. — Energy differences (in a.u.) between the self-consistent DFT results and the non-
relatwistic empirical values (from Ref. [20]) for the Be isoelectronic series. Egy' and E™P
are empirical total and correlation energies. AFE, = ERYT — Ef™P AE, = EPFT _ pemp,

WDA i

Z —E™ _E™ ARy, AE. AEw AE,
4 146674 00943 00625 00006 00021 0.0001
5 243489 01114 0.0751 —0.0015 0.0003 —0.0018
6 365349 0.1264 0.0878 —0.0026 —0.0007 —0.0028
7 512228 0.1405 0.1019 —0.0024 —0.0005 —0.0026
8 684117 0.1540 0.1161 —0.0013 00007 —0.0014
9 881011 0.1671 0.1301 0.0008 00027 0.0006
10 110.2909 0.1799 0.1448 0.0036 0.0055 0.0035
11 134.9809 0.1925 0.1605 0.0071 0.0090 0.0069
12 162.1711 0.2050 0.1773 0.0111 0.0141 0.0110
13 191.8614 0.2174 0.1953 0.0157 0.0185 0.0156
14 2240517 02296 0.2141 00207 0.0234 0.0206
15 2587421 0.2418 02331 0.0261 0.0287 0.0260
16 2959326 02540 02523 0.0319 0.0383 00318
17 3356231 02660 02714 0.0380 00403 0.0379
18 377.8136 02781 0.2004 0.0444 00466 0.0443
19 4225042 02901 03094 0.0510 0.0538 0.0509
20 469.6947 03021 03284 0.0579 0.0605 0.0578

Table VI. — Energy differences (in a.u.) between the self-consistent DFT results and the non-
relatwistic empirical values (from Ref. [20]) for the Ne wsoelectronic series. Egi® and ES™P
are empirical total and correlation energies. AEo = ERFT — ES™P AE, = EDFT . geme,

WDA HS

Z —E&P _Em AR, AE,  Abw AR,
10 128939 0392 0025 0030 0033  0.026
11 162069 0.392 0020 —0004 0000 ~—0.007
12 199.224 0394 0029 —0.031 —0027 -—0.033
13  240.397 0.396 0.030 -0.055 -~-0.049 -0.057
14 285579 0398 0029 —0077 -0071 —0.078
15 334.770 0400 0028 —0.096 -0090 —0.098
16 387.967 0402 0026 —0.114 —0.107 -0.115
17 445.168 0.404 0.023 -0.131 -0.124 -0.132
18 506.373 0405 0019 —0147 -0.139 —0.148
19 571581 0406 0016 —0162 —0.154 —0.163
20 640.792 0407 0015 —0.176 —0.168 —0.177
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Table VII. — Energy eigenvalue of the haghest occupied atomic orbital obtained with the HS-
OLA functional (1n eV) compared to expervmental wonization potentials (IP) [21].

Ion —egoMmo  Experimental

1P
He 25.64 24 59
Lit 76.93 75 64
Be 8.83 9.32
Be?t 155 36 153 89
B+ 24.42 2515
B3+ 260.96 259.37
c2 46.92 47.89
cH 393 74 392.08
N3+ 76.28 77.47
N3+ 553.72 552.06
Ot 112.45 113.90
Fo+ 155.44 157 16
Ne 24.01 21 56
Nat 50 21 47.29
Mg 7.34 7.65
Mg?+ 83.54 80 14
Al* 18.42 18.83
A3t 123.83 119.99
Si4t 171 04 166.77
p3t 225.12 220.43
Ar 16.57 15 76
Kt 32.61 31.63
Ca 5.68 6.11
Sct 13.77 12.80
Zn 9.11 9.39
Gat 2012 20.51
Kr 14 57 14.00
Rb* 27.95 27.28
Cd 8.24 8.99
In* 17.77 18.87
Xe 12 67 12.13
Cst 23.74 25.10
Pt 9.36 9.00
Aut 21.77 20 50
Hg 8.19 10 44
TI+ 17.25 20.43
Rn 11.83 10.75

mean absolute error with respect to experimental IP’s is 4.7%) 1s then that W, (r) + V.(r) is
already a good approximation to the exact exchange-correlation potential of DFT. A crucial
component of the success is the correct asymptotic behavior of Vi (r) induced by Wx(r). This
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Table VIII. — FEnergy eigenvalue of the highest occupted atomic orbital of the anion obtained
unth the HS-OLA functional (in eV) compared to ezpervmental electron affinities (EA) [25].

Atom —egomo Experimental

(anion) EA

H 1.47 0.75
Li 0.37 0.62
F 5.33 3.40

Na 0.47 0.55
Cl 4.30 3.61
K 0.36 0.50
Cu 115 1.23
Br 3.90 3.36
Ag 1.02 130
1 3.59 3.06

Au 1.13 2.31
At 3.41 2.80

result can be useful in the study of molecules and clusters. The results for the electron affinities
(EA), which should be equal to —egomo for the negative ion, are less accurate within the HS
formalism [23,24]. The values of —enomo(anion) presented in Table VIII (notice that these
anions have closed shells) have a mean absolute error of 32% with respect to experimental
EA’s. So they can only be considered as a rough estimation of the electron affinities.

4. Conclusions and Comments

In summary, we have explored a combination of the Harbola-Sahni formalism for the exchange
potential with the usual density functional prescription for the correlation potential. Corre-
lation has been treated using an optimized local-like functional. Calculations for closed shell
atoms and ions show promising results, except in the case of highly ionized atoms. The reason
18 that the “free parameter” in the correlation energy functional was optimized only for neutral
atoms. Work for open-shell systems is now under progress. To our knowledge, the HS method
has been only applied to atoms (or ions) and to the jellium model of a metal surface [26].
Although the applicability of the HS method is certainly restricted, very large metal clusters
provide examples of systems where the HS method could be useful. The electronic structure
of those clusters is a topic of debate [27] and a central field approximation is enough for most
purposes. The fact that the HS method preserves the correct asymptotic behavior of V; con-
stitutes a crucial improvement over the LDA and a key ingredient in favor of this method. Of
course, correlation shonld be added, using the OLA functional or any other available. The
OLA functional has only been tested for atoms and for molecules [28], but not for the valence
elctrons in large metallic clusters. So, care should be taken in using the OLA for these systems.
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