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Abstract 

Radial, angular and total correlation energies are calculated for four two-electron systems with 

atomic numbers Z = 0 – 3 confined within an impenetrable sphere of radius R. We report 

accurate results for the non-relativistic, restricted Hartree-Fock and radial limit energies over a 

range of confinement radii from 0.05 – 10 a0. At small R, the correlation energies approach 

limiting values that are independent of Z while at intermediate R, systems with Z  1 exhibit a 

characteristic maximum in the correlation energy resulting from an increase in the angular 

correlation energy which is offset by a decrease in the radial correlation energy. 
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1. Introduction 

 The concept of electron correlation energy ( corrE ) was first proposed by Wigner [1] in his 

classic study of free electrons in a metal. It was subsequently discussed by Gell-Mann and 

Brueckner [2] in the context of an electron gas at high density and later defined by Löwdin [3] as 

the difference  

 corr HFE E E ,         (1) 

where E is the exact, non-relativistic energy, HFE  is the limiting unrestricted Hartree-Fock 

energy and corrE  is seen to be negative.  

 Correlation energy is among the most important and difficult problems in quantum 

chemistry, having been characterized by Tew et al.
 
[4] as “The many-body problem at the heart 

of chemistry.” It is important because calculations of chemical accuracy require accurate 

evaluation of the correlation energy and because correlation energy calculations are a testing 

ground for the exchange potentials of density functional theory. It is difficult because accurate 

calculation of the correlation energy as a difference requires calculation of the non-relativistic 

energy and the Hartree-Fock energy to very high accuracy.  

 

 Understanding the factors that determine the correlation energy is complicated by the dearth 

of parameters that can be conveniently varied to measure their effect. For two-electron systems, 

the obvious parameter is Z, the nuclear charge. The effects of varying Z have been studied in 

great detail by Koga et al
 
[5]. Ezra and Berry [6] constrained the electrons to move on the surface 

of a sphere and investigated Coulombic, Gaussian and -function repulsive interactions. They 

then extended this work to two particles on concentric spheres [7]. Recently Loos and Gill have 

varied D, the dimensionality of two-electron systems and evaluated the resulting changes in the 
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correlation energy. They considered D-helium, D-spherium [8] where the electrons move in a 

constant potential on the surface of a hypersphere of radius 1/Z, D-hookium [9,10] where the 

electrons move in the harmonic potential   2 2V r r  and D-ballium [11,12] where the electrons 

are confined by an impenetrable barrier in a D-dimensional ball of radius R. Such a set of model 

systems are useful in providing further insight to the electron correlation problem. 

 The present study focuses on the effects of changing the radius of confinement on the 

correlation energy of ballium, the H
-
 ion, He and the Li

+
 ion confined at the center of an 

impenetrable sphere. The correlation between the electrons can be varied by changing the size of 

the system.  

 This work follows from the pioneering work of Gimarc [13], who investigated the 

correlation energy of the confined, two-electron atom using a three-term, explicitly correlated 

wavefunction to calculate the non-relativistic energy and a double-zeta wavefunction [14] to 

calculate the Hartree-Fock energy. Recent work using explicitly correlated wavefunctions to 

calculate accurate ground state energies [15-18] and accurate unrestricted Hartree-Fock 

calculations provided an opportunity to perform a detailed study confined two-electron systems. 

To the best of our knowledge, these are the first high-accuracy correlation energy calculations 

performed on confined atomic systems since the work of Gimarc.  

 We note here that the correlation energy within the Kohn-Sham (KS) model [19] of the 

density functional theory (DFT) [20] is defined in a different manner. The total KS energy-

density functional is prescribed as the sum of the kinetic energy Ts [ρ] for a noninteracting-

electron system, the electron–external-potential interaction energy, the electron-electron classical 

Hartree Coulomb repulsion Eh [ρ], and Exc [ρ] , the exchange-correlation energy. Thus, all non-

classical electron interactions, i.e. Pauli exchange, electron correlation, and Tc [ρ] -the difference 
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between the kinetic energy of the interacting- and non-interacting-electron systems, are 

represented by the unknown functional Exc [ρ], the functional derivative of which defines the 

exchange-correlation potential. Accurate quantitative evaluation of these various energy 

contributions using the electron density, ρ(r), derived from the wave functional calculations have 

been reported earlier [21] for the He-isoelectronic series , among other light atoms, in the 

unconfined state. 

 The accurate investigation of the properties of the various model systems listed above, with 

their tunable parameters for investigating correlation, provide an excellent opportunity for 

systematic exploration, and improvement, of the myriad density functionals currently available 

to the electronic structure [22,23]. 

 The non-relativistic energies were calculated using explicitly correlated expansions in 

Hylleraas coordinates [24] while the Hartree-Fock calculations were accomplished through a B-

spline approach, which was independently verified through use of a method employing a 

spherical Bessel function representation [25].  

As pointed out by Taylor and Parr. [26], the correlation energy can be partitioned into the 

radial correlation energy  ,rad corrE  and the angular correlation energy  ,ang corrE . Radial 

correlation accounts for the tendency of the two electrons to be at different distances from the 

nucleus while angular correlation accounts for the tendency of the two electrons to occupy 

positions on opposite sides of the nucleus. Following the method of Koga [27], the radial limit 

energy was calculated by modifying the Hylleraas expansion to exclude angular correlation from 

the wavefunction. The radial correlation energy was then obtained as 

 ,  rad corr radial HFE E E .        (2) 

The angular correlation energy was found by subtracting radialE  from E to obtain 
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 ,  ang corr radialE E E .         (3) 

A principal aim of the present work was to investigate the variation of ,rad corrE  and ,ang corrE  

caused by changes in Z and in the radius of confinement, R. 

 

2. Computational details 

 Calculation of the non-relativistic energies followed the method of ten Seldam and de Groot 

[30] through the development of the secular determinant. Atomic units were used throughout. 

The explicitly correlated wavefunction for two electrons confined in an impenetrable sphere of 

radius R was an expansion of the form 

   
1

1 1

2 2
k k k

N
l m ns

k

k

R s t R s t e c s t u 



   
       
   

 ,    (4) 

where s, t and u are the Hylleraas coordinates [19] defined by 

 1 2 1 2 12; ;s r r t r r u r      .       (5) 

The factors  
1

2
R s t
 

  
 

 are cutoff functions which insure that the wavefunction goes to zero 

at R. The sck are variational parameters determined by solving the secular determinant while the 

non-linear parameter  was determined by hand minimization. Since the exponential se   

incorporates the electron-nuclear attraction,  for ballium was set equal to zero and the 

wavefunction had the same form as equation (21) of [7]. We note in passing that for R  1 a0, 

setting  = 0 introduces error in sixth decimal place, even for Z = 2. 

 All terms with 7k k kl m n    were included in the wavefunction, subject to the requirement 

that mk = even. This gave a 70-term wavefunction. For the radial energy, we used a similar 
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wavefunction but required 0kn   and included all terms with 15k kl m  . This resulted in a 72-

term wavefunction. 

 The required integrals were evaluated as the sum of the three sets of integrals 

 

2 2 2 2

0 0 0 0 0 2 0

R s u R R s u R s R s

R R R

ds dt du ds du dt ds du dt ds du dt

 

             (6) 

The calculations were coded in Maple and performed on a 2.66 GHz dual-core processor. 

Typical computational time was 70 minutes. 

 After the completion of these calculations, we became aware of the work of Pan et al. [29], 

who have developed a formulation of the Hylleraas integrals that changes the order of integration 

and thereby reduces equation (6) to two integrals. We have subsequently investigated the effect 

on the time of integration and have found that implementation of the method of Pan gives a 30% 

reduction in the time required to evaluate the Hylleraas integrals without affecting the numerical 

accuracy. 

 The restricted Hartree-Fock energies were calculated through a method employing a zeroth 

order spherical Bessel function representation of the Hartree-Fock orbitals. This method and its 

implementation has been described in detail in [25]. In a basis of zeroth order spherical Bessel 

functions, convergence with respect to principal quantum number (μ) is rapid, requiring an μmax 

of 7 for 10
-9

 Eh accuracy for the Z=0 problem [7,25]. As was observed in [25], for Z ≠ 0 

convergence of this basis is far slower with respect to μ, and is a much subtler function of R. For 

H
-
, He, and Li

+
 several representative R were investigated and converged with respect to μ. We 

have also employed a B-spline approach in order to evaluate the performance of the zero order 

spherical Bessel representation. B-spline calculations were carried out using a modified HF code 

[16] with the choice of 100-term B-spline set of order K = 9. A preset finite radius of 
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confinement R on an exponential type knot sequence [17] with the initial interval as 10
-4

 was 

employed. The zero order spherical basis set Hartree-Fock calculations have been found to be in 

quantitative agreement with the B-spline basis results. 

 

3. Results and discussion 

 , radialE E  and HFE  were calculated over the range of R from 0.05 a0 to 10 a0. Selected 

energies and the corresponding correlation energies of equations (1-3) are shown in Table 1. 

Also shown is % corrE , defined as  

 % 100corr
corr

E
E

E
  . (7) 

The correlation energies are summarized in Figure 1 which shows ,rad corrE and corrE  as a function 

of R with ,ang corrE given by the distance between the curves. As R approaches 0, ,rad corrE and corrE  

for the H
-
 ion, He and the Li

+
 ion approach the energies for ballium. The limiting values were 

found to be ,rad corrE = 0.0032 Eh, corrE = 0.0552 Eh and ,ang corrE = 0.0520 Eh. 

 For large R, approaching the free systems, corrE  for H
-
, He and Li

+
 is relatively constant 

even though E for Li
+
 is 13 times greater than E for H

-
 with a resulting decrease in % corrE . This 

constancy of corrE  results from a small decrease in ,rad corrE  which is offset by a similar increase 

in ,ang corrE . As pointed out by Gimarc [13], the electrons do most of their correlating of motion 

inside what we normally consider the dimensions of the atom or ion. A case could be made for 

defining the dimension of a system as that region outside of which the correlation energy 

becomes constant. 
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 For ballium, ,rad corrE is relatively constant, increasing from -0.003133 Eh  at R = 0.05 a0 to -

0.0012755 Eh at R = 10 a0. ,ang corrE  is ~15 times larger than ,rad corrE  and increases from -

0.051816 Eh  at R = 0.05 a0 to -0.026821 Eh at R = 10 a0. Thus corrE for ballium depends largely 

on angular correlation even at large R. 

 For the H
-
 ion, corrE  goes through three distinct regions as shown in Figure 2. For increasing 

R at tight confinement, corrE  is dominated by the increase in ,ang corrE , similar to what was seen 

for ballium. However, the presence of an attractive nucleus results in a concurrent decrease in

,rad corrE which offsets the increase in ,ang corrE  resulting in a maximum in corrE at R = 5.51 a0. The 

decrease in ,rad corrE  can be thought of as resulting from the increase in confinement volume 

which increases the probability of the two electrons being found at different distances from the 

nucleus and thus stabilizes the system. ,rad corrE and ,ang corrE  cross at R = 7.21 a0 with ,rad corrE  

remaining lower than ,ang corrE  as R increases. For R > ~15 a0, confinement has little effect and 

the correlation energies approach their free-system values. 

 Helium and Li
+
 show similar dependence on R except the maximum in corrE  is shifted 

inward to R = 2.73 a0 for helium and to R = 1.84 a0 for Li
+
. Also, the crossover between ,rad corrE  

and ,ang corrE was found to be unique to H
-
, with ,ang corrE  remaining lower than ,rad corrE  at all 

values of R for Z  2. 

 

4. Conclusions 

 In this work, we have reported accurate values for non-relativistic, radial limit and Hartree-

Fock energies for confined two-electron systems with Z = 0, 1, 2 and 3 and have used them to 
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find the radial and angular contributions to the correlation energy over a range of values of 

nuclear charge and confinement. We find that the correlation energies are relatively constant 

except at very tight confinement, even though the system energies vary significantly. 

 Gimarc [13] conjectured that the partitioning of ,ang corrE  and ,rad corrE  with changing R would 

differ from the free-system values. The correctness of his conjecture can be easily seen in 

Figures 1 and 2. The behavior of the system is can be characterized in terms of the following 

observations. 

1. ,ang corrE  is the primary contributor to corrE  for ballium, H
-
, He and Li

+
 at tight confinement. 

This is consistent with our picture of tight confinement reducing the opportunities for radial 

correlation and most of the correlation energy resulting from inclusion of angular terms in the 

wavefunction. As R increases, ,ang corrE  for H
-
, He and Li

+
 increases monotonically with 

decreasing slope approaching the free-system value from below. As Z increases, the value of R at 

which free-system behavior is obtained decreases, consistent with decreased size of the atom/ion. 

Similarly, the free-system value of ,ang corrE  decreases as Z increases. We expect those trends to 

continue for Z > 3. 

2. For H
-
, He and Li

+
, ,rad corrE decreases with increasing R, approaching the free-system value 

from above. This is consistent with our picture of increased opportunity for the electrons to be at 

different distances from the nucleus as the volume of the system increases, The slope of the 

,ang corrE  versus R curve is negative at small R, becomes increasingly negative as R increases, then 

passes through a minimum before increasing to zero for large R. These minima in the slope occur 

at R = 5.32 a0, 1.49 a0 and 1.18 a0 for H
-
, He and Li

+
 respectively. As Z increases, we expect the 

minima to shift to smaller R. 
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3. When ,ang corrE  and ,rad corrE  are added to give corrE , the result is a maximum in corrE  that 

occurs at a value of R that is slightly larger than the minima listed above. Based on the behavior 

of ,ang corrE  and ,rad corrE  discussed above, we expect the maximum in corrE  to shift to smaller R 

and lower energy with increasing Z. 

 ,ang corrE  and ,rad corrE  are found as small differences between the non-relativistic, radial limit 

and Hartree-Fock energies. They are determined by the electron-nuclear attraction, the electron-

electron repulsion and the requirement that the wavefunction go to zero at R. The detailed 

interactions behind the shapes of the curves are both interesting and complicated. Better 

understanding of the details of these interactions offers interesting possibilities for future work. 

 It is hoped that this careful investigation of correlation for a series of two-electron systems 

will be a boon to the electronic structure community, both through a provision of benchmark 

quality data, and through additional physical understanding of the phenomena of correlation dual 

functions of confining and nuclear potentials. 
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R  (a 0) E HF E RL
1

E
2 E rad,corr E ang,corr E corr %E corr

2e
- 0.05 3983.548808 3983.545675 3983.493858 -0.003133 -0.051816 -0.054950 0.0014

1.0 11.641749 11.638807 11.590839 -0.002942 -0.047969 -0.050910 0.4392

5.0 0.739762 0.737467 0.701614 -0.002295 -0.035853 -0.038148 5.4372

10.0 0.266624 0.264870 0.238049 -0.001755 -0.026821 -0.028575 12.0040

H
- 0.05 3885.925658 3885.922469 3885.870899 -0.003188 -0.051570 -0.054759 0.0014

1.0 6.637526 6.633326 6.589644 -0.004200 -0.043682 -0.047882 0.7266

5.0 -0.425815 -0.438594 -0.461974 -0.012779 -0.023380 -0.036159 7.8270

10.0 -0.486150 -0.509209 -0.524688 -0.023059 -0.015478 -0.038538 7.3449

 -0.487930 -0.514489 -0.527748 -0.026560 -0.013258 -0.039818 7.5449

He 0.05 3787.859261 3787.856017 3787.804693 -0.003245 -0.051324 -0.054569 0.0014

1.0 1.061203 1.055135 1.015755 -0.006067 -0.039380 -0.045448 4.4743

5.0 -2.861390 -2.878668 -2.903409 -0.017278 -0.024741 -0.042019 1.4472

10.0 -2.861680 -2.879025 -2.903724 -0.017345 -0.024699 -0.042044 1.4479

 -2.861680 -2.879025 -2.903724 -0.017345 -0.024699 -0.042044 1.4479

Li
+ 0.05 3689.341971 3689.338669 3689.287592 -0.003302 -0.051077 -0.054379 0.0015

1.0 -5.318324 -5.326867 -5.362399 -0.008544 -0.035531 -0.044075 0.8219

5.0 -7.236415 -7.252486 -7.279912 -0.016071 -0.027426 -0.043497 0.5975

10.0 -7.236415 -7.252487 -7.279913 -0.016072 -0.027426 -0.043498 0.5975

 -7.236415 -7.252487 -7.279913 -0.016072 -0.027426 -0.043498 0.5975
1
 72 term Hylleraas expansion in s  and t

2
 70 term Hylleraas expansion in s , t  and u

Table 1. Selected energies for confined 2e
-
, H

-
, He and Li

+
.
 
R  is in a 0.

 
Energies are in E h
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FIG 1. ,rad corrE and corrE  for 2e
-
, H

-
, He and Li

+
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FIG 2. Correlation energies for H
-
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