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Spectral characteristics for a spherically confined −a/r + br2 potential
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We consider the analytical properties of the eigenspectrum generated by a class of central poten-
tials given by V (r) = −a/r+ br2, b > 0. In particular, scaling, monotonicity, and energy bounds are
discussed. The potential V (r) is considered both in all space, and under the condition of spherical
confinement inside an impenetrable spherical boundary of radius R. With the aid of the asymptotic
iteration method, several exact analytic results are obtained which exhibit the parametric depen-
dence of energy on a, b, and R, under certain constraints. More general spectral characteristics are
identified by use of a combination of analytical properties and accurate numerical calculations of the
energies, obtained by both the generalized pseudo-spectral method, and the asymptotic iteration
method. The experimental significance of the results for both the free and confined potential V (r)
cases are discussed.
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I. INTRODUCTION

The model for a hydrogen atom, HA, confined in an impenetrable sphere of finite radius R was originally introduced
[1] to simulate the effect of high pressure on atomic static dipole polarizability. Sommerfeld and Welker [2] formulated
the wave function solutions for this potential in terms of confluent hypergeometric functions, and underlined the
application of this model for the prediction of the line spectrum originating from atomic hydrogen in the outer
atmosphere. An algorithm for obtaining nearly exact energy calculations for a spherically confined hydrogen atom
has been published [3]. On the other hand, regular soft confinement of the Coulombic systems has been developed
by superimposing Debye screening [4]. Such a confining potential has been successful in explaining [5, 6] the shift in
frequency of the x-ray spectral lines emitted by laser-imploded plasmas in the limit of high plasma density, whereby
the effective potential assumes the form given by the Coulomb plus oscillator potential. The harmonic potential can
be considered here as giving rise to the confinement of the Coulomb system with soft boundary walls. A variety of
other model potentials leading to the confinement of electrons in atoms and molecules have been proposed, in order
to explain the behavior of the novel artificial nanostructures, such as quantum wires and quantum dots, atoms and
molecules embedded inside fullerenes, zeolites and liquid helium droplets, and, in addition, to simulate the interior of
a giant planet. A comprehensive review covering of the development and applications of confining model potentials
has been recently published [7, 8]. Under the confinement effect of an impenetrable spherical cavity of radius R, the
hydrogen atom and the isotropic harmonic oscillator, IHO, potentials have been studied, independently, and their
spectral characteristics have been analyzed [9, 10] in terms of useful quasi exact results. In the following text, we shall
denote the spherically confined hydrogen atom as SCHA and the spherically confined isotropic harmonic oscillator
as SCIHO: in both cases, the eigenstates are labelled as (ν, `), ν = 1, 2, 3, · · · , ` = 0, 1, 2 · · · , in terms of which the
number of radial nodes for a given ` becomes ν − `− 1.

For the free Coulomb plus oscillator potential, a few exploratory calculations have been reported earlier [11–14]. In
view of the importance of the conjoined Coulomb and harmonic oscillator potential, it useful to study the general
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behavior of this potential under the confinement due to an impenetrable spherical cavity, as a function of the radius
R, where the free state is represented by R→∞. In this paper we consider a general spherically symmetric model
of atomic system confined by (i) the presence of a harmonic-oscillator potential term and in a representative set of
cases also (ii) containment inside an impenetrable spherical box of radius R. In atomic units ~ = m = e = 1 the
Hamiltonian for the model system is given by

H = −1

2
∆ + V (r), V (r) = −a

r
+ br2, (1)

where a and b are coupling parameters. We shall always assume that b > 0 and for the most part, we shall assume
that the Coulomb term is also attractive, a > 0; we shall also consider the repulsive case a < 0, in which H becomes
a model, for example, for a system composed of a pair of confined electrons.

We shall now present a brief review of the known results defining the spectral characteristics of the two confined
systems SCHA and SCIHO. It is well known that the so called accidental degeneracy of free HA is removed in the
SCHA. As R → 0, the energy levels E(ν, `) increase in magnitude such that the higher ` states get relatively less
destabilized. There exists a critical value of R above which E(ν, `) > 0. Further, two additional kinds of degeneracies
arise [9]. They result from the specific choice of the radius of confinement R, chosen exactly at the radial nodes
corresponding to the free HA wave functions. In the incidental degeneracy case, a given confined (ν = `+ 1, `) state
becomes iso-energic with (ν = ` + 2, `) state of the free HA with energy −1/{2(` + 2)2} a.u., at the same R. In the
simultaneous degeneracy case, on the other hand, a certain pair of confined states at the common radius of confinement
R that is prescribed in terms of the location of the radial node in a specific free state of HA, become iso-energic. For
example, for all ν ≥ ` + 2, each (ν, `) SCHA state is degenerate with (ν + 1, ` + 2) state, when both of them are
confined at R = (`+ 1)(`+ 2), which defines the radial node in the free (`+ 2, `) state. Both these degeneracies have
been shown [9] to result from the Gauss relationship applied at a unique R by the confluent hypergeometric functions
that describe the general solutions of the SCHA problem.

We note that free IHO energy levels show the well-known “(2ν + `)” degeneracy with the equidistant eigenvalues
given by (2ν + `− 1

2 )~ω, ν = 1, 2, 3, · · · , for a given `. Such a degeneracy is removed under the confined conditions.
As E(ν, `) > 0 at all R, the critical radius is absent. The incidental degeneracy observed in the case of SCIHO is
qualitatively similar to that of the SCHA. However, the behavior of the two confined states at a common radius of
confinement is found to be different [10, 15]. In particular, for the SCIHO the pairs of the confined states defined

by (ν = ` + 1, `) and (ν = ` + 2, ` + 2) at the common R =
√

(2`+ 3)/2 a.u., display for all ν, a constant energy
separation of exactly 2 harmonic-oscillator units, 2~ω , with the state of higher ` corresponding to lower energy. The
choice of R is qualitatively similar to that in the case of SCHA, namely, it is the location of the radial node in the
(ν = `+ 1, `) state which is the first excited state corresponding to a given ` for the free IHO. It is interesting to note
that the two confined states at the common R with ∆` = 2, considered above, contain different numbers of radial
nodes.

With this background, we shall now consider the spherically confined potential defined in Eq.(1). The paper is
organized as follows. In section 2, the scaling properties and monotonicity of the eigenspectrum generated by the
potential V (r), as a function of the parameters of the potential, are derived. Analytic energy bounds, derived by
the envelope method, are reported in section 3: these are found to be useful in guiding the search for very accurate
values by numerical methods. In sections 4 and 5, we use the asymptotic iteration method (AIM) to study how the
eigenvalues depend on the potential parameters {a, b, R}, repectively for the free system (R = ∞), and for finite R.
In each of these sections, the results obtained are of two types: exact analytic results that are valid when certain
parametric constraints are satisfied, and accurate numerical values for arbitrary sets of potential parameters. In
section 6 we adjoin some more numerical data, obtained by the generalized pseudo-spectral (GPS) Legendre method,
and present a detailed analysis of the spectral characteristics of the system and their experimental significance.

II. SCALING AND MONOTONICITY

Since the potential and the confining box are spherically symmetric, we may write the energy eigenfunctions in the
form

Ψ(r) =
ψ(r)

r
Y m` (θ, φ), ψ(0) = 0, (2)

where r ∈ <3 and r = |r|. For finite box sizes R we also require ψ(R) = 0. In terms of the atomic units used,
each discrete eigenvalue depends on three parameters. We shall express this by writing Eν` = E(a, b, R). If we now
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introduce a scale factor (dilation) σ > 0 into the terms of the Hamiltonian, so that r → σr, then, after multiplying
the eigenequation Hψ = Eψ through by σ2, we may derive the general scaling law

E(a, b, R) = σ−2E(σa, σ4b, R/σ), σ > 0. (3)

For example, the particular choices σ = a−1, σ = b−
1
4 , and σ = R, then yield, respectively, the special scaling laws

E(a, b, R) = a2E(1, ba−4, aR) = b
1
2E(ab−

1
4 , 1, b

1
4R) = R−2E(aR, bR4, 1). (4)

Thus it would be sufficient to consider just two spectral parameters.

The eigenvalues Eν,` = E(a, b, R) are monotonic in each parameter. For a and b, this is a direct consequence of the
monotonicity of the potential V in these parameters. Indeed, since ∂V/∂a = −1/r < 0 and ∂V/∂b = r2 > 0, it follows
that

∂E(a, b, R)

∂a
< 0 and

∂E(a, b, R)

∂b
> 0. (5)

The monotonicity with respect to the box size R may be proved by a variational argument. We shall show in
section (III) that the Hamiltonian H is bounded below. The eigenvalues of H may therefore be characterized varia-
tionally. Let us consider two box sizes, R1 < R2 and an angular momentum subspace labelled by a fixed `. We extend
the domains of the wave functions in the finite-dimensional subspace spanned by the first N radial eigenfunctions
for R = R1 so that the new space W may be used to study the case R = R2. We do this by defining the extended
eigenfunctions so that ψi(r) = 0 for R1 ≤ r ≤ R2. We now look at H in W with box size R2. The minima of the energy
matrix [(ψi, Hψj)] are the exact eigenvalues for R1 and, by the Rayleigh-Ritz principle, these values are one-by-one
upper bounds to the eigenvalues for R2. Thus, by formal argument we deduce what is perhaps intuitively clear, that
the eigenvalues increase as R is decreased, that is to say

∂E(a, b, R)

∂R
< 0. (6)

From a classical point of view, this Heisenberg-uncertainty effect is perhaps counter intuitive: if we try to squeeze the
electron into the Coulomb well by reducing R, the reverse happens; eventually, the eigenvalues become positive and
arbitrarily large, and less and less affected by the presence of the Coulomb singularity.

For some of our results we shall consider the system unconstrained by a spherical box, that is to say R =∞. For these
cases, we shall write Eν` = E(a, b). If a very special box is now considered, whose size R coincides with any radial
node of the R =∞ problem, then the two problems share an eigenvalue exactly. This is an example of a very general
relation which exists between constrained and unconstrained eigensystems, and, indeed, also between two constrained
systems with different box sizes.

III. SOME ANALYTICAL ENERGY BOUNDS

The generalized Heisenberg uncertainty relation may be expressed [16, 17] as the operator inequality −∆ > 1/(4r2).
This allows us to construct the following lower energy bound

E > E = min
0<r≤R

[
1

8r2
− a

r
+ br2

]
. (7)

Provided b ≥ 0, this lower bound is finite for all a. It also obeys the same scaling and monotonicity laws as E itself.
But the bound is weak. For potentials such as V (r) that satisfy d

dr (r2 dVdr ) > 0, Common has shown [18] for the ground

state that 〈−∆〉 > 〈1/(2r2)〉, but the resulting energy lower bound is still weak.

For the unconstrained case R = ∞, however, envelope methods [19–23, 25] allow one to construct analytical upper
and lower energy bounds with general forms similar to (7). In this case we shall write Eν` = E(a, b). Upper and lower
bounds on the eigenvalues are based on the geometrical fact that V (r) is at once a concave function V (r) = g(1)(r2)
of r2 and a convex function V (r) = g(2)(−1/r) of −1/r. Thus tangents to the g functions are either shifted scaled
oscillators above V (r), or shifted scaled atoms below V (r). The resulting energy-bound formulas are given by

min
r>0

[
1

2r2
− a

P1r
+ b(P1r)

2

]
≤ Eν`(a, b) ≤ min

r>0

[
1

2r2
− a

P2r
+ b(P2r)

2

]
, (8)
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where (Ref. [24] Eq.(4.4))

P1 = ν, P2 = 2ν − (`+
1

2
). (9)

We use the convention of atomic physics in which, even for non-Coulombic central potentials, a principal quantum
number ν is used and defined by ν = n+ `+ 1, where n is the number of nodes in the radial wave function. It is clear
that the lower energy bound has the Coulombic degeneracies, and the upper bound those of the harmonic oscillator.
These bounds are very helpful as a guide when we seek very accurate numerical estimates for these eigenvalues.

Another related estimate is given by the ‘sum approximation’ [23] which is more accurate than (8) and is known to
be a lower energy bound for the bottom E`+1 ` of each angular-momentum sub space: in terms of the P ’s we have for
these states, P2 = ν + 1

2 = P1 + 1
2 . The estimate is given by

Eν`(a, b) ≈ Eν`(a, b) = min
r>0

[
1

2r2
− a

P1r
+ b(P2r)

2

]
. (10)

This energy formula has the attractive spectral interpolation property that it is exact whenever a or b is zero. The
energy bounds (8) and (10) obey the same scaling and monotonicity laws is those of Eν`(a, b). Because of their
simplicity they allow one to extract analytical properties of the eigenvalues. For example, we can estimate the critical

oscillator coupling b̂ that will lead to vanishing energy E = 0. We may estimate b̂ by using (8) or (10). We differentiate

with respect to r, and use the vanishing of this derivative and of E to obtain the following explicit formula for b̂

b̂ ≈
(

27

32

)
a4

P 4
aP

2
b

, (11)

in which Pa and Pb are to be chosen. If Pa = P1 and Pb = P2, then from (10) we obtain a good general approximation

for b̂. We can also obtain bounds on b̂. Since E(a, b) is a monotone increasing function of b, we can state the nature

of the bounds on b̂ given by formula (11): (i) if Pa = Pb = P1 = ν, the formula yields an upper bound; (ii) if
Pa = Pb = P2 = 2ν − (`+ 1

2 ), then it is a lower bound; (iii) if ν = `+ 1 and Pa = ν and Pb = ν + 1
2 , then the formula

yields a lower bound. We shall state this last result explicitly: for the bottom of each angular-momentum subspace,

where ν = `+ 1, the critical oscillator coupling b̂ yielding E = 0 is bounded by

b̂ ≥
(

27

32

)
a4

ν4(ν + 1
2 )2

. (12)

IV. EXACT SOLUTIONS FOR THE POTENTIAL V (r)

The radial three-dimensional Schrödinger equation for the Coulomb plus harmonic-oscillator potential, expressed in
atomic units, is given by

− 1

2

d2ψ(r)

dr2
+

[
l(l + 1)

2r2
− a

r
+ br2

]
ψ(r) = Eψ(r), 0 < r <∞, b > 0, a ∈ R (13)

where l(l+ 1) represents the eigenvalue of the square of the angular-momentum operator L2. Note that for a = 0, the
potential V (r) = −a/r+ br2 corresponds to the pure harmonic oscillator potential, while for a > 0, it is a sum of two
potentials, the attractive Coulomb term −a/r plus the harmonic-oscillator potential br2. For a < 0, the potential V (r)
corresponds to the sum of two potentials, the repulsive Coulomb potential |a|/r plus a harmonic-oscillator potential
br2.

Since the harmonic oscillator potential dominates at large r, this suggests the following Ansatz for the wave function:

ψ(r) = rl+1 exp(−αr2)f(r), (14)

where α is a positive parameter to be determined. Substituting this wave function into Schrödinger’s equation (13),
we obtain the following second-order differential equation for f(r):

rf ′′(r) + (−4αr2 + 2l + 2)f ′(r) + ((−2b+ 4α2)r3 + (−4αl + 2E − 6α)r + 2a)f(r) = 0, (15)
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which suggest the value α =
√
b/2. With this value of α, Eq.(15) is reduced to

rf ′′(r) +
(
−2r2

√
2b+ 2(l + 1)

)
f ′(r) +

[(
2E − (2l + 3)

√
2b
)
r + 2a

]
f(r) = 0. (16)

In order to find the polynomials solutions f(r) =
∑n
k=0 akr

k of this equation, we rely on the following theorem ([26],
Theorem 5) that characterizes the polynomial solutions of a class of differential equations given by

(a3,0x
3 + a3,1x

2 + a3,2x+ a3,3) y′′ + (a2,0x
2 + a2,1x+ a2,2) y′ − (τ1,0x+ τ1,1) y = 0, (17)

where a3,i, i = 0, 1, 2, 3, a2,j , j = 0, 1, 2 and τ1,k, k = 0, 1 are arbitrary constant parameters.

Theorem 1. The second-order linear differential equation (17) has a polynomial solution of degree n if

τ1,0 = n(n− 1)a3,0 + na2,0, n = 0, 1, 2, . . . , (18)

along with the vanishing of (n+ 1)× (n+ 1)-determinant ∆n+1 given by

∆n+1 =

β0 α1 η1
γ1 β1 α2 η2

γ2 β2 α3 η3
. . .

. . .
. . .

γn−2 βn−2 αn−1 ηn−1
γn−1 βn−1 αn

γn βn

= 0

where its entries are expressed in terms of the parameters of Eq.(17) by

βn = τ1,1 − n((n− 1)a3,1 + a2,1)

αn = −n((n− 1)a3,2 + a2,2)

γn = τ1,0 − (n− 1)((n− 2)a3,0 + a2,0)

ηn = −n(n+ 1)a3,3 (19)

Here, τ1,0 is fixed by Eq.(18) for a given value of n; the degree of the polynomial solution.

Consequently, for the polynomial solutions of Eq.(16), we must have, by means of Eq.(18), that

Enl = (n+ l +
3

2
)
√

2b (20)

and the conditions on the potential parameters are determined by the vanishing of the tri-diagonal determinant with
entries

βn = −2a

αn = −n(n+ 2l + 1)

γn = 2(n− k − 1)
√

2b

ηn = 0 (21)

namely, the vanishing of the (n+ 1)× (n+ 1)-tridiagonal determinant

∆n+1 =

−2a −(2 + 2l)

−2k
√

2b −2a −2(3 + 2l)

2(1− k)
√

2b −2a −3(4 + 2l)

. . .
. . .

. . .

2(n− 3− k)
√

2b −2a −(n− 1)(n+ 2l)

2(n− 2− k)
√

2b −2a −n(n+ 2l + 1)

2(n− k − 1)
√

2b −2a
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For n = 0 we have, for the purely harmonic oscillator a = 0, the exact energy

E0l = (l +
3

2
)
√

2b (22)

which gives the ground-state f0(x) = 1 in each subspace labelled by the angular momentum quantum number l.

For n = 1, the determinant ∆2 = 0 forces the potential parameters a and b to satisfy the equality

a2 −
√

2b(l + 1) = 0 (23)

with a necessary condition for the eigenenergy

E1l = (l +
5

2
)
√

2b. (24)

The condition (23) gives two possibilities for the wavefunction solution. First, for a = −
√√

2b(l + 1), i.e. with

repulsive Coulomb term, we have a ground-state (no-node) eigenfunction given by

ψ0(r) = rl+1 exp(−
√
b

2
r2)(1 +

√ √
2b

l + 1
r), (25)

while for a =
√√

2b(l + 1), i.e. an attractive Coulomb term, we have a first-excited state (one-node):

ψ1(r) = rl+1 exp

(
−
√
b

2
r2

)1−

√ √
2b

l + 1
r

 . (26)

In table (I), we report the first few exact solutions along with the conditions on the potential parameters. Note, the
subscripts on the polynomial solutions fi(r) refer to the possible number of nodes n in the wave function.

TABLE I: Conditions for Exact Solutions, here Enl = (n+ l + 3
2
)
√

2b

n fn(r)

0 f0(r) = 1

a = 0

1 f a<0,n=0
a>0,n=1

(r) = 1− a
l+1

r

a2 −
√

2b(l + 1) = 0

2 f a=0,n=0
a<0,n=0
a>0,n=2

(r) = 1− a
l+1

r +
√
2b

l+1
r2

a(a2 −
√

2b(5 + 4l)) = 0

3 f a>0,n=1,2
a<0,n=0,1

(r) = 1− a
l+1

r + a2−3
√
2b(l+1)

(l+1)(2l+3)
r2 − 1

3
a(a2−

√
2b(7l+9))

(l+1)(l+2)(2l+3)
r3

a4 − 5
√

2b(3 + 2l)a2 + 18b(2 + l)(1 + l) = 0

For arbitrary values of a and b that do not satisfy the conditions (20) and (21), we may use the asymptotic iteration
method [27] that can be summarized by the following theorem (for details, see [27], section V Theorem 1, and [28],
equations (2.13)-(2.14)):

Theorem 3: Given λ0 ≡ λ0(x) and s0 ≡ s0(x) in C∞, the differential equation

y′′ = λ0(x)y′ + s0(x)y (27)



7

has a general solution

y = exp

− x∫
α(t)dt

C2 + C1

x∫
exp

 t∫
(λ0(τ) + 2α(τ)) dτ

 dt

 (28)

if for some n > 0

sn
λn

=
sn−1
λn−1

= α(x), or δn(x) = λnsn−1 − λn−1sn = 0, (29)

where, for n ≥ 1,

λn = λ′n−1 + sn−1 + λ0λn,

sn = s′n−1 + s0λn. (30)

Thus, for Eq.(16), with λ0(r) and s0(r) given by
λ0(r) = − 1

r

(
−2r2

√
2b+ 2(l + 1)

)
,

s0(r) = − 1
r

[(
2E − (2l + 3)

√
2b
)
r + 2a

]
,

(31)

the asymptotic iteration sequence λn(x) and sn(x) can be calculated iteratively using (30). The energy eigenvalues
E ≡ Enl of Eq.(16) can be obtained as roots of the termination condition (29). According to the asymptotic iteration
method (AIM), in particular the study of Brodie et al [29], unless the differential equation is exactly solvable, the
termination condition (29) produces for each iteration an expression that depends on both r and E (for given values of
the parameters a, b and l). In such a case, one faces the problem of finding the best possible starting value r = r0 that
stabilizes the AIM process [29]. For our problem, we find that the starting value of r0 = 4 is sufficient to utilize AIM
without much worry about the best possible value of r0. For small values of a, where the wavefunction is spread out,
we may increase r0 > 4. In Table II, we report our numerical results, using AIM, for energies Enl for the attractive
(a = 1) and repulsive (a = −1) Coulomb term plus the harmonic-oscillator potential. The numerical computations
in the present work were done using Maple version 13 running on an IBM architecture personal computer where
we used a high-precision environment. In order to accelerate our computation we have written our own code for
root-finding algorithm using a bisection method, instead of using the default procedure ‘Solve’ of Maple 13. The
numerical results reported in Table II are accurate to the number of decimals reported. The subscript N refers to the
number of iterations used by AIM.

TABLE II: Eigenvalues Enl for V (r) = −a/r + br2, where b = 0.5, a = ±1 and different n and l. The subscript N refer to the
number of iteration used by AIM.

b = 0.5

a = 1 a = −1

n l Enl n l Enl

1 0 2.500 000 000 000 000 000N=3,exact 0 0 2.500 000 000 000 000 000N=3,exact

1 3.801 929 609 626 278 046N=80 1 3.219 314 119 830 611 360N=74

2 4.930 673 420 047 524 772N=72 2 4.087 227 795 734 562 981N=67

3 6.006 537 298 710 828 780N=65 3 5.007 681 882 732 318 957N=61

4 7.058 140 776 824 529 475N=60 4 5.953 327 675 284 371 524N=56

0 0 0.179 668 484 653 553 873N=97 1 0 4.380 233 836 413 610 273N=97

1 2.500 000 000 000 000 000N=3,Exact 2 6.301 066 353 339 463 595N=67

2 4.631 952 408 873 053 214N=72 3 8.243 517 978 923 477 298N=67

3 6.712 595 725 661 429 760N=70 4 10.199 062 810 923 865 963N=65

4 8.769 519 600 328 899 714N=69 5 12.163 259 523 048 320 928N=64
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V. EXACT SOLUTIONS FOR THE SPHERICALLY CONFINED V (r)

In this section, we consider the confined case of Coulomb and harmonic oscillator system as described by the radial
Schrödinger equation (in atomic units)

− 1

2

d2ψ(r)

dr2
+

[
l(l + 1)

2r2
− a

r
+ br2

]
ψ(r) = Eψ(r), 0 < r < R, b > 0. (32)

where l = 0, 1, . . . is the angular-momentum quantum number and ψ(0) = ψ(R) = 0. Here, again, the parameter a is
allowed to in R. Intuitively, we may assume the following ansatz for the wave function

ψ(r) = rl+1(R− r) exp(−αr2 − βr)f(r), (33)

where α and β are parameters to be determine, and R is the radius of confinement. The R− r factor ensures that the
wave function will become zero at r = R. Direct substitution of Eq.(33) into Eq.(32) yields the following second-order
linear differential equation for f(r):

f ′′(r) = −2

(
l + 1

r
− 1

R− r
− 2αr − β

)
f ′(r)

− 1

r(R− r)

[
(2b− 4α2)r4 + (4Rα2 − 4βα− 2Rb)r3 + (4Rαβ − 2E − β2 + 4lα+ 10α)r2

+ (Rβ2 − 6Rα+ 2RE − 4Rlα+ 2lβ + 4β − 2a)r − 2(l + 1) + 2Ra− 2Rβ(l + 1)

]
f(r) (34)

Clearly, from this equation, we have α =
√
b/2 and β = 0, which reveals the domination of the harmonic oscillator

term even in the confined case. Consequently, for f(r), we have

f ′′(r) = −2

(
l + 1

r
− 1

R− r
−
√

2b r

)
f ′(r)

− 1

r(R− r)

[
(−2E + (2l + 5)

√
2b)r2 + (−3R

√
2b+ 2RE − 2Rl

√
2b− 2a)r − 2(l + 1) + 2Ra

]
f(r) (35)

Although, equation (35) still does not lie within the framework of Theorem 1, we may make use of the following result
([26], Theorem 6)
Theorem 4. A necessary condition for the second-order linear differential equation(

k+2∑
i=0

ak+2,ix
k+2−i

)
y′′ +

(
k+1∑
i=0

ak+1,ix
k+1−i

)
y′ −

(
k∑
i=0

τk,ix
k−i

)
y = 0 (36)

to have a polynomial solution of degree n is

τk,0 = n(n− 1)ak+2,0 + nak+1,0, k = 0, 1, 2, . . . . (37)

Thus for Eq.(35), or, more explicitly, the differential equation

r(R− r)f ′′(r) + 2
(

(l + 1)(R− r)− r −
√

2b r2R+
√

2b r3)
)
f ′(r)

+

[
(−2E + (2l + 5)

√
2b)r2 + (−3R

√
2b+ 2RE − 2Rl

√
2b− 2a)r + 2Ra− 2(l + 1)

]
f(r) = 0 (38)

to have polynomial solutions of the form fn(r) =
∑n
k=0 akx

k, it is necessary that

Enl = (n+ l +
5

2
)
√

2b. (39)

This is an important formula for Enl that can facilitate greatly our computations based on AIM. We note, first, using
Eq.(39) that Eq.(35) can be reduced to

f ′′n (r) = −2

(
l + 1

r
− 1

R− r
−
√

2b r

)
f ′n(r)

− 1

r(R− r)

[
− 2n

√
2b r2 + (2R

√
2b(n+ 1)− 2a)r + 2Ra− 2(l + 1)

]
fn(r). (40)
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• It is then clear from equation (40) that, for n = 0, we have
E0l = (l + 5

2 )
√

2b, f0(r) = 1,

ψ0l(r) = rl+1(R− r) exp(−
√

b
2r

2).

(41)

if the parameters a, b and the radius of confinement R are related by

aR = l + 1, a2 = (l + 1)
√

2b. (42)

The wavefunction given by (41) represent the ground-state eigenfunction is each subspace labeled by the angular
momentum quantum number l.

• For n = 1, we, easily, find that
E1l = (l + 7

2 )
√

2b, f0,1(r) = 1 +
(

1
R −

a
l+1

)
r,

ψ1l(r) = rl+1(R− r) exp(−
√

b
2r

2)
(

1 +
(

1
R −

a
l+1

)
r
)
,

(43)

only if the parameters a, b and R are related by
√

2b = a
R −

l+1
R2 ⇒ b = 1

2

(
a
R −

l+1
R2

)2
,

a = 1
R

(
2l + 5

2 ±
1
2

√
4l + 5

)
.

(44)

Or, more explicitly, for a and b expressed in terms of the radius of confinement R, as
a± = 1

R (2l + 5
2 ±

1
2

√
4l + 5),

b± = 1
8R4 (±(3 + 2l) +

√
4l + 5)2,

=⇒ E =
1

2
(7 + 2l)

√
2b. (45)

From (43), for a > 0, it is clear that either a < (l + 1)/R or a > (l + 1)/R, since, for the case of a = (l + 1)/R,
we have b = 0, which is not acceptable from the structure of our wave function (33) where b > 0. We further
note from (43) that for r < R to have one node within (0, R), it is necessary that R > 2(l + 1)/a > (l + 1)/a.
For example, if a = 1, l = 0, then for a one-node state within (0, R), it is required that R > 2. Thus, let

a = 1, l = 0, R = 5/2 +
√

5/2, we have from (45), b = 1/50 and E10 = 0.700 000 000 000 000. Note further,

if a = 1, l = 0 but R = 5/2 −
√

5/2, although 1/R < (l + 1)/a, still we do not have any node that lies within

(0, 5/2 −
√

5/2), since in this case r = R = 5/2 −
√

5/2. Thus we have, in this case, a node-less wave function
f0(r) with E00 = 0.699 999 999 995 412 275. This explains the subscript f0,1 in (43).

• Further, for n = 2, we can show that
E2l = 1

2 (9 + 2l)
√

2b, f0,1,2(r) = 1 +
(

1
R −

a
l+1

)
r −

(
(3
√
2b(l+1)−a2)R2+(aR−l−1)(2l+3)

R2(l+1)(2l+3)

)
r2,

ψ2l(r) = rl+1(R− r) exp(−
√

b
2r

2)
(

1 +
(

1
R −

a
l+1

)
r −

(
(3
√
2b(l+1)−a2)R2+(aR−l−1)(2l+3)

R2(l+1)(2l+3)

)
r2
)
,

(46)

only if a, b and R are related by the two-implicit expressions:

R3a3 − 3R2(l + 2)a2 −R(R2
√

2b(7l + 9)− 3(l + 2)(2l + 3))a− 3(l + 2)(l + 1)(2l + 3− 3R2
√

2b) (47)

and

R2a3 −R(R2
√

2b+ 2l + 3)a2 + (l + 1)(2l + 3− 3R2
√

2b)a+ 6bR3(l + 1) = 0. (48)

We now consider a few examples of these results:
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– If a = 1, l = 0, then (47) and (48) yields
√

2b = 0.76025880213480504582, R = 2.0843217092058454961,
and we have the following solution:

E10 = 3.421 164 609 606 622 706 2,

ψ10(r) = r(2.084 321 709 205 845 496 1− r) exp(−0.380 129 401 067 402 522 91 r2)

×
(
1− 0.520 227 613 816 384 707 07 r − 0.676 516 312 440 766 915 00 r2

)
.

(49)

– If
√

2b = 2, l = 0, then (47) and (48) yields a = −1.6219380762368883824, R = 1.0232416568868508038
and we have the following solution:

E00 = 9.000 000 000 000 000,

ψ00(r) = r(1.023 241 656 886 850 803 8− r) exp(−r2)

×
(
1 + 2.599 224 324 572 826 833 6 r + 1.417 080 563 127 630 983 0 r2

)
.

(50)

• For n = 3, we have
E3l = 1

2 (11 + 2l)
√

2b

f2(r) = 1 +
(

1
R −

a
l+1

)
r − R(4R

√
2b(l+1)−a(Ra−3−2l))−(2l+3)(l+1)

R2(2l+3)(l+1) r2

+ 1
3
(−R3a3+3R2(l+2)a2+R(R2

√
2b(10l+13)−3(l+2)(2l+3))a−3(l+2)(l+1)(−2l+4R2

√
2b−3))

R3(l+1)(l+2)(2l+3) r3

(51)

where a, b and R are related by

R3a3 −R2(R2
√

2b+ 3(l + 2))a2 −R(R2
√

2b(10l + 13)− 3(l + 2)(2l + 3))a (52)

+ 2b(13 + 10l)R4 + 12
√

2b(l + 1)(l + 2)R2 − 3(2l + 3)(l + 2)(l + 1) = 0 (53)

and

R4a4 − 2R3(2l + 5)a3 −R2(R2
√

2b(16l + 25)− 6(2l + 5)(l + 2))a2 + 2R(2l + 5)(R2
√

2b(10l + 13)

− 3(l + 2)(2l + 3))a+ 6(l + 1)(l + 2)((2l + 5)(2l + 3) + 4
√

2bR2(R2
√

2b− 5− 2l)) = 0. (54)

Similar results can be obtain for higher n (the degree of the polynomial solutions). It is necessary to note that the
conditions reported here are for the mixed potential V (r) = −a/r + br2, where a 6= 0, b 6= 0 (neither coefficient is
zero).

For the arbitrary values of a, b and R, not necessarily satisfying the above conditions, we still apply AIM directly
to compute the eigenvalues. Similarly to the un-confined case, we start with

λ0(r) = −2
(
l+1
r −

1
R−r −

√
2b r

)
,

s0(r) = − 1
r(R−r)

[
(−2E + (2l + 5)

√
2b)r2 + (−3R

√
2b+ 2RE − 2Rl

√
2b− 2a)r + 2Ra− 2(l + 1)

]
.

(55)

The AIM sequence λn(x) and sn(x) can be calculated iteratively using (30). The energy eigenvalues E ≡ Enl of
Eq.(38) are obtained as roots of the termination condition (31). Since the differential equation (38) has two regular
singular points at r = 0 and r = R, our initial value of r0 can be chosen to be an arbitrary value in (0, R). In table III,
we reported the eigenvalues computed using AIM for a fixed radius of confinement R = 1 with r0 = 0.5 as an initial
value to seed the AIM process. In general, the computation of the eigenvalues are fast as illustrated by the small
number of iteration N in Tables III, IV and V. The same procedure can be applied to compute the eigenvalues for
arbitrary values of a, b and R. In Table IV we have fixed a, b and allowed R to vary, then we fixed b, R and allowed a
to vary. In Table V, we fixed a,R and varied b. Our numerical results in these tables confirm our earlier monotonicity
formulas reported in section II.
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TABLE III: Eigenvalues Enl for V (r) = −a/r + br2, r ∈ (0, R), where b = 0.5, a = ±1, R = 1 and different n and l. The
subscript N refers to the number of iteration used by AIM.

a = 1, b = 0.5, R = 1

n l Enl n l Enl

0 0 2.500 000 000 000 000 000N=3,Exact 0 0 2.500 000 000 000 000 000N=3,Exact

1 8.404 448 391 842 929 575N=24 1 16.733 064 961 893 308 967N=25

2 15.183 570 193 031 143 001N=23 2 41.029 002 263 262 675 364N=33

3 23.137 256 709 545 767 885N=24 3 75.297 038 665 283 580 892N=40

4 32.295 207 272 878 341 541N=27 4 119.493 804 921 354 632 859N=47

a = −1, b = 0.5, R = 1

n l Enl n l Enl

0 0 7.427 602 986 235 605 737N=26 0 0 7.427 602 986 235 605 737N=26

1 12.118 629 877 542 593 085N=24 1 22.954 866 627 528 634 394N=27

2 18.456 796 172 766 948 526N=23 2 48.054 781 032 847 609 425N=36

3 26.173 002 039 626 403 748N=25 3 82.897 495 765 909 946 966N=41

4 35.179 533 437 869 611 594N=28 4 127.540 759 830 804 826 131N=48

TABLE IV: Eigenvalues E00 for V (r) = −a/r + br2, r ∈ (0, R), where we fixed b = 0.5 and we allowed a and R to vary. The
subscript N refers to the number of iteration used by AIM.

b = 0.5

a R E00 R a E00

1 0.1 468.994 438 340 395 273 843N=26 1 -10 24.446 394 090 129 924 468N=25

0.5 14.781 525 455 450 240 772N=19 -5 15.581 919 590 917 726 881N=25

1 2.500 000 000 000 000 000N=3,Exact -1 7.427 602 986 235 605 737N=26

2 0.281 457 639 408 567 801N=44 0 5.075 582 015 226 783 066N=26

3 0.180 768 103 642 728 017N=66 1 2.500 000 000 000 000 000N=3,Exact

4 0.179 669 842 444 710 526N=80 5 − 12.356 931 301 584 560 963N=35

5 0.179 668 484 856 687 713N=82 10 − 49.984 937 021 677 890 425N=43

TABLE V: Eigenvalues E00 for V (r) = −a/r+ br2, r ∈ (0, R), where we fixed a = R = 1 and allowed b to vary. The subscript
N refer to the number of iterations used by AIM.

R = 1, a = 1

b E00

0.1 2.399 281 395 696 719 214N=22

0.2 2.424 527 479 482 894 839N=22

0.5 2.500 000 000 000 000 000N=3

1.0 2.624 907 458 899 526 414N=31

2.0 2.871 465 192 314 860 746N=35

5.0 3.585 958 081 033 459 432N=41

10.0 4.698 782 960 476 752 179N=47

VI. SPECTRAL CHARACTERISTICS

In this section we shall discuss the spectral characteristics associated with the crossings of the energy levels. We have
employed the generalized pseudo-spectral (GPS) Legendre method with mapping, which is a fast algorithm that has
been tested extensively and shown to yield the eigenvalues with an accuracy of twelve digits after the decimal. A
more detailed account, with several applications of GPS, can be found in [30–35] and the references therein.

In the present work, we have also verified the accuracy of these results, in a few selected cases, by using AIM. We
shall first consider the case defined by R → ∞, a = 1 and variable b, under which the potential given by Eq.(1) can
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be regarded as representing the hydrogen atom confined by a soft harmonic oscillator potential. Starting from the
free HA (b = 0), the effect of finite b is to remove the accidental degeneracy and raise the energy levels such that
E(ν, `) > E(ν, `+1) (see Ref. [36]). As the starting E(ν, `) < 0 given by the HA spectrum, there exists a critical value
of b = bc, corresponding to each level, defined by the condition E(ν, `) = 0. The numerical values of bc are found
to be rather small, except for the ground state, indicating that a weak confinement due to the harmonic potential is
sufficient to realize the condition that E(ν, `) > 0 for all b > bc. In the usual spectroscopic notations the levels

(1s2s2p3s3p3d4s4p4d4f)

are defined by the bc values given respectively by

bc = (0.32533, 0.004831, 0.00771, 0.00042, 0.00051, 0.00079, 0.00007, 0.00008, 0.00010, 0.00015).

In Fig. 1, we have displayed the passing of the energy levels corresponding to 4s4p4d4f states through E = 0 at
bc. We know tht the eigenspectrum of free HA is indeed very sensitive to the harmonic confinement since it is
found numerically that at b = 0.000001, the eigenvalues are already positive, corresponding to the states given by
7p, 7d, 8d, .., 7f, 8f, .., 7g... The crossings of energy levels can be gauged by the change of ordering from the hydrogen-
like

(1s2p2s3d3p3s4f4d5g4p4s5f5d6g5p5s6f6d7g6p6s7f7d8g7p8f8d9g9f . . . )

to

→ (1s2p2s3d3p4f3s4d5g4p5f4s5d6g5p6f5s6d7g6p7f6s7d8g7p8f8d9g9f . . . )

as the parameters of the potential change along (a = 1, b = 0) → (a = 1, b = 0.001) → (a = 1, b = 0.5). It follows
that the (3s, 4f), (4s, 5f) . . . levels defined by (ν, `) and (ν + 1, `+ 3) cross at a certain b.

E=0 at Critical b with a=1, R=100

-0.04

-0.02

0

0.02

0.04

0.00001 0.00006 0.00011 0.00016

b

E 
(a

.u
.)

4s
4p
4d
4f

FIG. 1: The critical b, denoted as bc in the text at which E(ν, `) = 0 are shown for the 4s, 4p, 4d, 4f states. The large value of
R = 100 corresponds essentially to the free state of the potential in Eq.(1) with a = 1.

In Fig. 2, we have displayed this behavior corresponding to a = 1. This spectral characteristic is similar to that
found earlier [37] for the case of the soft Coulomb potential. Further, the eigenvalue (ν = 5, ` = 4) is found to cross
(ν − 1, `− 4), (ν − 1, `− 3)(ν, `− 4), (ν, `− 3)(ν, `− 2), (ν, `− 1) as b changes from 0 to 0.5.
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crossings of (3s,4f) and (4s,5f) levels
V(r) = -1/r +br2

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.001 0.002 0.003 0.004 0.005

b

E 
(a

.u
.)

3s
4s
5s
4f
5f
6f

FIG. 2: The crossings of levels as a function of b, corresponding to the free state of the potential in Eq.(1) with a = 1. The
levels defined by (ν, `) and (ν + 1, `+ 3) are shown.

Next, we consider the new spectral characteristics introduced when, in addition to the harmonic-oscillator potential
term, a second confining feature consisting of an impenetrable sphere of finite radius R is introduced. Such a potential
factor further raises the energy levels as R is diminished, → 0. As a consequence the bc values get smaller. This is
depicted in Fig. 3 for the 4s and 4p states at two different values of R of 100 and 30 a.u., respectively. The former
corresponds to the case R → ∞, i.e. just the potential in Eq.(1). Varying R under fixed a yields a different level
ordering, depending upon the value of b, as this situation corresponds to two specifically chosen confinement features
imposed on the hydrogen-like potential at each point. To illustrate this, we consider the case defined by a = 1, b = 0.5
and variable R. Our calculations suggest that the ordering of levels changes from

(1s2p2s3d3p4f3s4d5g4p5f4s5d6g5p6f5s6d7g6p7f6s7d8g7p8f8d9g9f10g . . . )

to

→ (1s2p3d2s4f3p5g4d3s5f4p6g5d4s6f5p7g6d5s7f6p8g7d6s8f7p9g8d9f10g . . . )

as R changes from ∞→ 0. The crossings of levels are now observed between the state (ν, `) and (ν − 1, `+ 2).
In Fig. 4, we have shown this feature corresponding to the confined (3s, 4d) and (3s, 4f) states. Additionally, the 5g
level is found to fall below 4d and 3s levels, successively, as R decreases. It is evident that the imposition of a double
confinement effect, mediated through the combination of br2 and the boundary at R leads to the crossings among a
wider set of the states of the hydrogen-like atom, not observed in the separate singly confined situations. A possible
experimental system of embedded atom inside zeolite, fullerine, or liquid helium droplets under very strong laser fields
could be modelled using the doubly confined Coulomb potential as described in this work.
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E=0 at Critical b with a=1, R=30 and R=100

-0.04

-0.03

-0.02

-0.01

0

0.01

0 0.00005 0.0001
b

E 
(a

.u
.)

4s(100)
4s(30)
4p(100)
4p(30)

FIG. 3: The critical b, denoted as bc in the text at which E(ν, `) = 0 are shown for the 4s, 4p states. The value of bc decreases
as R decreases: specifically, the essentially free state of the potential in Eq.(1) with a = 1 at R = 100 is confined to a smaller
value of R = 30. The numbers inside brackets denote R.

Crossing of energy levels as a function of R
[a=1,b=0.5] 

3.5

6

8.5

11

13.5

16

18.5

1.5 2 2.5 3 3.5 4

R (a.u)

E 
(a

.u
.)

3s
3p
4d
4f
5g

FIG. 4: The crossings of levels as R is changed as the potential in Eq.(1) is defined by the values a = 1 b = 0.5. Crossings are
observed between the state (ν, `) and (ν − 1, `+ 2) as shown by the (3s, 4d) and (3s, 4f) levels. The 5g level is shown to cross
4d and 3s as R decreases.



15

VII. CONCLUSION

In this study we first consider a very elementary model for an atom, namely a single particle which moves in a central
Coulomb potential −a/r and obeys quantum mechanics. We then adjoin two confining features: soft confinement by
means of an attractive oscillator term br2, and hard confinement produced by containment inside an impenetrable
spherical cavity of radius R. The paper reports on the effects of the confinement parameters {b, R} on the original
Coulomb spectrum which, of course, is given in atomic units by E = −a2/(2ν2). By a combination of analytical
and numerical techniques, we are able to make considerable progress in analyzing the spectral characteristics of this
confined atomic model. In future work we plan to undertake a similar study in which the pure Coulomb term is
replaced by a more physically interesting screened-Coulomb potential, or a soft-core potential such as −a/(r + β).
The purpose of this work is to look at model problems that contain physically interesting features but are still simple
enough to yield to analytical as well as purely numerical analysis.
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