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Abstract

The scaling properties of various composite informatioeeretic measures (Shannon and Rényi
entropy sums, Fisher and Onicescu information products)i €ntropy ratio, Fisher-Shannon
product and shape complexity) are studied in position andhemtum spaces for the non-
relativistic hydrogenic atoms in the presence of parallagnetic and electric fields. Such mea-

sures are found to be invariant at the fixed values of therggphrameters given tsy = %
ands, = %. Numerical results which support the validity of the scglproperties are

shown by choosing the representative example of the posipace shape complexity. Physical
significance of the resulting scaling behaviour is discdsse
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1. Introduction

The quantum-mechanical uncertainty principle, first folaed [1] in terms of the standard
deviations of the position and momentum probability déesiivhich characterize the quantum-
mechanical states of one-dimensional single-particleegys, is fundamental to the understand-
ing the electronic structure and properties of atoms anceoubés. The position-momentum
Heisenberg uncertainty relation has been extensivelgddsr many three-dimensional systems
[2], and some interesting properties have been found faralgmotentials; namely, the Heisen-
berg uncertainty product (i) does not depend on the polesttiangth for the bound states of
homogeneous power-type potentials [3], and (ii) has a Id@eend which has a quadratic depen-
dence on the orbital quantum number [4]. There exist fortiana of the position-momentum
uncertainty principle based on uncertainty measures titlaarthe standard deviation, which are
more stringent than the Heisenberg relation. They are tloertainty-like relationships based
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on, e.g. the Shannonl[5], Rényl [6] and Tsallis [7] entrgptbe Fisher information [8] and the
modified LMC or shape complexity, which are found and disedsa Ref. [9) 10, 11, 12, 13],
respectively.

The scaling properties of the position-momentum uncetaielations mentioned above for
single particle systems with a wide variety of central ptigds have recently been examined by
using of the dimensional analysis of their associated &tihger equation [3, 14]. In this letter
we present the first comprehensive information-theorétidyson the hydrogenic-like atoms in
the presence of external parallel magnetic and electridsfidin particular, we have considered
the scaling properties of the Heisenberg uncertainty nreage. the standard variation), the
Shannon, Rényi, Tsallis, Fisher information measured,tha shape complexity [15, 16]. The
numerical validity of these scaling properties are presenthe predictive power of the presently
obtained results on this statistical complexity is illas&d by taking the example of the most
distinctive non-linear spectroscopic phenomenon, théadocrossing of two energy levels with
the same energy [17] of a hydrogenic system in the presencaenfse parallel magnetic and
electric fields.

This paper is organized as follows. We analyze the scalimgstormation of the energies
and eigenfunctions which characterize the quantum-mechistates of a hydrogenic atom in
the presence of parallel magnetic and electric fields ini®e&, and the dimensional proper-
ties of their position and momentum Heisenberg uncertaimdasure in Section 3. In Section
4, we examine the scaling properties of the uncertaintytiozla associated with the following
information-theoretic measures: Shannon, Rényi andi$saitropies and the Fisher and On-
icescu informations as well as the shape complexity. Bin@lSection 5, we compute the shape
complexity for two diferent pairs of energy levels of a hydrogen atom under intpasallel
magnetic and electric fields, which show avoided crossireppmena. Moreover, we check the
validity of the corresponding scaling law obtained for timBrmation measure in the previous
section, and, most important, we show that this measureptes peculiar mirror symmetry
through the avoided crossing region. The latter implies tihe shape complexity is a good in-
dicator of this highly non-linear phenomena at the samd evé¢he energy [17, 18, 19] and the
Shannon and Fisher informations|[20].

2. Hydrogenic systems in parallel magnetic and electric fiels: scaling properties

Let us consider an electron moving in a Coulombic potentialt a nucleus with charg&Ze,
in the presence of parallel magnetic and electric fieldsnteiin thez direction. The &ective
potential in spherical coordinates is

Z&é eB, B
+ —L+ —=—

V() =-
") dregr M 2m

r2sir? @ + eFrcoss. (1)

whereB andF are the constant magnetic and electric fields strengitise mass of the electron,
€ the electric constant, arld the zcomponent of the angular momentum. The corresponding
Schroddinger equation for this potential is

hz 2 —
- 5=V + V(U = Ev. @

Note that we have neglected the relativistic correctiof$ fdd the spin-orbit coupling [26] and
assumed that the nuclear mass is infinityl [27], because thayotl dfect the main results of
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this work. Here, we shall study the scaling properties ofdlgensolutions of this equation of
motion under the transformation= Ar’, where the scaling factor is specified later on. Then the
transformed Schrodinger equation takes on the form

Zé eB e2B2)2
- +—Ly+
Arepdr’  m

hZ
- 2ma2

V2 + r'2sirf @ + eFar’ cost’ |y = Ey.

Now, we multiply this equation by the factc?;i‘%2 and fix A by imposing that the factor in the
Coulomb term is equal to unity. It turns out that

Arephi?
— 0 3
Zam” 3)
and the scaled Schrodinger equation reads as
1 1 2 ) ,
—EV’Z A %LZ + %r’zsmze + Sr’ cost |y = Eqy,
where areg)? ey
Bh(4reg Fr%(4re
= ———— = ——. 4
e L R “)

Note thatd has length units and the new coordinate is dimensionlessaaged. Moreover,
the parametes; ands, are also dimensionless, and the eneEg§i>/m, Z, B, F) rescales into
E1=E(1,1s,%)as

e'7?m
E(h?/m Z,B,F) = WE(L 15, %).

Consequently the wavefunctigifr; h2/m, Z, B, F) will change as
U(r h2/m Z,B,F) = A7°2y(r"; 1, 1,51, 5p),
because of the normalization to unity, and the associatstiility densityo(r) = |y(r)|* as
p(r; H2/m Z, B, F) = (1" 1, 1, 51, ). (5)

To obtain the scaling of the wavefunction in momentum spage, 72/m, Z B, F), under the
transformatiomp’ = Ap, with A given by [3), we take into account thafr) andy(p) are mutually
Fourier-transformed as

w(p; h?/m, Z, B, F) = fe‘ip"/hw(r; h?/m,Z, B, F)dr.

1
(2rh)3/?
It is straightforward that the momentum wavefunction ssale

U(p; h?/m Z,B,F) = A¥3)(p'; L1 51, %)
and the associated densitp) = |/(p)? as

y(p; B2/m, Z,B,F) = 2%y(p’; 1,1, 1, %). (6)
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3. Dimensionality properties of the Heisenberg uncertaint measure

For a hydrogenic system with a potenti&r) given by Eq. [(IL), a pure dimensional analysis
of the standard deviation of its position wavefunctigin) defined by

ot = [w o - opu.
allows us to write down in a straightforward maner that

oy = Afi(s1, ), ()

wherefi(s1, ) is a fixed function of the dimensionless parametgrands, given by Eq. [#).
Moreover, taking into account the reciprocity of the pasitand momentum spaces, a similar
dimensional analysis for the standard deviation in monmargpace

7= [ oo~ ®ien,

leads to the expression
op = hA a(s1, S2). (8)

Hence, the Heisenberg uncertainty product is
o op = h fa(s1) fa ). 9)

Expressiond(7)[{8) andl(9) allow us to state for hydrogsystems under parallel magnetic and
electric fields, that (i) the position and momentum spregslaround the corresponding centroids
in position and momentum space depend only on the nucleageBaand the dimensionless
parameters; ands;, and (ii) the Heisenberg uncertainty product depends omlst @ands;.

4. Scaling of hydrogenic information-theoretic uncertainty measures

Here we examine the scaling properties of the informatimotetic-based uncertainty mea-
sures of Shannon, Fisher, Onicescu and Tsallis types, dsaséheir mutual relations, under
the coordinate transformation= Ar’ (where the scaling is given in Eq. [B)) for a hydrogenic
system in the presence of parallel magnetic and electrisfidin particular, we show that the
Shannon entropy sum, the Fisher and Onicescu informatioehuets, the Tsallis entropy ratio,
the Fisher-Shannon measure and the shape complexity afyttism depend only on the dimen-
sionless parameterss and s, for given values of the nuclear chargeand the strengthsB( F)

of the external fields as described by Edqs.] (11)] (13}, (IB), (I7), [I8){(IV), and (20)-(P1),

respectively, later on.

4.1. Shannon entropy sum
The Shannon entropies [5] in the position space and momespace, are

S =- f p(r)Inp(r)dr, , Sp=- f ¥(p) Iny(p)dp.



Using the relations in Eqd.](5) arld (6), we get for these gierothe scaling properties
Si(h?/mZ,B,F)=3In1+S,(1, 1 51, %),
Sp(?/m Z,B,F) = -3In1+ Sp(1,1, 51, %),
which imply that the Shannon entropy si8n = S, + S;, satisfies the relation
St(h?/m Z,B,F) = St(L 1 51, ).

4.2. Fisher information product
The Fisher informatior) [8] measures for position and momerdre
2 2
S N\ Z(0) G 1\ 21(0)
p(r) ¥(p)
Using the relations in EqE](5) arld (6), one obtains the sgalioperties

I (h?/m, Z, B, F) = /l—lzlr(l, 1,81, %),
Ip(h2/m Z, B, F) = 221,(1, 1, 81, &),
which together imply that the Fisher information prodlgt= I, 1, satisfies the relation
lrp(h?/M.Z,B,F) = l;p(1, 1, 51, ).

4.3. Onicescu information product
The Onicescu informations [28] in position and momentuntepare

e - [borer. &= [DETd.
Using the relations in Eqd.](5) arid (6), we get the scalingeries

Er(h*/m Z B,F) = %E,(l, 1,81, %),
Ep(h?/m Z,B,F) = Ep(L 1, 51, &),
which imply that the Onicescu information produgt, = E;E, satisfies the relation
Erp(?/M Z, B, F) = Erp(1, 1, 51, S2).

4.4, Rényi entropy sum
The Rényi entropies [6] in position and momentum spaces are

HO = 2o [ordr HP = 2o e,
l-a l-a
With the relations in Eqs[15) andl(6), we get for these ené®fhe scaling properties
HOR2/m, 2, B,F) =3Ina+ HO(1, 1, 51, 5),
HP(2/m 2, B,F) = -3In1+ HP(1, 1,51, 5),
which imply that the Rényi entropy suhhg) = H((,') + H((,p) satisfies the relation

HO(R2/m 2, B,F) = HD(1, 1, 51, ).
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4.5. Tsallis entropy ratio

The Tsallis entropies[7] in position and momentum spaces ar
TO = i[l - J“)] T - i[l— J(p)] 1,1,
n n-— 1 n p q q _ 1 a | q n

where the integral terms are given by

30 = [loorar. 3 = (e,
Using the relations in Eqd.](5) arld (6), we get the scaling@ries

JOMH2 /M Z,B,F) = 2*30(1, 1, 81, %),
IP(h2m z,B,F) = 2233P (1, 1, 51, ).

_ (Jép))l/Zq

Then one obtains for the ratil,, = O the following equality

Joir(B2/m Z,B,F) = Jpir (L, 1, 51, %),

Sl
+
Ol

=2 (17)

4.6. Fisher-Shannon measure
For the Shannon entropy power

Nr — iezsr/3’ Np — iezsp/3
ne ne
in the two conjugated spaces, we obtain from Egsl. (10) thevfiolg scaling:

Nf (hz/m’ Z, B’ F) = /12Nr (1, 1’ Sl’ SZ),

1
Np(hz/m9 Z’ B9 F) = FNP(]-, 1’ S_L’ 82)9

Using these expressions and Ed.1(12) for the Fisher infeomatve obtain for the Fisher-
Shannon measure the scaling

N:(i2/m, Z, B, F)l(h?/m Z, B, F) = Nr (1, 1, 51, )1+ (L, 1, 51, %), (18)

Np(h?/m, Z, B, F)lo(h?/m Z, B, F) = Np(L, 1, 51, )1 p(L, 1, 51, S2) (19)
in position and momentum spaces, respectively.

4.7. Shape complexity

For the shape complexity [15,/16] = > E,, with S, andE, being the Shannon entropy and
the Onicescu information or disequilibrium, respectiyelhg use the relations in Eq$._{10) and
(I4) to obtain

S (MIMZEOE (12/m Z, B, F) = ¥ M1 9E (1,1, 51, ), (20)

eS(*IMZBRE (h2/m, Z, B, F) = e b9E (1,1, 5, 8), (21)

for the scaling in the two reciprocal spaces.
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Besides the scaling invariance shown by Eds] (20) (21théoshape complexity, there
are two noteworthy features: (i) the scaling propertiesradependent of the relative orientation
of the external fields, and more interestingly, (ii) the ftimcal dependence ag ands, predicts
the existence of extremum points when one of the fields isudadteeping fixed the other one.
We note here that the functional form of the shape compléxityt obtained through the dimen-
sional analysis and the number of maximum and minimum pairitslepends upon the specific
details. In the next section we shall discuss these feaitnszsne detail. These observations are
equally valid for the other uncertainty-like products dissed in this work.

5. Hydrogenic shape complexity: numerical scaling test andvoided crossing indicator

We have successfully carried out extensive numerical wfstee scaling properties of the
various uncertainty-like products discussed above. Ias $ieiction, we will use atomic units
(m=h = e = 4nrep = 1) and takeB in units of speed of light. We will discuss the shape
complexity, as a representative example, in the neighlmatlod some typical avoided crossings
of hydrogenic systems in parallel magnetic and electridfidlhe details of the computational
approach used to solve the Schrodinger equatibn (2) caourelfelsewhere [29]. In particular,
we have considered the pair of levelso3and 3 of the Z = 1) hydrogen atom, for which the
paramagnetic term does not contribute. Note that, for saiplthe field-free quantum numbers
are used to label these states. In the presence of the mafigletihe magnetic quantum number
and thez-axis parity are good quantum numbers. Hence, these leagks diferent symmetry
and as the magnetic field strength is varied they could havsdme energy, which occurs at the
magnetic field interval @87 a.u.< B < 0.08825 a.u.

If an additional parallel electric field is also on, only th@rauthal symmetry remains so that
both levels may have the same symmetry; then an avoidedmgasformed between them due
to the Wigner-non-crossing rule [17]. This non-linear pbvenon is illustrated in Fig§] 1a and
b, which show the ionization energies and shape complexitespectively, of these levels for
a magnetic field with strength.@87 a.us B; < 0.08825 a.u. and a fixed electric field with
strengthF; = 1.946x 107 a.u. An analogous result should be expected for the samepair
states in a hydrogenic atom with nuclear chatge 2 if the magnetic and electric field strengths
are scaled according the rules discussed in the previotisrsethe corresponding energies and
shape complexities are presented in Elg. 2a and b, as aduraftthe magnetic field strength in
the range (848 a.u.< B, < 0.353 a.u., and fixed electric field strendth = 1.557x 107° a.u.
Note, that the scaling laws, = F1 * (Z = 2)° andB; = B; * (Z = 2)? are satisfied.

Let us first analyze the ionization energy. Looking at Figs.ahd2a, the ionization energy
shows a qualitatively similar but quantitativelyfidirent behavior as a function &fin the two
hydrogenic atoms. On the one hand, the typical avoidedsitrgsehavior is observed, i.e.
they approach each other with increasing magnetic field| @ty come close and strongly
interact, splitting apart thereafter. For both systems,idmization energy of the® (3do) state
monotonically increases (decreases) as the magnetic fieltgsh is enhanced, passes through a
maximum (minimum), and decreases (increases) there&ftavever, major dierences appear
in the computed values of the energies, whicfiediby a factorz?, as expected by the scaling
properties discussed above. The minimal energetic spading |Ezp, — Eaq,| = 3.35x 10° a.u.
occurs at the field streng®i= 8.760038«< 102 a.u. for theZ = 1 atom. For th& = 2 atom, the
avoided crossing is energetically much broader, ba&iBg= |Ezp, — Eaql = 1.4 x 107* a.u. the
minimal energetic spacing & = 0.3504 a.u. Please note thdfdrent energy scales in Fids. 1a
and2a.
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Figure 1: Color online. The ionization energies (a) and shagmplexities (b) of the statep@ (dashed line) anddy
(solid line), of the hydrogen atom (so, with= 1) in parallel electric and magnetic fields as a function effragnetic

field strength, and with an electric field fixed o= 1.946x 107° a.u.
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Figure 2: Color online. The same as Hig. 1, but for a hydragatom with nuclear chargé = 2 andF = 1.557x 107>
a.u.



The evolution of the shape complexities with the magnetld figés can be seen from Figg. 1b
and2b, displays interesting features. They show a doulnheptstructure with a mirror symmetry
as a function of the magnetic field strength. The computedegldor the shape complexity are
identical, although they are achieved at thatent magnetic field strengths which are related
by the scaling rules as derived above. Close to the magneificdirength at which the minimal
energetic spacing occurs, the shape complexities of batbssachieve the same val@,, =
Csy, = 1.7492, and this is aB = 0.0876004 a.u. and.B50416 a.u. for th& = 1 and 2
systems, respectively. The minimal values of the shape xities are equal for both states,
Cap, = Caq, = 1.7380, and are located at symmetric positions with respebetoritical magnetic
field valuesB., i.e. the 3 and 3l minima are shifted to the left and to the right b{@9x 107°
a.u. and 566x 107° a.u. for theZ = 1 system, and by.8 x 10° a.u. and & x 107° a.u.
for theZ = 2 atom, respectively. The first hump 6%q, and the second one Ghy,, also have
the very similar valueCsy, = 1.8856 andCs,, = 1.8867, and are shifted to the left and to the
right by 16706x 10™* a.u. and 16632x 10™* a.u. for theZ = 1 atom, respectively, and by
6.64x 10* a.u. and &@9x 10* a.u. for theZ = 2 system, respectively. Analogously, the
second maxima of the level,Csp, = 1.8766, and first one of thedg state Csq, = 1.8762, are
identical for both systems, and are shifted Zoe 1 by 11591x 104 a.u. and 11566x 10~
a.u., to the right and left, respectively; and e 2 are shifted 64x 1074 a.u. and 462x 104
a.u. to the right, respectively. It is interesting to remidudt the presently calculated values of the
shape complexitZ obey the universal bour@ > 1, which has been recently shown for general
monodimensional [15] anB-dimensional D > 1) probability densities [13].

Finally, let us point out here that in absence of the extefieéds, for the free hydrogenic
atoms,C is a constant, independent of the nuclear chagdhis is a consequence of the ho-
mogeneous character of the potential which leads to a paeaiinee scaling property of the
shape complexity [14]. In presence of the external fields stiape complexity varies with the
parameters of the potential which becomes inhomogenealsimacter.

In conclusion, the existence of extremum points and theérggdlehavior with the external
fields is numerically verified for the shape complexity asegiin Eq. [20). Further, according
to the shape complexity analysis here described the scatperty can be used to predict the
existence of avoided crossings for a heavy hydrogenic atmfenstrong external fields from the
avoided crossings data on a lighter member and vice-veiis@laBresults should be expected
for the remaining composite information-measures analyz¢his work.
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