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Abstract

Position and momentum information measures are evaluated for the ground state of the rela-
tivistic hydrogen-like atoms. Consequences of the fact that the radial momentum operator is not
self-adjoint are explicitly studied, exhibiting fundamental shortcomings of the conventional uncer-
tainty measures in terms of the radial position and momentum variances. The Shannon and Rényi
entropies, the Fisher information measure, as well as several related information measures, are
considered as viable alternatives. Detailed results on the onset of relativistic effects for low nuclear
charges, and on the extreme relativistic limit, are presented. The relativistic position density de-
cays exponentially at large r, but is singular at the origin. Correspondingly, the momentum density
decays as an inverse power of p. Both features yield divergent Rényi entropies away from a finite
vicinity of the Shannon entropy. While the position space information measures can be evaluated
analytically for both the nonrelativistic and the relativistic hydrogen atom, this is not the case for
the relativistic momentum space. Some of the results allow interesting insight into the significance
of recently evaluated Dirac-Fock vs. Hartree-Fock complexity measures for many-electron neutral

atoms.
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I. INTRODUCTION

The celebrated Heisenberg uncertainty principle [1, 2] of quantum mechanics is specified
by means of the position and momentum variances, that are defined in terms of the expec-
tation values of the corresponding (hermitian) operators. Several authors have pointed out
that for bimodal distributions this formulation does not provide an adequate measure of
the uncertainty of the measurable involved. A variety of information measures have been
proposed and investigated in a fairly broad range of contexts. The most familiar of these
are due to Shannon [3] and Fisher [4]. They are being increasingly applied in studying the
electronic structure and properties of atoms and molecules, and play an important role in the
rapidly developing field of quantum information and its anticipated technological offspring.

Due to its fundamental importance in natural sciences, the hydrogen atom has been
extensively studied from the information theoretical view point. Consequently, the Shannon
entropies [5, 6, 7] and Fisher information [§] of the non-relativistic hydrogen-like atom have
been studied in considerable detail. We note, with some surprise, a glaring omission, the
relativistic hydrogen atom, formulated in terms of the Dirac equation, which is the subject
of the present study. Future studies of relativistic effects on the information measures in
many-electron atoms will certainly benefit from the presently derived results. Indeed, very
recent work on Dirac-Fock vs. Hartree-Fock complexity measures for neutral many-electron
atoms [9] allows certain comparisons to be made with results obtained in the present article,
that shed additional light on the significance of that study.

The Shannon information entropy S, of the spatial electron density p(r) is defined as

5, =~ [ ple) lnple) v 1)

and the corresponding momentum space entropy S, is given by

%z—/mmhmmmm (2)

where TI(p) denotes the momentum density. The densities p(r) and II(p) are each normal-
ized to unity and all quantities are given in atomic units. These two densities are obtained
from the corresponding position and momentum space wavefunctions, that are the Fourier

transforms of one another. The Shannon entropy sum Sy = S, + S, contains the net infor-



mation and obeys the well known lower bound derived by Bialynicki-Birula and Mycielski
[10],
Sp=5+S,>n(l+Inn), (3)

where n is the number of dimensions. The lower bound is attained by a Gaussian distribu-
tion. This entropic uncertainty-like relation represents a stronger version of the Heisenberg
uncertainty principle of quantum mechanics. The individual entropies .S, and .S, depend on
the units used to measure r and p respectively, but their sum St does not, i.e., it is invariant
under uniform scaling of coordinates.

The Shannon entropies provide a global measure of information about the probability
distribution in the respective spaces. A more localized distribution yields a smaller value of
the corresponding information entropy. For applications of Shannon information entropy in
chemical physics we refer the reader to the published literature [5, [11].

In the context of the quantum theory of one-particle systems the Fisher position infor-

Irz/wdr (4)

p(r)

mation measure is defined as

and the corresponding momentum space measure is given by
[VII(p)|*
I, = / ————dp. 5

For a general definition of the Fisher information measure and a careful exposition of its
significance we refer to the definitive monograph by Rao [12].

The individual Fisher measures are bounded through the Cramer-Rao inequality [12,
13] according to I, > % and I, > %, where V'’s denote the corresponding spatial and
momentum variances, respectively. In position space the Fisher information measures the
sharpness of the probability density, and for a Gaussian distribution is exactly equal to
the inverse of the variance [14]. A sharp (smooth) and strongly localized (well spread-out)
probability density gives rise to a larger (smaller) value of the Fisher information in the
position space. With a differential probability density as its content, the Fisher measure
is better suited to study the localization characteristics of the probability distribution than

the Shannon information entropy [15, 16]. Unlike S, 4 S, for which eq. Bl specifies a lower

bound, general bounds are as yet unknown for the Fisher product I,1,. Since localization



(i.e., low uncertainty) means high values of the Fisher information measures, the counterpart
of the Heisenberg or Shannon bound should be an upper bound on the product of position
and momentum Fisher information measures. For a single particle under the influence of
a central potential Dehesa et al. |17] have very recently reported a lower bound on the
Heisenberg product [18, 119, 20, [21] which can be directly related to the Fisher information.
For the application of the Fisher information measure as an underlying guideline for the
formulation of fundamental physical principles we refer to the recent book by Frieden [14],
and for applications to the electronic structure of atoms, to the pioneering work of Dehesa
et al. [22, 123, 24, 125).

A widely used generalization of the Shannon entropy is the Rényi entropy. The Rényi
position entropy (that, when a more precise designation is required, we shall address as the

a-Rényi position entropy) is defined as [26]

1 o

H" = log (/ [p(r)]“47rr2dr) : (6)
1—a 0

The symmetrized Rényi position entropy is

HO = (H + H)/2 (7)

where

. 1 1
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a
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The Rényi momentum entropies are similarly defined in terms of the momentum density

II(p). For a = 1 one obtains, using I'Hopital’s rule,

1in% H = —/ p(r) log|p(r)|4nridr = S,
a 0

where S, is the Shannon position entropy [3]. For an n dimensional system, the sum of
the a-Rényi position entropy and the b-Rényi momentum entropy, for a and b satisfying
é—l—% = 2, was recently shown by Bialynicki-Birula [26] to satisfy the inequality (uncertainty-

like relation)

H® + HP > n B (l;)g_(al) + 15 gi(bl)) + log(w)} . (8)



The properties of the Shannon entropies and several other information measures under
coordinate scaling have been examined in ref. [27]. It was pointed out that upon scaling the

coordinates via 7 = (r, normalization of the density requires that

=29

It follows that

an - 1 mg<[ﬂmmwmﬁm)

1—a

—a

=1 ! log <§3(1_“) /Oo[p(:c)]“élwxzd:c) = 3log(¢) + H" .
0

The scaling of the coordinates introduced above implies scaling of the momenta according
to p = I—g, S0

AP = —3log(¢) + HY .

Hence,

AD +HY = HD + HY .

Note that a and o’ are entirely independent of one another.

For a system whose hamiltonian is of the form H = T + AV(r), where T = —5 V2, if
the potential is homogeneous, i.e., V({r) = ¢¥V (r), scaling of the coordinates via 7 = (7 is
equivalent to scaling the coupling constant via A = ¢*¥+2) [27]. Hence, for such potentials
the sum of an a-Rényi position entropy and an a/-Rényi momentum entropy is independent
of the coupling constant .

Since the position density has dimensions of inverse volume and the momentum density
has dimensions of inverse momentum cubed, the Shannon, Fisher and Rényi entropies can
be converted into quantities that have dimensions of length or momentum. This property is
used to facilitate comparison among the different information measures. We refer to these
transformed quantities as “length” and “impetus”, respectively. This practice allows a clear
distinction between variance-based uncertainty measures and information based measures
that have units of position or momentum although they do not involve expectation values of
the corresponding quantum-mechanical operators. “Impetus” is a pre-Newtonian synonym

of momentum.



A different class of information measures, involving ratios between relativistic and nonrel-
ativistic densities |28, 29], is considered as well. Since these information measures are pure
numbers they cannot be transformed into quantities with units of length or momentum.
However, they allow the onset of relativistic effects upon increase of the nuclear charge to
be followed very transparently.

A third class of information measures is represented by the Tsallis entropy [30],

e — ail (1 . /Ooo(p(r))“rzdr) |

that has been invoked for non-extensive systems, and which is not homogeneous under

coordinate scaling. The Tsallis entropy is closely related to the Rényi entropy via

1
a—1

(1—exp((1-— a)Hé’"))) .

€q —

For a — 1 these two entropies coincide with one another as well as with the Shannon entropy.

Upon attempting to evaluate the various uncertainty and information measures for the
relativistic hydrogen atom we encountered three somewhat surprising obstacles. The first
has to do with the fact that the radial momentum does not have a proper (self-adjoint)
quantum-mechanical counterpart. This fact has been known for a while, and its conse-
quences in the present context are explained below. Another surprise had to do with the
fact that the momentum-space solutions of the Dirac equations are still subject to contro-
versy [31, 132]. Finally, we find it intriguing that for the relativistic hydrogen atom the
position space information measures could be evaluated analytically, but for the momentum
space measures we had to apply numerical integration. The first difficulty suggests that the
various uncertainty-like principles that do not involve the variance of position or momentum
have even stronger merits for multi-dimensional systems than those extensively pointed out
in previous studies on one dimensional systems. We addressed the second difficulty by ad-
hering to the version of the momentum wavefunction that in our judgement was the most
natural and straightforward [33] without bothering to explore its equivalence (or lack of it)
with other formulations.

This article is structured as follows: In sections 2 and 3 we consider the radial position and

momentum variances for the nonrelativistic and the relativistic hydrogen atom, respectively,



presenting very explicitly the consequences of the non self-adjointness of the commonly
invoked radial momentum operator. The Shannon entropies are investigated in section 4,
and the Fisher information measures in section 5. In section 6 we study the Rényi entropies,
also considering the average density, that is essentially a special case of these. This allows a
brief discussion of complexity measures, with a rather surprising comparison with a recent
Dirac-Fock study of neutral many-electron atoms [9]. Scale invariant entropies are discussed

in section 8, and some concluding remarks are made in section 9.

II. UNCERTAINTY MEASURES FOR THE NONRELATIVISTIC
HYDROGEN-LIKE ATOMS

The most familiar measures of uncertainty are the position and momentum variances,

which for a one dimensional system defined over the whole real axis are given by

(6z) =< 22> — <z >2and (0p) = /< p?2 > — < p >2, where

<it> = [THuwpe- [ ow (md%)kaxp)dp )

/_Z p*|¢l*dp = /_C: V¥ (x) (—z‘h%)kwx)dp.

Here, ¢(x) and ¢(p) are the position and momentum wavefunctions, which are the Fourier

V
Il

transforms of one another. Eq. emphasizes the correspondence between position and
momentum space expectation values of the (hermitian) position and momentum operators, a
correspondence that, as we shall explicitly demonstrate below, fails for the (non self-adjoint)

radial momentum operator.

A. Position and momentum variances for spherically symmetric three-dimensional

systems

Qiang and Dong [34], following a time-honored tradition, suggest that the radial momen-

tum operator in the coordinate representation, using atomic units in which A =1, is

(2
pr_zarr'



They justify this expression by noting that

2 0? N 20
Pr = or?  ror
is (up to a multiplicative constant) the radial part of the Laplacian (i.e., the kinetic energy

operator).

Note, however, that the n dimensional generalization
(0 N n—1
r = 1| 7
P or 2r

#? n—-10 (n—1)(n-23)
_ 2 _ R
Pr= 5,2 + r or + 472 ’

satisfies

which, for n = 2 and n > 3 does not agree with the radial part of the Laplacian,

0? n—lg

T o rooor’

L,

Straightforward integration by parts yields

o 0 -1
<l = =5, [ o0 [ (45

) w(r)] r"ldr =0 (10)
where S, = IEEF—%%) is the surface area of the n-dimensional unit sphere.

Paz [35] has recently rigorously shown that p, is not self-adjoint, and has no self-adjoint
extension (cf., also, [36, 137, 138], for earlier discussions of this issue). This fact, which is
more closely considered below, suggests that using the variance of the radial momentum
as an uncertainty measure for (spherically symmetric) three-dimensional systems may be

questionable.

B. Position space wavefunction of the nonrelativistic hydrogen atom

The ground state nonrelativistic hydrogenic wavefunction g o(r) = (Z%)i exp(—2r)

yields the density
3

pwn(r) = %exp<—zzr). (11)



The expectation values < r >= % and < r? >= % yield

V3 0.8660

27~ Z

(br)=vV<r2>—<r>2=

Similarly, < p, >= 0 and < p? >= Z2. The latter value is equal to < —V? >, because, for
a spherically symmetric wavefunction, the angular part of the Laplacian makes a vanishing
contribution.

Using these position space expectation values to evaluate (dp.) = Z, we obtain the

uncertainty product (d7)(dp,) == 0.8660.

C. Momentum space wavefunction of the nonrelativistic hydrogen atom

The momentum space wavefunction for the ground state of the nonrelativistic hydrogen

atom [39]

ot =2 (2) [(4)"+1] 12

yields the momentum density

N

in terms of which we obtain
> 9 87
<p>= plng(p)drpdp = 3 ~ (0.8488267 ,
0 T

and

<p’>= / P Uyr(p)dmp’dp = Z° .
0

The latter value agrees with the position space expectation value of —V?, but the former
does not agree with the position space result, eq. [I0l

Using these momentum space expectation values we obtain

Z
(0p) = 5-V/0n? — 64~ 0.52877 .

10



Along with the value of dr obtained above we get
(0r)(dp) =~ 0.4578 |

which is less than % This is probably a manifestation of the questionable status of the radial
momentum, pointed out above.

Messiah [40] shows that, in one dimension, < z? >< p2 > > For a spherically

I
symmetric system < 72 >=3 < 2% > and < p? >= 3 < p2 >. Hence, < r? >< p? > > %.
The results quoted above imply that for the nonrelativistic hydrogen atom < 7% >< p? >= 3,
which is larger than the lower bound derived by Messiah.

We conclude this section by emphasizing that the operators 72 and p? can be expressed

(in Cartesian coordinates) in terms of manifestly self-adjoint operators. This is not the case

for r and p. Further consequences of this distinction are presented in the following section.

III. UNCERTAINTY MEASURES FOR THE RELATIVISTIC HYDROGEN-LIKE
ATOMS

A. Relativistic position uncertainty

For the ground state of the Dirac hydrogenic atom the (spin up) wavefunction is of the

form

G

0
Up = Nr"exp(—2r) (14)
1gYo

igY1
where G = 1+, g = /1 —7, Yo = cos(f) and Y; = sin(#) exp(i¢). The normalization

1
(22)’Y+g

\/87T(2y+1)

structure constant. In the limit Z — 0 or ¢ — oo [remembering that in atomic units o = 1/¢]

where v = [1 — (Z)?]z. Here o ~ is the fine-

I _ 1
factor is given by N = 137.03600

73

it follows that v — 1 and we obtain the nonrelativistic wavefunction /<= exp(—Z27).

The ground state position wavefunction yields the position density

(2z)27+1

_ 20-1) exn(—277) . 15
47TF(2’)/—|—1)T exp! ) (15)

Pr(T)

11



In the extreme relativistic limit Z — é the position density obtains the form [41]

1 2r
per(r) = 5—r"?exp (_E) .

2T

Using the relativistic wavefunction ¥p, eq. (I4]), we obtain

s 2v+1
T >R=—
27
and
2 _(7+1)(27+1)N 2 1 (7 2 3 4
<r° >p= 572 N<TT>NR — s Z(aZ) +1—6(aZ) +e ]
hence,

(or)= Y2 L

27
For future reference we define the ratio § = <<T,22>>NRR, which is plotted in Fig. 1. Evaluating
< p, >r=0 and
2 )
< p?>p= ~<pl>np 20 (@Z)P 4 S (aZ)t + - (16)
2y —1 4
: z
it follows that (dpr) = —z==. Hence,
1 /271
or)(op,) = = .
(5r)6n0) = )2

A singularity is observed for 2y — 1 = 0, that yields Z = 2—\/3 ~ 118.68. We do not know
what significance to assign to this nuclear charge.

Since the small components of the Dirac wavefunction for the hydrogen atom depend on
the angular coordinates, the expectation value of the Laplacian is not the same as that of

L., in spite of the fact that the ground state density is spherically symmetric. The angular

12



part of the Laplacian yields

1 -~
< \PD‘—2L2‘\PD >=
T

G
= 2(y—1) . e
= N exp(—2Zr)dr (G, 0, —igYy, —zng)‘L } =
0 igYo
igYh
L—n
=42? :
29(2y-1)
Adding the value of < ¥p|p?|¥p >, eq. [[6 we obtain
<VUp| - VUp >= 277 g (17)

72y = 1)

The singularity at Z =~ 118.68 remains

B. Relativistic momentum uncertainty

We use the expression for the relativistic ground state momentum wavefunction due to

Sheth [33]. Denoting the radial momentum variable by p and defining
p
r=(y+1) arctan(z) : (18)

the momentum density can be written in the form

where

F(p) = (v +1)sin*(z) + R(p)? (19)

and R(p) = (y+ 1) cos(x) — Zsin(z). T is the familiar I-function.

T
In the nonrelativistic limit 7 — 1 this expression reduces to Iy (p), cf. eq. ([I3).

In the extreme relativistic limit, Z — é, the momentum density is obtained by using

13



R OR

L’Hopital’s rule to evaluate lim,_,o =% . It is found to be of the form

o? 1

2 — |\« i arctan( o :
Mnlp) = oy [<ap> # (1= o+ 2y wetanton)) ] @)

The long range decay of the momentum density can be established by noting that for

p— 0
1 7 (2v+4)
o
() ((2)°+1)
Furthermore,
s
= 1)—=
so that

2

1-2
Fr~Fo,=(y+1) (1—1— 727 cos® ((7—1—1)%)) :

To evaluate < p? > we integrate over p numerically between p = 0 and p = p,,, where p,), is
chosen large enough for the density to be close enough to its asymptotic form, and add an
integral over the asymptotic momentum density between p = p,, and p = co. Hence,
—(2y-1)

Pm
< p2 >Rp= 471'/ HR(p)p4dp + </7 2v+1 Pm
0

1)
VaL(v+3) Foay—1

<p*>r
<p*>NR

The ratio p = is plotted in Fig. 1. The expectation value < p? > was evaluated
for the values of Z considered by Qiang and Dong [34]. The results agree with those evaluated
analytically by using the position space expectation value of the Laplacian, eq. (I7), for
Z =1, 11, 37, to ten decimal places, and for Z = 87 to eight decimal places. The values of
\/% , evaluated in terms of the ground-state wavefunction in the position representation,
using Eq. (@) , agree with the values of (Ap,)g in [34]. It would be nice to show analytically
that < p? > is indeed equal to the right hand side of Eq. (I7).

The results presented above clearly expose the difference between the self-adjoint Lapla-

cian and the non-self adjoint radial momentum.

14



IV. SHANNON ENTROPIES FOR THE HYDROGEN ATOM

A. Nonrelativistic position and momentum entropies

The nonrelativistic position entropy SN = — [ 47r?pyg(r) log (pNR(r))dr can be eas-

ily evaluated for the hydrogenic nonrelativistic ground state position density, yielding
SN — 3 1 log(m) — 3log(Z) ~ 4.1447299 — 3log(Z) . (21)

Similarly, the nonrelativistic momentum entropy Sy = [ 4mp*Ilyg(p) log (HNR(p))dp

can be evaluated for the hydrogenic nonrelativistic ground state momentum density, yielding

10
NR ~
S, == 3 + 5log(2) + 2log(m) + 3log(Z) ~ 2.4218623 + 3log(~Z) . (22)

It follows that

1
SN 4 SNE = —3+5 log(2) + 3log(m) ~ 6.5665922
> 3(1 + log(m)) ~ 6.4341897 .

B. Shannon length and impetus

Since exp(S,) has dimensions of volume, we define the Shannon length Rg via

We similarly define the Shannon impetus Pg via

? 5‘0) = exp(Sp) .

For the nonrelativistic hydrogen atom we obtain

1
3\? 2.46972
RYE = (—) % ~

4 Z

15



and

1
PYR = 2(3r)3 exp(—go)Z ~ 1390717,

hence,

RYRPIR ~ 3.43466

From the entropic uncertainty-like relation
Sy + S, > 3(1 4 In(m))

it follows that

2
3\ 3
RgPs > (—) e ~ 3.28639.
47

This lower bound is, indeed, lower than the product of the hydrogenic Shannon length and

impetus, but fairly close to it.

C. Relativistic position entropy

The position entropy can be evaluated analytically in terms of the relativistic ground

state position density, eq. (I3, to yield

I'2 1
SE = 1og <%) +(2y+1) = 2(y — D)¥(2y + 1) (23)
where W(z) is the Digamma function, defined as ¥(z) = w.

In the nonrelativistic limit v = 1 so ['(2y + 1) = T'(3) = 2 and SZ reduces to SN, eq.
21

The relativistic correction is

I'(2 1 3 2
SE_GNE — (v —1)(1—-¥(2y+1)) +log (%) ~ —(aZ)*+ (g - %) (@Z)*+---
(24)
In the extreme relativistic limit
Tad
S, = log (7) —2C + 1~ —14.463580 (25)

16



where C' = 0.5772156649.. is Euler’s constant (more commonly denoted 7y, a notation we

avoid for an obvious reason).

D. Relativistic momentum entropy

The relativistic momentum entropy was evaluated by means of numerical integration. To

examine the relativistic corrections to the position and momentum entropies more closely,
R_SNR SR—SNR
_g]

we consider o, = N and o, = P(QZ)’; . Eq. P4 yields o, ~ —1 — 0.4475(aZ)* + - -

and a numerical fit yields o, ~ 1.80 + 0.65(aZ)*+ -+, s0 0, + 0, = 0.80 + 0.2(aZ)* + - - -.

E. Relativistic Shannon length and impetus

For the relativistic Shannon length we obtain

RE = %(31“(27 + 1)>%exp {1 + %(7 - 1)(1 (2 + 1))} .

Hence,

By = Jng _ (F@V; 1))%exp {%(7— D(1-w(2y+ 1))} ~1 %(azf T

The ratio of the relativistic and nonrelativistic Shannon impeti can be obtained in terms of

the numerically determined o, as follows,

PE Z)?
=5 —exp [(as) ap] ~1+0.60(aZ)*+---.

Hence,

Bsps =~ 1+0.27(aZ)? + - . (26)

In Fig. 1 we present the ratios of the relativistic to nonrelativistic Shannon lengths and
impeti, along with the corresponding ratios of the root mean square radius and momentum,
and that of the Fisher lengths and impeti (to be discussed below). We note that for large Z
the relativistic effect on the momentum uncertainty measures is larger than on their position

counterparts. This is most pronounced for the root mean square position and momentum,

17



whereas the relativistic effects on the Fisher measures are almost symmetrical. This is
most likely due to the fact that the Fisher measures are sensitive to the local oscillations
of the distribution rather than to its long range behavior, where the relativistic momentum

distribution varies the most.

V. FISHER INFORMATION MEASURES FOR THE HYDROGEN ATOM

The Fisher position information measure, I, = [~ 47T7“2ﬁ (

ated for the ground state of the relativistic hydrogen-like atom, yielding

dp

dr)2 dr can be easily evalu-

1
:4<pf>z[7{VR<1—|—(aZ)2—|—§( Z)4+_3( Z)6+...) ,

T2y —1 4 8

where INE = 472, Since I? has a singularity when 2y — 1 =0, i. e., at Z ~ 118.68, we do

not examine the extreme relativistic limit.

2
The Fisher momentum information measure I, = [;° 47rp2ﬁ (%) dp for the nonrela-

tivistic momentum distribution can be evaluated analytically, yielding IIJ,V = % For the

relativistic momentum density the Fisher information was evaluated numerically.

A. Fisher length and impetus

The Fisher position information measure I, has dimensions of inverse area. We define

the Fisher length as Ry = I 2. Similarly, we define the Fisher impetus Pr = I, 2. For the

nonrelativistic hydrogen atom we obtain RY? = % and PYE = \/% The ratio between the

relativistic and the nonrelativistic Fisher lengths is

RR
Br = a

lf‘\/

(02) ~ 1(aZ) 4+,

|~

The corresponding ratio of Fisher impeti is evaluated by fitting the numerically evaluated

ratios to obtain

PR
= P—;V”R ~ 1+ 0.4166(aZ)® +0.23(aZ)" + - - -,
F
hence,
Brup ~1—0.0834(aZ)? + - . (27)

18



We note that the leading relativistic term is negative, unlike the corresponding term for the
product of Shannon length and impetus, eq. 26l
The ratios of the relativistic to nonrelativistic Fisher lengths and impeti are presented in

Fig. 1.

VI. RENYI ENTROPIES FOR THE HYDROGEN ATOM

A. Rényi position entropies

The Rényi position entropy is defined in eq. The hydrogenic nonrelativistic ground

state position density yields

log(a)
HINP —log () . 2
s g (s +3 1 (28)
For a — 1 this expression reduces to HI(T’NR) = log (Z) + 3, which is the well-known

hydrogenic Shannon position entropy. Substituting in eq. [0 we obtain

3 (14 s)'ts
(r,NR) =1 1 1 ATy )
7t ©8 <Z3) T os 08 ((1 — )i

The hydrogenic relativistic ground state position density yields

HOR — log (%) +2(y — 1) log(a) (29)
o g (O

l1—a F2y+1)

This expression is finite when the argument of the I'-function satisfies 2(y — 1)a + 3 > 0.
This condition can easily be traced back to the singularity of the relativistic density at the
origin, cf. eq. [l Since 0 <~ < 1, this condition holds for all Z when a < % For a > %
divergence will take place when Z > @. For v =1 eq. reduces to eq. 28 In the
limit @ — 1 we obtain the relativistic Shannon entropy, eq. 23 For v — 0 this expression

yields SEE.
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The relativistic correction AHS) = H — gV can be expanded in the form

r'2y+ 1)) (g 1)aClL0§(;L) ai 1 log (F(B +2a(y — 1)))

AH" =1 -
a Og( 2 T(2y+1)

alog(a) 9 4 o m 4
= — afl ((@2)* + (a2) /4+-~-)+a(§—ﬁ) (aZ)* +---

Using this expansion we obtain

1 14+s 1 5 w2
AHD = ——] Z)? 244+ N+ —— (== (a2)* +---
H, 280g(1_8)((a)+(a)/+ )+1—s2 5 13 (aZ)" +
In the extreme relativistic limit
3 1 I'(3—2a)
HER) T 1 )
. og | + T, o8 pr=cn (30)

Eq. can also be obtained from eq. 29, by taking the limit v+ — 0. For a — 1 this
expression yields eq. 23

The results presented above imply the commutativity of the diagram

pna(r) = HYNY — SNR

1 T T
pr(r) — HI — Sf
l ! !

pen(r) = HIPY — SET

where
T stands for lim
y—1
| stands for lim
7—0
—  stands for lin%
and

1

—a

X(r) =Y stands for Y = 1 / 4rr? [ X (r)]dr
0

i.e., the fact that whenever more than one path (respecting the directions of the various

20



arrows) is available between any two nodes, the results along the different paths are identical.

B. Rényi length

Noting that exp(Hc(f)) has dimensions of volume we define the Rényi length R, via the

relation

— R = exp(H").

It follows that

and

Similarly,

o (BT@Y+1D\T 1 moone (T(2a(y—1)+3)\
¢ 8 Z L2y +1) ’

yielding RN% in the limit v — 1.

C. Rényi momentum entropies

The hydrogenic nonrelativistic ground state Rényi momentum entropy is

273 1
HP :log< < )+ — log (1(0)) . (31)

where,
32

™

8§ I (4b — %)
v T'(4b)
The dependence of HéT’NR), eq. 28 and H, ép ’NR), eq. [B1 on the nuclear charge Z is such

1) / TP 1)y = (32)

that the sum, for any choice of a and b, is independent of Z, as demonstrated above for
arbitrary homogeneous potentials.

Noting that I(1) = 1 we obtain, for b — 1, the nonrelativistic Shannon momentum
entropy, eq. 22

The nonrelativistic momentum density behaves, at large p, as [Iygr(p) ~ 1%, so that the

integral in Hép NB) diverges unless 8 —2 > 1, or b > %. Indeed, for b = % the numerator of
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eq. B2 vanishes. Note, however, that this value of b is below the lower bound b > % allowing
the definition of the symmetrized Rényi entropy, eq. [7

The extreme relativistic momentum density, eq. 20, behaves, for p — oo, like

1
HERpN_a
(p) i

so that the integral in the expression for Hb(p FR) hehaves like zﬁ' Hence, the integral

diverges unless 4b — 2 > 1 or b > %.

The behavior of the relativistic momentum density is more subtle. For p — oo the variable
z, defined in eq. I8 satisfies © — (v + 1)5. As long as 7 < 1 one finds that F'(p), defined
by eq. 9, becomes a (v dependent) constant, so that for large p the relativistic momentum

density decays as [Ig(p) ~ zﬁ‘ It follows that the integrand in the expression for Hlfp )

converges provided that (2y +4)b —2 > 1 or b > —>—. For v = 0 this expression yields

2y
b> 3

1, in agreement with the result obtained above for the extreme relativistic momentum

1
29

which is larger than the bound b > 2

density, but for v = 1 this expression yields b > 5

obtained above for the nonrelativistic momentum density. This is a consequence of the fact

that by taking the limit v — 1 before the limit p — oo one obtains F' = Bﬁ, that for

large p yields F' ~ & rather than the constant obtained when the limits over v and p are
p

taken in the opposite order. Since 0 < v < 1, it follows that for b > % the Rényi entropy

converges for all Z, for b < % it diverges for all Z, and for 1 < b < 3 it converges for

2 2 1

7 < % (2 — %)(% — % Substituting b = 2_11 we obtain Z < Y——— 32(3Z_3)- Comparing with

the results obtained above for H"® we conclilde that H"® and Hlfp B converge over the
same range of Z when a and b are related via é + % =2

The relativistic Rényi momentum entropies can only be obtained numerically. The main
point to note is that the various sums of Rényi position and momentum entropies exhibit a
dependence on Z, unlike the nonrelativistic case. In Fig. 3 we show the sum of the Rényi
position and momentum entropies, Hy) + Hlfp ), where a = ﬁ and b = 1——157 vs. s. The
lowest curve corresponds to the lower bound presented in eq. B, and the curve just above
it is the nonrelativistic entropy sum. The relativistic entropy sums are all higher than the
nonrelativistic one, exhibiting a rapid increase for higher s values. This behavior anticipates

the approaching singularity of the relativistic Rényi momentum entropy for an appropriate

value of s > %, that decreases with increasing Z, as clearly displayed in Fig. 3. Thus, for
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Z =100 the Rényi momentum entropy becomes singular for s = @ ~ 0.789.

D. Rényi impetus

The relation

4
< B = exp(H,”)

defines the Rényi impetus P,. It follows that

ppn— () 2 (DY

In the limit b — 1 this expression yields the nonrelativistic Shannon impetus.

Wl

The relativistic Rényi impeti can be obtained from the numerically evaluated Rényi
momentum entropies.
From the uncertainty-like relation for the Rényi entropies, eq. [8 it follows that the

length-impetus product satisfies
%
R,P, > (%) Q@D T (33)

where i + % = 2.

The ratios of the relativistic to nonrelativistic Rényi lengths (fr) and impeti (ug) are
presented in Fig. 2 for conjugate pairs (a,0) = {(2,2),(3,2),(L,2),(L,1),(2,2),(3,2)}.
Like the Shannon measures presented in Fig. 1, the Rényi impeti show a more pronounced
relativistic effect than the corresponding lengths. The relativistic effect on the Rényi im-
peti increases with increasing b; the relativistic effect on the corresponding lengths (that

correspond to decreasing a, satisfying % + % = 2) also increases, but more moderately.

E. Average position and momentum densities

The average position density is defined as

<p>= /000 4 (p(r))zdr.
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While closely related to the 2-Rényi entropy, i.e., < p >= exp (—HQ(T)), the average position
density merits special attention since it has recently been invoked as a factor in a proposed
measure of complexity [42,43]. The average density is also known as the Onicescu informa-
tion measure [44], and is closely related to the linear entropy €, = 1— < p >, which is the
q = 2 case of the Tsallis entropy [30].

For the hydrogen atom

73
< PNR >= 37’
and
< g o Z30(4y — 1)

20 2(T(2y +1))2
The relativistic expression becomes singular when 4y — 1 =0, i.e. Z = % ~ 132.68. The
onset of relativistic effects is given by SEEZ_ZENRZ ~ (0.055159(aZ)? + 0.067737(aZ)* +

0.079452(aZ)8 + - - -.
2
The momentum density expectation value < Il >= fooo 47p? <H(p)) dp for the nonrel-

33 ~ 0.208975 The

ativistic density was evaluated analytically, yielding < Ilxp >= 557 ~ =3

relativistic counterpart, < Iz >, can only be evaluated numerically.

The leading terms in the Taylor series expansion of Z3(< Ilx > — < Ilyg >) were
obtained by differentiating the integrand, Z347rp2((HR(p))2 — (HNR(p))2>, with respect to
aZ, an appropriate number of times, evaluating it at Z = 0, and integrating over p. In this

way we obtain
Z3(< Ui > — < Tlyp >) ~ —0.254464(aZ)? + 0.054446(aZ)* 4+ 0.001883(aZ)8 + - - - .

or
< Il >

—— T~ 1-1.21768(aZ)? + 0.26054(aZ)* + 0.00901 (aZ)5 4 - - - .
<IIygr >

F. Average length and impetus

Noting that < p > has dimensions of inverse volume we define the average length R4 via
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Similarly, the average impetus Py is defined via

47

—Pi=<II>"".

3

As a consequence of the connection between the average entropy and the 2-Rényi entropy

HQ(T) the lengths and impeti related to these two information measures coincide. For the

nonrelativistic hydrogen atom we obtain

RNA 65 _ 1.81712

A 7 7
and 1
47\ 3
PYt=17 (1—7{) ~ 1.045387 .
Furthermore
RR
—RQAR ~ 1—0.46210(aZ)? — 0.14040(aZ)* — 0.07719(aZ)* + - - -,
and
PR
—PééR ~ 14 0.40589(Z)? 4 0.24265(aZ)* + 0.16806(aZ)® + - - - |
hence,

R
% ~1—0.0562(aZ2)® + - .
ALA

This expression is rather similar to the corresponding ratio for the Fisher length and impetus,

eq. 27

G. Complexity measures

The results presented above concerning the relativistic effects on the various information
measures for the H-like atoms allow the evaluation of the statistical measure of complexity
C, defined by Lépez-Ruiz, Mancini, Calbet (LMC) [42, 43]. The LMC measure C' is given
by

C=H-D, (34)
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where H denotes a measure of information and D represents the so called disequilibrium or
the distance from equilibrium (most probable state). The form of C' is designed such that it
vanishes for the two extreme probability distributions corresponding to perfect order (H = 0)
and maximum disorder (D = 0), respectively. It is only very recently |45, 46, |47, 48], that
the studies on the electronic structural complexity of neutral atoms using the non-relativistic
Hartree-Fock (HF') wave functions [49] for atoms with atomic number Z=1-54, have been
reported using a variety of information measures. A similar evaluation of a complexity mea-
sure for neutral atoms with Z=1-103 was recently carried out in terms of the Dirac-Fock
wavefunction, choosing the exponential of the Shannon position entropy as the measure of
information, H = exp(S,), and the average position density as the measure of disequilib-
rium, D =< p > [9]. While the measure of information exhibits a strong shell effect but
insignificant relativistic effect, the measure of disequilibrium was found to be a monotoni-
cally increasing function of Z exhibiting a strong relativistic effect. It is remarkable that the
ratio of the relativistic to the nonrelativistic measures of disequilibrium (average position
densities) obtained for neutral many-electron atoms is in almost quantitative agreement with
the corresponding ratio obtained in terms of the average position densities evaluated above
for the single electron ions. These ratios are presented in Fig. 4. This observation must be
a manifestation that the relativistic effect on the measure of disequilibrium is dominated by

the effect on the innermost orbital.

VII. SCALE INVARIANT ENTROPIES
A. Residual position and momentum entropies

The Kullback-Leibler relative/residual information measure of a given probability density
is defined with respect to a prior density and it determines the extra information contained
in the given density relative to the prior. Such a residual entropy for the relativistic density

over the nonrelativistic density as the prior can be defined in both the position and the
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momentum space. In position space this can be done analytically, yielding

SRINE _ /OOO 4772 pg(r) log ( pr(r) )d (35)

PNR(T)

2 1
= loe (F(% + 1)) o =1) (2@(27) v)
0.197467(aZ)* + 0.150105(Z)® + 0.115104(a2)® +

Q

The Taylor series for SENE was obtained by evaluating its first six derivatives with respect
to Z, using maple. The values of SENE gor 7 < 25 were calculated using the three-term
Taylor series, since evaluating the analytic expression involves cancellation errors. We note
that for Z = 25 the analytic expression and the three-term expansion practically coincide.

The extreme relativistic value is obtained from eq. (35) by evaluating its limit as v — 0.
It is found that S/V% = log(2) + 2C ~ 1.847579.

The residual momentum entropy So/~% = = [ 4mp*TIg(p) log (HN ((p ) dp was evalu-
ated numerically. Differentiating the integrand four times with respect to Z and inte-
grating numerically we obtained the leading term in the power series expansion Sf INE
0.572467(aZ)* +

R/NR
The value of 7T at Z = & was obtained using the extreme relativistic momentum

density, eq. (I?II])
Since SN and Sf N are pure (dimensionless) quantities, they do not measure position
or momentum widths or uncertainties. They do measure the (somewhat slow) onset of

relativistic effects upon increase of the nuclear charge.

B. Average Measures of relative distance

The average measure of relative distance |28, |50] of the position densities is the sum of

the two relative entropies

SRINR :/ Amr?pr(r) log( pr(r) )dr
0 P

and
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It can be written in the form

5= [ 4w (pn(r) = o) 1o ( pr(7) ) ar

PNR(T)

The measure of relative distance of the momentum densities is defined in an analogous

manner.
SFENE as evaluated above, cf. eq. (B3). SME can be evaluated in a similar way,
yielding
ry+1
SNE/R — Jog (%) + (1 —7)(3-20).
Hence,

S = (1—7) (3—20-2\11(27)—%) |

The Taylor series for S, can be obtained analytically. The first three terms are given by

(%2 - Z) (aZ)* + (g +¢(3) - E) (aZ)®

+ (14 + o + §c(3) — %) (aZ)® +

S,

Q

90 96 4
0.394934(aZ)" + 0.27452(aZ)® + 0.20103(aZ)® + - - -

Q

S, was evaluated numerically.
The residual (relativistic vs. nonrelativistic) position and momentum entropies, and the

average measures of the distances of the corresponding position and momentum distribu-
Sr

@) 18

tions, are presented in Table 1, all normalized via division by (aZ)*. We note that

a monotonic function of Z, but (QST”)AL is not.

VIII. CONCLUSIONS

The characterization of inherent quantum mechanical uncertainties has become a rich
field of study with direct relevance to emerging technologies. In the present article we
examine the application of widely used information measures to the ground state of the
relativistic hydrogen-like atoms, clearly bringing out the dependence on Z due to the rela-
tivistic effects. Further, we point out and illustrate the well-established but largely ignored

difficulties associated with the most common quantum mechanical formulation of the un-
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certainty principle, that arise as a consequence of the fact that the radial momentum is
not self-adjoint. Several information measures exhibit singularities at particular nuclear
charges, notably Z = % ~ 118.68 and Z = g ~ 132.68, whose significance remains to
be elucidated. In the coordinate representation all the information measures considered
allowed analytic evaluation of the integrals involved. This has not been the case for the cor-
responding momentum space quantities. What we find particularly puzzling in this context
is the fact that the closed analytic expression for the position-space expectation value of the
Laplacian agrees, as expected, with the numerically evaluated average over p?, in momentum
space, and still we failed to evaluate the latter analytically. These, and many other issues
such as uncertainty and information measures for excited states as well as for many-electron

atoms, suggest that the study of information measures for relativistic systems is a widely

open field.
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TABLE I: Residual entropies and average measures of relative distance.

g| sEAE L ST s, 5
Z)]T | )" | @2 | Taz)!
1]0.19748 0.39495 | 1.14237
2/0.19750/0.57129| 0.39499 | 1.13967
5/0.19767|0.56733| 0.39530 | 1.13122
10|0.19827|0.56329| 0.39640 | 1.11703
25/0.20259(0.55744 0.40430 | 1.08183
50(0.21973|0.57582| 0.43545 | 1.06601
75/0.25602|0.64370| 0.50071 | 1.12751
100/0.33489/0.81215| 0.63971 | 1.33467
1 ]1.84758]4.03749)3.0000005.485774

Q
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FIG. 1: Ratios between the relativistic and nonrelativistic Shannon and Fisher lengths (8s, Gr)
and impeti (ug, pr), and corresponding ratios for root mean square of position (3) and momentum
(1) as functions of Z .
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FIG. 2: Ratios between the relativistic and nonrelativistic Rényi lengths (Gr) and impeti (ug) as
functions of Z.

36



10
C N '
9 -e :
/
——7=1 .
_X"Z=10 I/ /X
—x—7=50 / /
E 8| = 2100 | / /
3 ~ /
(7]
3,
c
Q
€7
6
1 08 06 04 02 0 02 04 06 08 1
S

FIG. 3: Rényi sum vs s for the non-relativistic H atom and relativistic H-like atoms.
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FIG. 4: Ratio of relativistic to non-relativistic estimates of the linear entropy for neutral atoms
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