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Abstract

Position and momentum information measures are evaluated for the ground state of the rela-

tivistic hydrogen-like atoms. Consequences of the fact that the radial momentum operator is not

self-adjoint are explicitly studied, exhibiting fundamental shortcomings of the conventional uncer-

tainty measures in terms of the radial position and momentum variances. The Shannon and Rényi

entropies, the Fisher information measure, as well as several related information measures, are

considered as viable alternatives. Detailed results on the onset of relativistic effects for low nuclear

charges, and on the extreme relativistic limit, are presented. The relativistic position density de-

cays exponentially at large r, but is singular at the origin. Correspondingly, the momentum density

decays as an inverse power of p. Both features yield divergent Rényi entropies away from a finite

vicinity of the Shannon entropy. While the position space information measures can be evaluated

analytically for both the nonrelativistic and the relativistic hydrogen atom, this is not the case for

the relativistic momentum space. Some of the results allow interesting insight into the significance

of recently evaluated Dirac-Fock vs. Hartree-Fock complexity measures for many-electron neutral

atoms.
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I. INTRODUCTION

The celebrated Heisenberg uncertainty principle [1, 2] of quantum mechanics is specified

by means of the position and momentum variances, that are defined in terms of the expec-

tation values of the corresponding (hermitian) operators. Several authors have pointed out

that for bimodal distributions this formulation does not provide an adequate measure of

the uncertainty of the measurable involved. A variety of information measures have been

proposed and investigated in a fairly broad range of contexts. The most familiar of these

are due to Shannon [3] and Fisher [4]. They are being increasingly applied in studying the

electronic structure and properties of atoms and molecules, and play an important role in the

rapidly developing field of quantum information and its anticipated technological offspring.

Due to its fundamental importance in natural sciences, the hydrogen atom has been

extensively studied from the information theoretical view point. Consequently, the Shannon

entropies [5, 6, 7] and Fisher information [8] of the non-relativistic hydrogen-like atom have

been studied in considerable detail. We note, with some surprise, a glaring omission, the

relativistic hydrogen atom, formulated in terms of the Dirac equation, which is the subject

of the present study. Future studies of relativistic effects on the information measures in

many-electron atoms will certainly benefit from the presently derived results. Indeed, very

recent work on Dirac-Fock vs. Hartree-Fock complexity measures for neutral many-electron

atoms [9] allows certain comparisons to be made with results obtained in the present article,

that shed additional light on the significance of that study.

The Shannon information entropy Sr of the spatial electron density ρ(r) is defined as

Sr = −
∫

ρ(r) ln ρ(r) dr , (1)

and the corresponding momentum space entropy Sp is given by

Sp = −
∫

Π(p) ln Π(p) dp , (2)

where Π(p) denotes the momentum density. The densities ρ(r) and Π(p) are each normal-

ized to unity and all quantities are given in atomic units. These two densities are obtained

from the corresponding position and momentum space wavefunctions, that are the Fourier

transforms of one another. The Shannon entropy sum ST = Sr + Sp contains the net infor-
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mation and obeys the well known lower bound derived by Bialynicki-Birula and Mycielski

[10],

ST = Sr + Sp ≥ n (1 + ln π) , (3)

where n is the number of dimensions. The lower bound is attained by a Gaussian distribu-

tion. This entropic uncertainty-like relation represents a stronger version of the Heisenberg

uncertainty principle of quantum mechanics. The individual entropies Sr and Sp depend on

the units used to measure r and p respectively, but their sum ST does not, i.e., it is invariant

under uniform scaling of coordinates.

The Shannon entropies provide a global measure of information about the probability

distribution in the respective spaces. A more localized distribution yields a smaller value of

the corresponding information entropy. For applications of Shannon information entropy in

chemical physics we refer the reader to the published literature [5, 11].

In the context of the quantum theory of one-particle systems the Fisher position infor-

mation measure is defined as

Ir =

∫ |∇ρ(r)|2
ρ(r)

dr (4)

and the corresponding momentum space measure is given by

Ip =

∫ |∇Π(p)|2
Π(p)

dp. (5)

For a general definition of the Fisher information measure and a careful exposition of its

significance we refer to the definitive monograph by Rao [12].

The individual Fisher measures are bounded through the Cramer-Rao inequality [12,

13] according to Ir ≥
1

Vr
and Ip ≥

1

Vp
, where V ’s denote the corresponding spatial and

momentum variances, respectively. In position space the Fisher information measures the

sharpness of the probability density, and for a Gaussian distribution is exactly equal to

the inverse of the variance [14]. A sharp (smooth) and strongly localized (well spread-out)

probability density gives rise to a larger (smaller) value of the Fisher information in the

position space. With a differential probability density as its content, the Fisher measure

is better suited to study the localization characteristics of the probability distribution than

the Shannon information entropy [15, 16]. Unlike Sr + Sp, for which eq. 3 specifies a lower

bound, general bounds are as yet unknown for the Fisher product IrIp. Since localization

4



(i.e., low uncertainty) means high values of the Fisher information measures, the counterpart

of the Heisenberg or Shannon bound should be an upper bound on the product of position

and momentum Fisher information measures. For a single particle under the influence of

a central potential Dehesa et al. [17] have very recently reported a lower bound on the

Heisenberg product [18, 19, 20, 21] which can be directly related to the Fisher information.

For the application of the Fisher information measure as an underlying guideline for the

formulation of fundamental physical principles we refer to the recent book by Frieden [14],

and for applications to the electronic structure of atoms, to the pioneering work of Dehesa

et al. [22, 23, 24, 25].

A widely used generalization of the Shannon entropy is the Rényi entropy. The Rényi

position entropy (that, when a more precise designation is required, we shall address as the

a-Rényi position entropy) is defined as [26]

H(r)
a =

1

1 − a
log

(
∫ ∞

0

[ρ(r)]a4πr2dr

)

. (6)

The symmetrized Rényi position entropy is

H(r)
s = (H(r)

a +H
(r)
b )/2 (7)

where

a =
1

1 − s
, b =

1

1 + s
, −1 ≤ s ≤ 1, i.e.,

1

2
≤ a, b ≤ ∞,

1

a
+

1

b
= 2.

The Rényi momentum entropies are similarly defined in terms of the momentum density

Π(p). For a = 1 one obtains, using l’Hôpital’s rule,

lim
a→1

H(r)
a = −

∫ ∞

0

ρ(r) log[ρ(r)]4πr2dr = Sr ,

where Sr is the Shannon position entropy [3]. For an n dimensional system, the sum of

the a-Rényi position entropy and the b-Rényi momentum entropy, for a and b satisfying

1
a
+ 1

b
= 2, was recently shown by Bialynicki-Birula [26] to satisfy the inequality (uncertainty-

like relation)

H(x)
a +H

(p)
b ≥ n

[

1

2

(

log(a)

a− 1
+

log(b)

b− 1

)

+ log(π)

]

. (8)

5



The properties of the Shannon entropies and several other information measures under

coordinate scaling have been examined in ref. [27]. It was pointed out that upon scaling the

coordinates via r̃ = ζr, normalization of the density requires that

ρ̃(r) =
1

ζ3
ρ

(

r

ζ

)

.

It follows that

H̃(r)
a =

1

1 − a
log

(∫ ∞

0

[ρ̃(r)]a4πr2dr

)

=
1

1 − a
log

(

ζ3(1−a)

∫ ∞

0

[ρ(x)]a4πx2dx

)

= 3 log(ζ) +H(r)
a .

The scaling of the coordinates introduced above implies scaling of the momenta according

to p̃ = p
ζ
, so

H̃
(p)
a′ = −3 log(ζ) +H

(p)
a′ .

Hence,

H̃(r)
a + H̃

(p)
a′ = H(r)

a +H
(p)
a′ .

Note that a and a′ are entirely independent of one another.

For a system whose hamiltonian is of the form H = T̂ + λV (r) , where T̂ = −1
2
∇2, if

the potential is homogeneous, i.e., V (ζr) = ζkV (r), scaling of the coordinates via r̃ = ζr is

equivalent to scaling the coupling constant via λ̃ = ζk+2λ [27]. Hence, for such potentials

the sum of an a-Rényi position entropy and an a′-Rényi momentum entropy is independent

of the coupling constant λ.

Since the position density has dimensions of inverse volume and the momentum density

has dimensions of inverse momentum cubed, the Shannon, Fisher and Rényi entropies can

be converted into quantities that have dimensions of length or momentum. This property is

used to facilitate comparison among the different information measures. We refer to these

transformed quantities as “length” and “impetus”, respectively. This practice allows a clear

distinction between variance-based uncertainty measures and information based measures

that have units of position or momentum although they do not involve expectation values of

the corresponding quantum-mechanical operators. “Impetus” is a pre-Newtonian synonym

of momentum.
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A different class of information measures, involving ratios between relativistic and nonrel-

ativistic densities [28, 29], is considered as well. Since these information measures are pure

numbers they cannot be transformed into quantities with units of length or momentum.

However, they allow the onset of relativistic effects upon increase of the nuclear charge to

be followed very transparently.

A third class of information measures is represented by the Tsallis entropy [30],

ǫa =
1

a− 1

(

1 − 4π

∫ ∞

0

(ρ(r))ar2dr

)

,

that has been invoked for non-extensive systems, and which is not homogeneous under

coordinate scaling. The Tsallis entropy is closely related to the Rényi entropy via

ǫa =
1

a− 1

(

1 − exp
(

(1 − a)H(r)
a

))

.

For a→ 1 these two entropies coincide with one another as well as with the Shannon entropy.

Upon attempting to evaluate the various uncertainty and information measures for the

relativistic hydrogen atom we encountered three somewhat surprising obstacles. The first

has to do with the fact that the radial momentum does not have a proper (self-adjoint)

quantum-mechanical counterpart. This fact has been known for a while, and its conse-

quences in the present context are explained below. Another surprise had to do with the

fact that the momentum-space solutions of the Dirac equations are still subject to contro-

versy [31, 32]. Finally, we find it intriguing that for the relativistic hydrogen atom the

position space information measures could be evaluated analytically, but for the momentum

space measures we had to apply numerical integration. The first difficulty suggests that the

various uncertainty-like principles that do not involve the variance of position or momentum

have even stronger merits for multi-dimensional systems than those extensively pointed out

in previous studies on one dimensional systems. We addressed the second difficulty by ad-

hering to the version of the momentum wavefunction that in our judgement was the most

natural and straightforward [33] without bothering to explore its equivalence (or lack of it)

with other formulations.

This article is structured as follows: In sections 2 and 3 we consider the radial position and

momentum variances for the nonrelativistic and the relativistic hydrogen atom, respectively,
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presenting very explicitly the consequences of the non self-adjointness of the commonly

invoked radial momentum operator. The Shannon entropies are investigated in section 4,

and the Fisher information measures in section 5. In section 6 we study the Rényi entropies,

also considering the average density, that is essentially a special case of these. This allows a

brief discussion of complexity measures, with a rather surprising comparison with a recent

Dirac-Fock study of neutral many-electron atoms [9]. Scale invariant entropies are discussed

in section 8, and some concluding remarks are made in section 9.

II. UNCERTAINTY MEASURES FOR THE NONRELATIVISTIC

HYDROGEN-LIKE ATOMS

The most familiar measures of uncertainty are the position and momentum variances,

which for a one dimensional system defined over the whole real axis are given by

(δx) =
√
< x2 > − < x >2 and (δp) =

√

< p2 > − < p >2, where

< xk > =

∫ ∞

−∞
xk|ψ(x)|2dx =

∫ ∞

−∞
φ∗(p)

(

i~
d

dp

)k

φ(p)dp (9)

< pk > =

∫ ∞

−∞
pk|φ|2dp =

∫ ∞

−∞
ψ∗(x)

(

−i~ d

dx

)k

ψ(x)dp .

Here, ψ(x) and φ(p) are the position and momentum wavefunctions, which are the Fourier

transforms of one another. Eq. 9 emphasizes the correspondence between position and

momentum space expectation values of the (hermitian) position and momentum operators, a

correspondence that, as we shall explicitly demonstrate below, fails for the (non self-adjoint)

radial momentum operator.

A. Position and momentum variances for spherically symmetric three-dimensional

systems

Qiang and Dong [34], following a time-honored tradition, suggest that the radial momen-

tum operator in the coordinate representation, using atomic units in which ~ = 1, is

pr = −i
(

∂

∂r
+

1

r

)

.
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They justify this expression by noting that

p2
r = −

(

∂2

∂r2
+

2

r

∂

∂r

)

is (up to a multiplicative constant) the radial part of the Laplacian (i.e., the kinetic energy

operator).

Note, however, that the n dimensional generalization

pr = −i
(

∂

∂r
+
n− 1

2r

)

satisfies

−p2
r =

∂2

∂r2
+
n− 1

r

∂

∂r
+

(n− 1)(n− 3)

4r2
,

which, for n = 2 and n > 3 does not agree with the radial part of the Laplacian,

Lr =
∂2

∂r2
+
n− 1

r

∂

∂r
.

Straightforward integration by parts yields

< ψ|pr|ψ >= −iSn

∫ ∞

0

ψ(r)

[(

∂

∂r
+
n− 1

2r

)

ψ(r)

]

rn−1dr = 0 (10)

where Sn = 2π
n
2

Γ(n
2 )

is the surface area of the n-dimensional unit sphere.

Paz [35] has recently rigorously shown that pr is not self-adjoint, and has no self-adjoint

extension (cf., also, [36, 37, 38], for earlier discussions of this issue). This fact, which is

more closely considered below, suggests that using the variance of the radial momentum

as an uncertainty measure for (spherically symmetric) three-dimensional systems may be

questionable.

B. Position space wavefunction of the nonrelativistic hydrogen atom

The ground state nonrelativistic hydrogenic wavefunction ψ0,0,0(r) =
(

Z3

π

)
1
2

exp(−Zr)
yields the density

ρNR(r) =
Z3

π
exp(−2Zr) . (11)

9



The expectation values < r >= 3
2Z

and < r2 >= 3
Z2 yield

(δr) =
√
< r2 > − < r >2 =

√
3

2Z
≈ 0.8660

Z
.

Similarly, < pr >= 0 and < p2
r >= Z2. The latter value is equal to < −∇2 >, because, for

a spherically symmetric wavefunction, the angular part of the Laplacian makes a vanishing

contribution.

Using these position space expectation values to evaluate (δpr) = Z, we obtain the

uncertainty product (δr)(δpr) ≈ 0.8660.

C. Momentum space wavefunction of the nonrelativistic hydrogen atom

The momentum space wavefunction for the ground state of the nonrelativistic hydrogen

atom [39]

χ0,0,0(p) =
1

π

(

2

Z

)
3
2
[

( p

Z

)2

+ 1

]−2

, (12)

yields the momentum density

ΠNR(p) =
8

π2Z3

[

( p

Z

)2

+ 1

]−4

, (13)

in terms of which we obtain

< p >=

∫ ∞

0

pΠNR(p)4πp2dp =
8Z

3π
≈ 0.848826Z ,

and

< p2 >=

∫ ∞

0

p2ΠNR(p)4πp2dp = Z2 .

The latter value agrees with the position space expectation value of −∇2, but the former

does not agree with the position space result, eq. 10.

Using these momentum space expectation values we obtain

(δp) =
Z

3π

√
9π2 − 64 ≈ 0.5287Z .
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Along with the value of δr obtained above we get

(δr)(δp) ≈ 0.4578 ,

which is less than 1
2
. This is probably a manifestation of the questionable status of the radial

momentum, pointed out above.

Messiah [40] shows that, in one dimension, < x2 >< p2
x > ≥ 1

4
. For a spherically

symmetric system < r2 >= 3 < x2 > and < p2 >= 3 < p2
x >. Hence, < r2 >< p2 > ≥ 9

4
.

The results quoted above imply that for the nonrelativistic hydrogen atom< r2 >< p2 >= 3,

which is larger than the lower bound derived by Messiah.

We conclude this section by emphasizing that the operators r2 and p2 can be expressed

(in Cartesian coordinates) in terms of manifestly self-adjoint operators. This is not the case

for r and p. Further consequences of this distinction are presented in the following section.

III. UNCERTAINTY MEASURES FOR THE RELATIVISTIC HYDROGEN-LIKE

ATOMS

A. Relativistic position uncertainty

For the ground state of the Dirac hydrogenic atom the (spin up) wavefunction is of the

form

ΨD = Nrγ−1 exp(−Zr)















G

0

igY0

igY1















(14)

where G =
√

1 + γ, g =
√

1 − γ, Y0 = cos(θ) and Y1 = sin(θ) exp(iφ). The normalization

factor is given by N = (2Z)γ+ 1
2√

8πΓ(2γ+1)
where γ = [1 − (Zα)2]

1
2 . Here α ≈ 1

137.03600
is the fine-

structure constant. In the limit Z → 0 or c→ ∞ [remembering that in atomic units α = 1/c]

it follows that γ → 1 and we obtain the nonrelativistic wavefunction
√

Z3

π
exp(−Zr).

The ground state position wavefunction yields the position density

ρR(r) =
(2Z)2γ+1

4πΓ(2γ + 1)
r2(γ−1) exp(−2Zr) . (15)
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In the extreme relativistic limit Z → 1
α

the position density obtains the form [41]

ρER(r) =
1

2πα
r−2 exp

(

−2r

α

)

.

Using the relativistic wavefunction ΨD, eq. (14), we obtain

< r >R=
2γ + 1

2Z

and

< r2 >R=
(γ + 1)(2γ + 1)

2Z2
≈< r2 >NR − 1

Z2

(

7

4
(αZ)2 +

3

16
(αZ)4 + · · ·

)

.

hence,

(δr) =

√
2γ + 1

2Z
.

For future reference we define the ratio β ≡
√

<r2>R

<r2>NR
, which is plotted in Fig. 1. Evaluating

< pr >R= 0 and

< p2
r >R=

Z2

2γ − 1
≈< p2

r >NR +Z2

(

(αZ)2 +
5

4
(αZ)4 + · · ·

)

(16)

it follows that (δpr) = Z√
2γ−1

. Hence,

(δr)(δpr) =
1

2

√

2γ + 1

2γ − 1
.

A singularity is observed for 2γ − 1 = 0, that yields Z =
√

3
2α

≈ 118.68. We do not know

what significance to assign to this nuclear charge.

Since the small components of the Dirac wavefunction for the hydrogen atom depend on

the angular coordinates, the expectation value of the Laplacian is not the same as that of

Lr, in spite of the fact that the ground state density is spherically symmetric. The angular
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part of the Laplacian yields

< ΨD|
1

r2
L̂2|ΨD >=

=

∫ ∞

0

N2r2(γ−1) exp(−2Zr)dr

〈

(

G, 0, −igY0, −igY1

)∣

∣L̂2
∣

∣















G

0

igY0

igY1















〉

=

= 4Z2 1 − γ

2γ(2γ − 1)
.

Adding the value of < ΨD|p2
r|ΨD >, eq. 16, we obtain

< ΨD| − ∇2|ΨD >=
2 − γ

γ(2γ − 1)
Z2 . (17)

The singularity at Z ≈ 118.68 remains

B. Relativistic momentum uncertainty

We use the expression for the relativistic ground state momentum wavefunction due to

Sheth [33]. Denoting the radial momentum variable by p and defining

x = (γ + 1) arctan(
p

Z
) , (18)

the momentum density can be written in the form

ΠR(p) =
Γ(γ + 1)

2Z3π
3
2 Γ(γ + 1

2
)

F (p)

( p
Z
)2

(

( p
Z
)2 + 1

)γ+1

where

F (p) = (γ + 1) sin2(x) +
1 − γ

γ2
R(p)2 (19)

and R(p) = (γ + 1) cos(x) − Z
p

sin(x). Γ is the familiar Γ-function.

In the nonrelativistic limit γ → 1 this expression reduces to ΠNR(p), cf. eq. (13).

In the extreme relativistic limit, Z → 1
α
, the momentum density is obtained by using

13



L’Hôpital’s rule to evaluate limγ→0
R
γ

= ∂R
∂γ

∣

∣

∣

γ=0
. It is found to be of the form

ΠER(p) =
α3

2π2

1

[αp(1 + (αp)2)]2

[

(αp)2 +

(

1 − (αp+
1

αp
) arctan(αp)

)2
]

. (20)

The long range decay of the momentum density can be established by noting that for

p→ ∞
1

(

p
Z

)2
(

(

p
Z

)2
+ 1

)γ+1 ≈
(

Z

p

)(2γ+4)

.

Furthermore,

x ≈ (γ + 1)
π

2
,

so that

F ≈ F∞ ≡ (γ + 1)

(

1 +
1 − 2γ2

γ2
cos2

(

(γ + 1)
π

2

)

)

.

To evaluate < p2 > we integrate over p numerically between p = 0 and p = pm, where pm is

chosen large enough for the density to be close enough to its asymptotic form, and add an

integral over the asymptotic momentum density between p = pm and p = ∞. Hence,

< p2 >R= 4π

∫ pm

0

ΠR(p)p4dp+
2Γ(γ + 1)√
πΓ(γ + 1

2
)
Z2γ+1F∞

p
−(2γ−1)
m

2γ − 1
.

The ratio µ ≡
√

<p2>R

<p2>NR
is plotted in Fig. 1. The expectation value < p2 >R was evaluated

for the values of Z considered by Qiang and Dong [34]. The results agree with those evaluated

analytically by using the position space expectation value of the Laplacian, eq. (17), for

Z = 1, 11, 37, to ten decimal places, and for Z = 87 to eight decimal places. The values of
√

< p2
r >, evaluated in terms of the ground-state wavefunction in the position representation,

using Eq. (16) , agree with the values of (∆pr)R in [34]. It would be nice to show analytically

that < p2 > is indeed equal to the right hand side of Eq. (17).

The results presented above clearly expose the difference between the self-adjoint Lapla-

cian and the non-self adjoint radial momentum.
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IV. SHANNON ENTROPIES FOR THE HYDROGEN ATOM

A. Nonrelativistic position and momentum entropies

The nonrelativistic position entropy SNR
r = −

∫ ∞
0

4πr2ρNR(r) log
(

ρNR(r)
)

dr can be eas-

ily evaluated for the hydrogenic nonrelativistic ground state position density, yielding

SNR
r = 3 + log(π) − 3 log(Z) ≈ 4.1447299− 3 log(Z) . (21)

Similarly, the nonrelativistic momentum entropy SNR
p =

∫ ∞
0

4πp2ΠNR(p) log
(

ΠNR(p)
)

dp

can be evaluated for the hydrogenic nonrelativistic ground state momentum density, yielding

SNR
p = −10

3
+ 5 log(2) + 2 log(π) + 3 log(Z) ≈ 2.4218623 + 3 log(Z) . (22)

It follows that

SNR
r + SNR

p = −1

3
+ 5 log(2) + 3 log(π) ≈ 6.5665922

> 3(1 + log(π)) ≈ 6.4341897 .

B. Shannon length and impetus

Since exp(Sr) has dimensions of volume, we define the Shannon length RS via

4π

3
R3

S = exp(Sr) .

We similarly define the Shannon impetus PS via

4π

3
P 3

S = exp(Sp) .

For the nonrelativistic hydrogen atom we obtain

RNR
S =

(

3

4

)
1
3 e

Z
≈ 2.46972

Z

15



and

PNR
S = 2(3π)

1
3 exp(−10

9
)Z ≈ 1.39071Z ,

hence,

RNR
S PNR

S ≈ 3.43466

From the entropic uncertainty-like relation

Sr + Sp ≥ 3(1 + ln(π))

it follows that

RSPS ≥
(

3

4π

)
2
3

πe ≈ 3.28639 .

This lower bound is, indeed, lower than the product of the hydrogenic Shannon length and

impetus, but fairly close to it.

C. Relativistic position entropy

The position entropy can be evaluated analytically in terms of the relativistic ground

state position density, eq. (15), to yield

SR
r = log

(

πΓ(2γ + 1)

2Z3

)

+ (2γ + 1) − 2(γ − 1)Ψ(2γ + 1) (23)

where Ψ(z) is the Digamma function, defined as Ψ(z) = d log(Γ(z))
dz

.

In the nonrelativistic limit γ = 1 so Γ(2γ + 1) = Γ(3) = 2 and SR
r reduces to SNR

r , eq.

21.

The relativistic correction is

SR
r −SNR

r = 2(γ−1)(1−Ψ(2γ+1))+log

(

Γ(2γ + 1)

2

)

≈ −(αZ)2 +

(

3

8
− π2

12

)

(αZ)4 + · · · .
(24)

In the extreme relativistic limit

Sr = log

(

πα3

2

)

− 2C + 1 ≈ −14.463580 (25)
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where C = 0.5772156649.. is Euler’s constant (more commonly denoted γ, a notation we

avoid for an obvious reason).

D. Relativistic momentum entropy

The relativistic momentum entropy was evaluated by means of numerical integration. To

examine the relativistic corrections to the position and momentum entropies more closely,

we consider σr ≡ SR
r −SNR

r

(αZ)2
and σp ≡ SR

p −SNR
p

(αZ)2
. Eq. 24 yields σr ≈ −1 − 0.4475(αZ)2 + · · ·

and a numerical fit yields σp ≈ 1.80 + 0.65(αZ)2 + · · · , so σr + σp ≈ 0.80 + 0.2(αZ)2 + · · · .

E. Relativistic Shannon length and impetus

For the relativistic Shannon length we obtain

RR
S =

1

2Z

(

3Γ(2γ + 1)
)

1
3
exp

[

1 +
2

3
(γ − 1)

(

1 − Ψ(2γ + 1)
)

]

.

Hence,

βS ≡ RR
S

RNR
S

=

(

Γ(2γ + 1)

2

)
1
3

exp

[

2

3
(γ − 1)

(

1 − Ψ(2γ + 1)
)

]

≈ 1 − 1

3
(αZ)2 + · · · .

The ratio of the relativistic and nonrelativistic Shannon impeti can be obtained in terms of

the numerically determined σp, as follows,

µS ≡ PR
S

PNR
S

= exp

[

(αZ)2

3
σp

]

≈ 1 + 0.60(αZ)2 + · · · .

Hence,

βSµS ≈ 1 + 0.27(αZ)2 + · · · . (26)

In Fig. 1 we present the ratios of the relativistic to nonrelativistic Shannon lengths and

impeti, along with the corresponding ratios of the root mean square radius and momentum,

and that of the Fisher lengths and impeti (to be discussed below). We note that for large Z

the relativistic effect on the momentum uncertainty measures is larger than on their position

counterparts. This is most pronounced for the root mean square position and momentum,
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whereas the relativistic effects on the Fisher measures are almost symmetrical. This is

most likely due to the fact that the Fisher measures are sensitive to the local oscillations

of the distribution rather than to its long range behavior, where the relativistic momentum

distribution varies the most.

V. FISHER INFORMATION MEASURES FOR THE HYDROGEN ATOM

The Fisher position information measure, Ir =
∫ ∞
0

4πr2 1
ρ(r)

(

dρ
dr

)2
dr can be easily evalu-

ated for the ground state of the relativistic hydrogen-like atom, yielding

IR
r =

4Z2

2γ − 1
= 4 < p2

r >≈ INR
r

(

1 + (αZ)2 +
5

4
(αZ)4 +

13

8
(αZ)6 + · · ·

)

,

where INR
r = 4Z2. Since IR

r has a singularity when 2γ − 1 = 0, i. e., at Z ≈ 118.68, we do

not examine the extreme relativistic limit.

The Fisher momentum information measure Ip =
∫ ∞
0

4πp2 1
Π(p)

(

dΠ
dp

)2

dp for the nonrela-

tivistic momentum distribution can be evaluated analytically, yielding INR
p = 12

Z2 . For the

relativistic momentum density the Fisher information was evaluated numerically.

A. Fisher length and impetus

The Fisher position information measure Ir has dimensions of inverse area. We define

the Fisher length as RF = I
− 1

2
r . Similarly, we define the Fisher impetus PF = I

− 1
2

p . For the

nonrelativistic hydrogen atom we obtain RNR
F = 1

2Z
and PNR

F = Z√
12

. The ratio between the

relativistic and the nonrelativistic Fisher lengths is

βF ≡ RR
F

RNR
F

= (2γ − 1)
1
2 ≈ 1 − 1

2
(αZ)2 − 1

4
(αZ)4 + · · · ,

The corresponding ratio of Fisher impeti is evaluated by fitting the numerically evaluated

ratios to obtain

µF ≡ PR
F

PNR
F

≈ 1 + 0.4166(αZ)2 + 0.23(αZ)4 + · · · ,

hence,

βFµF ≈ 1 − 0.0834(αZ)2 + · · · . (27)
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We note that the leading relativistic term is negative, unlike the corresponding term for the

product of Shannon length and impetus, eq. 26.

The ratios of the relativistic to nonrelativistic Fisher lengths and impeti are presented in

Fig. 1.

VI. RÉNYI ENTROPIES FOR THE HYDROGEN ATOM

A. Rényi position entropies

The Rényi position entropy is defined in eq. 6. The hydrogenic nonrelativistic ground

state position density yields

H(r,NR)
a = log

( π

Z3

)

+ 3
log(a)

a− 1
. (28)

For a → 1 this expression reduces to H
(r,NR)
1 = log

(

π
Z3

)

+ 3, which is the well-known

hydrogenic Shannon position entropy. Substituting in eq. 7 we obtain

H(r,NR)
s = log

( π

Z3

)

+
3

2s
log

(

(1 + s)1+s

(1 − s)1−s

)

.

The hydrogenic relativistic ground state position density yields

H(r,R)
a = log

(

πΓ(2γ + 1)

2Z3

)

+ 2(γ − 1) log(a) (29)

+
1

1 − a



log





Γ
(

2(γ − 1)a+ 3
)

Γ(2γ + 1)



 − (2γ + 1) log(a)



 .

This expression is finite when the argument of the Γ-function satisfies 2(γ − 1)a + 3 > 0.

This condition can easily be traced back to the singularity of the relativistic density at the

origin, cf. eq. 15. Since 0 ≤ γ ≤ 1, this condition holds for all Z when a ≤ 3
2
. For a > 3

2

divergence will take place when Z ≥
√

3(4a−3)

2aα
. For γ = 1 eq. 29 reduces to eq. 28. In the

limit a → 1 we obtain the relativistic Shannon entropy, eq. 23. For γ → 0 this expression

yields SER
r .
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The relativistic correction ∆H
(r)
a = H

(r,R)
a −H

(r,NR)
a can be expanded in the form

∆H(r)
a = log

(

Γ(2γ + 1)

2

)

+ 2(γ − 1)
a log(a)

a− 1
− 1

a− 1
log

(

Γ(3 + 2α(γ − 1))

Γ(2γ + 1)

)

= −a log(a)

a− 1

(

(αZ)2 + (αZ)4/4 + · · ·
)

+ a

(

5

8
− π2

12

)

(αZ)4 + · · ·

Using this expansion we obtain

∆H(r)
s = − 1

2s
log

(

1 + s

1 − s

)

(

(αZ)2 + (αZ)4/4 + · · ·
)

+
1

1 − s2

(

5

8
− π2

12

)

(αZ)4 + · · ·

In the extreme relativistic limit

H(r,ER)
a = log

(

πα3

2

)

+
1

1 − a
log

(

Γ(3 − 2a)

a3−2a

)

. (30)

Eq. 30 can also be obtained from eq. 29, by taking the limit γ → 0. For a → 1 this

expression yields eq. 25.

The results presented above imply the commutativity of the diagram

ρNR(r) =⇒ H
(r,NR)
a −→ SNR

r

↑ ↑ ↑
ρR(r) =⇒ H

(r,R)
a −→ SR

r

↓ ↓ ↓
ρER(r) =⇒ H

(r,ER)
a −→ SER

r

where

↑ stands for lim
γ→1

↓ stands for lim
γ→0

−→ stands for lim
a→1

and

X(r) =⇒ Y stands for Y =
1

1 − a

∫ ∞

0

4πr2[X(r)]adr ,

i.e., the fact that whenever more than one path (respecting the directions of the various
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arrows) is available between any two nodes, the results along the different paths are identical.

B. Rényi length

Noting that exp(H
(r)
a ) has dimensions of volume we define the Rényi length Ra via the

relation
4π

3
R3

a = exp(H(r)
a ) .

It follows that

RNR
a =

(

3

4

)
1
3 1

Z
a

1
a−1 .

and

lim
a→1

RNR
α =

(

3

4

)
1
3 e

Z
= RNR

S .

Similarly,

RR
a =

(

3Γ(2γ + 1)

8

) 1
3 1

Z
a−

2a(γ−1)+3
3(1−a)

(

Γ(2a(γ − 1) + 3)

Γ(2γ + 1)

) 1
3(1−a)

,

yielding RNR
a in the limit γ → 1.

C. Rényi momentum entropies

The hydrogenic nonrelativistic ground state Rényi momentum entropy is

H
(p,NR)
b = log

(

π2Z3

8

)

+
1

1 − b
log (I(b)) , (31)

where,

I(b) =
32

π

∫ ∞

0

(y2 + 1)−4by2dy =
8√
π

Γ
(

4b− 3
2

)

Γ(4b)
. (32)

The dependence of H
(r,NR)
a , eq. 28, and H

(p,NR)
b , eq. 31, on the nuclear charge Z is such

that the sum, for any choice of a and b, is independent of Z, as demonstrated above for

arbitrary homogeneous potentials.

Noting that I(1) = 1 we obtain, for b → 1, the nonrelativistic Shannon momentum

entropy, eq. 22.

The nonrelativistic momentum density behaves, at large p, as ΠNR(p) ∼ 1
p8 , so that the

integral in H
(p,NR)
b diverges unless 8b− 2 > 1, or b > 3

8
. Indeed, for b = 3

8
the numerator of
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eq. 32 vanishes. Note, however, that this value of b is below the lower bound b > 1
2

allowing

the definition of the symmetrized Rényi entropy, eq. 7.

The extreme relativistic momentum density, eq. 20, behaves, for p→ ∞, like

ΠER(p) ∼ 1

p4
,

so that the integral in the expression for H
(p,ER)
b behaves like 1

p4b−2 . Hence, the integral

diverges unless 4b− 2 > 1 or b > 3
4
.

The behavior of the relativistic momentum density is more subtle. For p→ ∞ the variable

x, defined in eq. 18, satisfies x → (γ + 1)π
2
. As long as γ < 1 one finds that F (p), defined

by eq. 19, becomes a (γ dependent) constant, so that for large p the relativistic momentum

density decays as ΠR(p) ∼ 1
p2γ+4 . It follows that the integrand in the expression for H

(p,R)
b

converges provided that (2γ + 4)b − 2 > 1 or b > 3
2γ+4

. For γ = 0 this expression yields

b > 3
4
, in agreement with the result obtained above for the extreme relativistic momentum

density, but for γ = 1 this expression yields b > 1
2
, which is larger than the bound b > 3

8

obtained above for the nonrelativistic momentum density. This is a consequence of the fact

that by taking the limit γ → 1 before the limit p → ∞ one obtains F = 8 p2

(1+p2)2
, that for

large p yields F ≈ 8
p2 rather than the constant obtained when the limits over γ and p are

taken in the opposite order. Since 0 ≤ γ ≤ 1, it follows that for b > 3
4

the Rényi entropy

converges for all Z, for b < 1
2

it diverges for all Z, and for 1
2
< b < 3

4
it converges for

Z < 3
2α

√

(2 − 1
b
)(1

b
− 2

3
. Substituting b = 1

2− 1
a

we obtain Z <

√
3(4a−3)

2aα
. Comparing with

the results obtained above for H
(r,R)
a we conclude that H

(r,R)
a and H

(p,R)
b converge over the

same range of Z when a and b are related via 1
a

+ 1
b

= 2.

The relativistic Rényi momentum entropies can only be obtained numerically. The main

point to note is that the various sums of Rényi position and momentum entropies exhibit a

dependence on Z, unlike the nonrelativistic case. In Fig. 3 we show the sum of the Rényi

position and momentum entropies, H
(r)
a + H

(p)
b , where a = 1

1−s
and b = 1

1+s
, vs. s. The

lowest curve corresponds to the lower bound presented in eq. 8, and the curve just above

it is the nonrelativistic entropy sum. The relativistic entropy sums are all higher than the

nonrelativistic one, exhibiting a rapid increase for higher s values. This behavior anticipates

the approaching singularity of the relativistic Rényi momentum entropy for an appropriate

value of s > 1
3
, that decreases with increasing Z, as clearly displayed in Fig. 3. Thus, for
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Z = 100 the Rényi momentum entropy becomes singular for s = 2γ+1
3

≈ 0.789.

D. Rényi impetus

The relation
4π

3
P 3

b = exp(H
(p)
b )

defines the Rényi impetus Pa. It follows that

PNR
b =

(

3π

4

)
1
3 Z

2

(

8√
π

Γ(4b− 3
2
)

Γ(4b)

)

1
3(1−b)

.

In the limit b→ 1 this expression yields the nonrelativistic Shannon impetus.

The relativistic Rényi impeti can be obtained from the numerically evaluated Rényi

momentum entropies.

From the uncertainty-like relation for the Rényi entropies, eq. 8, it follows that the

length-impetus product satisfies

RaPb ≥
(

9π

16

)
1
3

a
1

2(a−1) b
1

2(b−1) . (33)

where 1
a

+ 1
b

= 2.

The ratios of the relativistic to nonrelativistic Rényi lengths (βR) and impeti (µR) are

presented in Fig. 2 for conjugate pairs (a, b) =
{

(5
8
, 5

2
), (3

4
, 3

2
), (7

8
, 7

6
), (7

6
, 7

8
), (3

2
, 3

4
), (5

2
, 5

8
)
}

.

Like the Shannon measures presented in Fig. 1, the Rényi impeti show a more pronounced

relativistic effect than the corresponding lengths. The relativistic effect on the Rényi im-

peti increases with increasing b; the relativistic effect on the corresponding lengths (that

correspond to decreasing a, satisfying 1
a

+ 1
b

= 2) also increases, but more moderately.

E. Average position and momentum densities

The average position density is defined as

< ρ >=

∫ ∞

0

4πr2
(

ρ(r)
)2

dr .
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While closely related to the 2-Rényi entropy, i.e., < ρ >= exp
(

−H(r)
2

)

, the average position

density merits special attention since it has recently been invoked as a factor in a proposed

measure of complexity [42, 43]. The average density is also known as the Onicescu informa-

tion measure [44], and is closely related to the linear entropy ǫr = 1− < ρ >, which is the

q = 2 case of the Tsallis entropy [30].

For the hydrogen atom

< ρNR >=
Z3

8π
,

and

< ρR >=
Z3Γ(4γ − 1)

π24γ−2(Γ(2γ + 1))2
.

The relativistic expression becomes singular when 4γ − 1 = 0, i.e. Z =
√

15
4α

≈ 132.68. The

onset of relativistic effects is given by <ρR>−<ρNR>
Z3 ≈ 0.055159(αZ)2 + 0.067737(αZ)4 +

0.079452(αZ)6 + · · · .
The momentum density expectation value < Π >=

∫ ∞
0

4πp2
(

Π(p)
)2

dp for the nonrel-

ativistic density was evaluated analytically, yielding < ΠNR >= 33
16π2Z3 ≈ 0.208975

Z3 . The

relativistic counterpart, < ΠR >, can only be evaluated numerically.

The leading terms in the Taylor series expansion of Z3(< ΠR > − < ΠNR >) were

obtained by differentiating the integrand, Z34πp2
(

(ΠR(p))2 − (ΠNR(p))2
)

, with respect to

αZ, an appropriate number of times, evaluating it at Z = 0, and integrating over p. In this

way we obtain

Z3(< ΠR > − < ΠNR >) ≈ −0.254464(αZ)2 + 0.054446(αZ)4 + 0.001883(αZ)6 + · · · .

or
< ΠR >

< ΠNR >
≈ 1 − 1.21768(αZ)2 + 0.26054(αZ)4 + 0.00901(αZ)6 + · · · .

F. Average length and impetus

Noting that < ρ > has dimensions of inverse volume we define the average length RA via

4π

3
R3

A =< ρ >−1 .
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Similarly, the average impetus PA is defined via

4π

3
P 3

A =< Π >−1 .

As a consequence of the connection between the average entropy and the 2-Rényi entropy

H
(r)
2 the lengths and impeti related to these two information measures coincide. For the

nonrelativistic hydrogen atom we obtain

RNR
A =

6
1
3

Z
≈ 1.81712

Z

and

PNR
A = Z

(

4π

11

)
1
3

≈ 1.04538Z .

Furthermore

RR
A

RNR
A

≈ 1 − 0.46210(αZ)2 − 0.14040(αZ)4 − 0.07719(αZ)6 + · · · ,

and
PR

A

PNR
A

≈ 1 + 0.40589(αZ)2 + 0.24265(αZ)4 + 0.16806(αZ)6 + · · · ,

hence,
(RAPA)R

(RAPA)NR
≈ 1 − 0.0562(αZ)2 + · · · .

This expression is rather similar to the corresponding ratio for the Fisher length and impetus,

eq. 27.

G. Complexity measures

The results presented above concerning the relativistic effects on the various information

measures for the H-like atoms allow the evaluation of the statistical measure of complexity

C, defined by López-Ruiz, Mancini, Calbet (LMC) [42, 43]. The LMC measure C is given

by

C = H ·D , (34)
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where H denotes a measure of information and D represents the so called disequilibrium or

the distance from equilibrium (most probable state). The form of C is designed such that it

vanishes for the two extreme probability distributions corresponding to perfect order (H = 0)

and maximum disorder (D = 0), respectively. It is only very recently [45, 46, 47, 48], that

the studies on the electronic structural complexity of neutral atoms using the non-relativistic

Hartree-Fock (HF ) wave functions [49] for atoms with atomic number Z=1-54, have been

reported using a variety of information measures. A similar evaluation of a complexity mea-

sure for neutral atoms with Z=1-103 was recently carried out in terms of the Dirac-Fock

wavefunction, choosing the exponential of the Shannon position entropy as the measure of

information, H = exp(Sr), and the average position density as the measure of disequilib-

rium, D =< ρ > [9]. While the measure of information exhibits a strong shell effect but

insignificant relativistic effect, the measure of disequilibrium was found to be a monotoni-

cally increasing function of Z exhibiting a strong relativistic effect. It is remarkable that the

ratio of the relativistic to the nonrelativistic measures of disequilibrium (average position

densities) obtained for neutral many-electron atoms is in almost quantitative agreement with

the corresponding ratio obtained in terms of the average position densities evaluated above

for the single electron ions. These ratios are presented in Fig. 4. This observation must be

a manifestation that the relativistic effect on the measure of disequilibrium is dominated by

the effect on the innermost orbital.

VII. SCALE INVARIANT ENTROPIES

A. Residual position and momentum entropies

The Kullback-Leibler relative/residual information measure of a given probability density

is defined with respect to a prior density and it determines the extra information contained

in the given density relative to the prior. Such a residual entropy for the relativistic density

over the nonrelativistic density as the prior can be defined in both the position and the
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momentum space. In position space this can be done analytically, yielding

SR/NR
r =

∫ ∞

0

4πr2ρR(r) log

(

ρR(r)

ρNR(r)

)

dr (35)

= log

(

2

Γ(2γ + 1)

)

+ (γ − 1)

(

2Ψ(2γ) +
1

γ

)

≈ 0.197467(αZ)4 + 0.150105(αZ)6 + 0.115104(αZ)8 + · · ·

The Taylor series for S
R/NR
r was obtained by evaluating its first six derivatives with respect

to Z, using maple. The values of S
R/NR
r for Z < 25 were calculated using the three-term

Taylor series, since evaluating the analytic expression involves cancellation errors. We note

that for Z = 25 the analytic expression and the three-term expansion practically coincide.

The extreme relativistic value is obtained from eq. (35) by evaluating its limit as γ → 0.

It is found that S
R/NR
r = log(2) + 2C ≈ 1.847579.

The residual momentum entropy S
R/NR
p =

∫ ∞
0

4πp2ΠR(p) log
(

ΠR(p)
ΠNR(p)

)

dp was evalu-

ated numerically. Differentiating the integrand four times with respect to Z and inte-

grating numerically we obtained the leading term in the power series expansion S
R/NR
p ≈

0.572467(αZ)4 + · · · .
The value of

S
R/NR
p

(αZ)4
at Z = 1

α
was obtained using the extreme relativistic momentum

density, eq. (20).

Since S
R/NR
r and S

R/NR
p are pure (dimensionless) quantities, they do not measure position

or momentum widths or uncertainties. They do measure the (somewhat slow) onset of

relativistic effects upon increase of the nuclear charge.

B. Average Measures of relative distance

The average measure of relative distance [28, 50] of the position densities is the sum of

the two relative entropies

SR/NR
r =

∫ ∞

0

4πr2ρR(r) log

(

ρR(r)

ρNR(r)

)

dr

and

SNR/R
r =

∫ ∞

0

4πr2ρNR(r) log

(

ρNR(r)

ρR(r)

)

dr .
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It can be written in the form

S̃r =

∫ ∞

0

4πr2
(

ρR(r) − ρNR(r)
)

log

(

ρR(r)

ρNR(r)

)

dr .

The measure of relative distance of the momentum densities is defined in an analogous

manner.

S
R/NR
r was evaluated above, cf. eq. (35). S

NR/R
r can be evaluated in a similar way,

yielding

SNR/R
r = log

(

Γ(2γ + 1)

2

)

+ (1 − γ)(3 − 2C) .

Hence,

S̃r = (1 − γ)

(

3 − 2C − 2Ψ(2γ) − 1

γ

)

.

The Taylor series for S̃r can be obtained analytically. The first three terms are given by

S̃r ≈
(

π2

6
− 5

4

)

(αZ)4 +

(

π2

12
+ ζ(3) − 7

4

)

(αZ)6

+

(

π4

90
+

5π2

96
+

3

4
ζ(3) − 147

64

)

(αZ)8 + · · ·

≈ 0.394934(αZ)4 + 0.27452(αZ)6 + 0.20103(αZ)8 + · · ·

S̃p was evaluated numerically.

The residual (relativistic vs. nonrelativistic) position and momentum entropies, and the

average measures of the distances of the corresponding position and momentum distribu-

tions, are presented in Table 1, all normalized via division by (αZ)4. We note that S̃r

(αZ)4
is

a monotonic function of Z, but S̃p

(αZ)4
is not.

VIII. CONCLUSIONS

The characterization of inherent quantum mechanical uncertainties has become a rich

field of study with direct relevance to emerging technologies. In the present article we

examine the application of widely used information measures to the ground state of the

relativistic hydrogen-like atoms, clearly bringing out the dependence on Z due to the rela-

tivistic effects. Further, we point out and illustrate the well-established but largely ignored

difficulties associated with the most common quantum mechanical formulation of the un-
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certainty principle, that arise as a consequence of the fact that the radial momentum is

not self-adjoint. Several information measures exhibit singularities at particular nuclear

charges, notably Z =
√

3
2α

≈ 118.68 and Z =
√

15
4α

≈ 132.68, whose significance remains to

be elucidated. In the coordinate representation all the information measures considered

allowed analytic evaluation of the integrals involved. This has not been the case for the cor-

responding momentum space quantities. What we find particularly puzzling in this context

is the fact that the closed analytic expression for the position-space expectation value of the

Laplacian agrees, as expected, with the numerically evaluated average over p2, in momentum

space, and still we failed to evaluate the latter analytically. These, and many other issues

such as uncertainty and information measures for excited states as well as for many-electron

atoms, suggest that the study of information measures for relativistic systems is a widely

open field.
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TABLE I: Residual entropies and average measures of relative distance.

Z S
R/NR
r

(αZ)4
S

R/NR
p

(αZ)4
S̃r

(αZ)4
S̃p

(αZ)4

1 0.19748 0.39495 1.14237
2 0.19750 0.57129 0.39499 1.13967
5 0.19767 0.56733 0.39530 1.13122

10 0.19827 0.56329 0.39640 1.11703
25 0.20259 0.55744 0.40430 1.08183
50 0.21973 0.57582 0.43545 1.06601
75 0.25602 0.64370 0.50071 1.12751

100 0.33489 0.81215 0.63971 1.33467
1
α

1.84758 4.03749 3.000000 5.485774
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