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Abstract

Radial, angular and total correlation energies are calculated for four two-electron systems with
atomic numbers Z = 0 — 3 confined within an impenetrable sphere of radius R. We report
accurate results for the non-relativistic, restricted Hartree-Fock and radial limit energies over a
range of confinement radii from 0.05 — 10 ay. At small R, the correlation energies approach
limiting values that are independent of Z while at intermediate R, systems with Z > 1 exhibit a
characteristic maximum in the correlation energy resulting from an increase in the angular

correlation energy which is offset by a decrease in the radial correlation energy.

PACS numbers: 31.15.V-, 31.15.A-

* Corresponding author.
E-mail address: ed.montgomery@centre.edu (H.E. Montgomery).



1. Introduction

The concept of electron correlation energy ( £, ) was first proposed by Wigner [1] in his

classic study of free electrons in a metal. It was subsequently discussed by Gell-Mann and
Brueckner [2] in the context of an electron gas at high density and later defined by Lowdin [3] as
the difference

Ecorr = E - EHF s (1)

where E is the exact, non-relativistic energy, E,,. is the limiting unrestricted Hartree-Fock

energy and E,  is seen to be negative.

Correlation energy is among the most important and difficult problems in quantum
chemistry, having been characterized by Tew et al. [4] as “The many-body problem at the heart
of chemistry.” It is important because calculations of chemical accuracy require accurate
evaluation of the correlation energy and because correlation energy calculations are a testing
ground for the exchange potentials of density functional theory. It is difficult because accurate

calculation of the correlation energy as a difference requires calculation of the non-relativistic

energy and the Hartree-Fock energy to very high accuracy.

Understanding the factors that determine the correlation energy is complicated by the dearth
of parameters that can be conveniently varied to measure their effect. For two-electron systems,
the obvious parameter is Z, the nuclear charge. The effects of varying Z have been studied in
great detail by Koga et al [5]. Ezra and Berry [6] constrained the electrons to move on the surface
of a sphere and investigated Coulombic, Gaussian and &-function repulsive interactions. They
then extended this work to two particles on concentric spheres [7]. Recently Loos and Gill have

varied D, the dimensionality of two-electron systems and evaluated the resulting changes in the



correlation energy. They considered D-helium, D-spherium [8] where the electrons move in a

constant potential on the surface of a hypersphere of radius 1/Z, D-hookium [9,10] where the

electrons move in the harmonic potential ¥ (r)=r" /2 and D-ballium [11,12] where the electrons

are confined by an impenetrable barrier in a D-dimensional ball of radius R. Such a set of model
systems are useful in providing further insight to the electron correlation problem.

The present study focuses on the effects of changing the radius of confinement on the
correlation energy of ballium, the H ion, He and the Li" ion confined at the center of an
impenetrable sphere. The correlation between the electrons can be varied by changing the size of
the system.

This work follows from the pioneering work of Gimarc [13], who investigated the
correlation energy of the confined, two-electron atom using a three-term, explicitly correlated
wavefunction to calculate the non-relativistic energy and a double-zeta wavefunction [14] to
calculate the Hartree-Fock energy. Recent work using explicitly correlated wavefunctions to
calculate accurate ground state energies [15-18] and accurate unrestricted Hartree-Fock
calculations provided an opportunity to perform a detailed study confined two-electron systems.
To the best of our knowledge, these are the first high-accuracy correlation energy calculations
performed on confined atomic systems since the work of Gimarc.

We note here that the correlation energy within the Kohn-Sham (KS) model [19] of the
density functional theory (DFT) [20] is defined in a different manner. The total KS energy-
density functional is prescribed as the sum of the kinetic energy 7 [p] for a noninteracting-
electron system, the electron—external-potential interaction energy, the electron-electron classical
Hartree Coulomb repulsion Ej, [p], and Ex. [p] , the exchange-correlation energy. Thus, all non-

classical electron interactions, i.e. Pauli exchange, electron correlation, and 7. [p] -the difference



between the kinetic energy of the interacting- and non-interacting-electron systems, are
represented by the unknown functional Ey [p], the functional derivative of which defines the
exchange-correlation potential. Accurate quantitative evaluation of these various energy
contributions using the electron density, p(r), derived from the wave functional calculations have
been reported earlier [21] for the He-isoelectronic series , among other light atoms, in the
unconfined state.

The accurate investigation of the properties of the various model systems listed above, with
their tunable parameters for investigating correlation, provide an excellent opportunity for
systematic exploration, and improvement, of the myriad density functionals currently available
to the electronic structure [22,23].

The non-relativistic energies were calculated using explicitly correlated expansions in
Hylleraas coordinates [24] while the Hartree-Fock calculations were accomplished through a B-
spline approach, which was independently verified through use of a method employing a
spherical Bessel function representation [25].

As pointed out by Taylor and Parr. [26], the correlation energy can be partitioned into the

radial correlation energy (E

rad ,corr

) and the angular correlation energy (E ) Radial

ang,corr

correlation accounts for the tendency of the two electrons to be at different distances from the
nucleus while angular correlation accounts for the tendency of the two electrons to occupy
positions on opposite sides of the nucleus. Following the method of Koga [27], the radial limit
energy was calculated by modifying the Hylleraas expansion to exclude angular correlation from
the wavefunction. The radial correlation energy was then obtained as

E

rad ,corr = Eradial -

By 2)

The angular correlation energy was found by subtracting £ from E to obtain

radial



Eang,carr =E _Emd[al . (3)

and E

rad,corr ang,corr

A principal aim of the present work was to investigate the variation of £

caused by changes in Z and in the radius of confinement, R.

2. Computational details

Calculation of the non-relativistic energies followed the method of ten Seldam and de Groot
[30] through the development of the secular determinant. Atomic units were used throughout.
The explicitly correlated wavefunction for two electrons confined in an impenetrable sphere of

radius R was an expansion of the form

W= [R - %(s - t)} {R - %(s + t)} e ™ ick shtu™ 4)

where s, ¢ and u are the Hylleraas coordinates [19] defined by

S=K+n; t=—K+n; uU=r,. (5)
1 . L .
The factors {R — E(S + t)} are cutoff functions which insure that the wavefunction goes to zero

at R. The c¢,s are variational parameters determined by solving the secular determinant while the

non-linear parameter « was determined by hand minimization. Since the exponential e **
incorporates the electron-nuclear attraction, « for ballium was set equal to zero and the
wavefunction had the same form as equation (21) of [7]. We note in passing that for R < 1 ay,
setting o = 0 introduces error in sixth decimal place, even for Z =2.

All terms with /, +m, +n, <7 were included in the wavefunction, subject to the requirement

that m; = even. This gave a 70-term wavefunction. For the radial energy, we used a similar



wavefunction but required n, =0 and included all terms with /, +m, <15. This resulted in a 72-

term wavefunction.

The required integrals were evaluated as the sum of the three sets of integrals

Ids dtdu = Tdsi duT dt +2f dSZI].S du]t dt +2f ds j duzj‘s dt (6)
0 0 0 R 0 0 R 2R 0
The calculations were coded in Maple and performed on a 2.66 GHz dual-core processor.
Typical computational time was 70 minutes.

After the completion of these calculations, we became aware of the work of Pan et al. [29],
who have developed a formulation of the Hylleraas integrals that changes the order of integration
and thereby reduces equation (6) to two integrals. We have subsequently investigated the effect
on the time of integration and have found that implementation of the method of Pan gives a 30%
reduction in the time required to evaluate the Hylleraas integrals without affecting the numerical
accuracy.

The restricted Hartree-Fock energies were calculated through a method employing a zeroth
order spherical Bessel function representation of the Hartree-Fock orbitals. This method and its
implementation has been described in detail in [25]. In a basis of zeroth order spherical Bessel
functions, convergence with respect to principal quantum number (x) 1s rapid, requiring an gy
of 7 for 107 Ey accuracy for the Z=0 problem [7,25]. As was observed in [25], for Z #0
convergence of this basis is far slower with respect to x, and is a much subtler function of R. For
H', He, and Li" several representative R were investigated and converged with respect to u. We
have also employed a B-spline approach in order to evaluate the performance of the zero order

spherical Bessel representation. B-spline calculations were carried out using a modified HF code

[16] with the choice of 100-term B-spline set of order K = 9. A preset finite radius of



confinement R on an exponential type knot sequence [17] with the initial interval as 10™* was
employed. The zero order spherical basis set Hartree-Fock calculations have been found to be in

quantitative agreement with the B-spline basis results.

3. Results and discussion

E,E

ra

o and E,. were calculated over the range of R from 0.05 ao to 10 ao. Selected

energies and the corresponding correlation energies of equations (1-3) are shown in Table 1.

Also shown is %FE defined as

corr

%E — corr

corr

x100. (7

and E__ as a function

rad ,corr corr

The correlation energies are summarized in Figure 1 which shows E

and £

rad ,corr corr

of Rwith £, . given by the distance between the curves. As R approaches 0, E

for the H ion, He and the Li" ion approach the energies for ballium. The limiting values were

found to be E

rad ,corr

=0.0032 Ey, E

corr

=0.0552 Eyand E =0.0520 Ey.

ang ,corr

For large R, approaching the free systems, £ for H', He and Li" is relatively constant

corr

even though E for Li" is 13 times greater than E for H™ with a resulting decrease in %ZE, . This

corr

constancy of £, results from a small decrease in £

corr rad ,corr

which is offset by a similar increase

in £ . As pointed out by Gimarc [13], the electrons do most of their correlating of motion

ang ,corr
inside what we normally consider the dimensions of the atom or ion. A case could be made for
defining the dimension of a system as that region outside of which the correlation energy

becomes constant.



For ballium, £

rad ,corr

is relatively constant, increasing from -0.003133 E}, at R = 0.05 ap to -

0.0012755 E,at R=10ay. E is ~15 times larger than E, and increases from -

ang,corr rad ,corr

0.051816 E}, at R=0.05 a t0-0.026821 Epat R =10 ao. Thus E

corr

for ballium depends largely

on angular correlation even at large R.

For the H ion, £, goes through three distinct regions as shown in Figure 2. For increasing

R at tight confinement, £

corr

is dominated by the increase in £ similar to what was seen

ang,corr
for ballium. However, the presence of an attractive nucleus results in a concurrent decrease in

E which offsets the increase in E resulting in a maximum in E, _at R =5.51 a,. The

rad ,corr ang ,corr corr

decrease in £

rad ,corr

can be thought of as resulting from the increase in confinement volume

which increases the probability of the two electrons being found at different distances from the

and E cross at R = 7.21 ag with E

rad,corr ang,corr

nucleus and thus stabilizes the system. E

rad ,corr

remaining lower than E as R increases. For R > ~15 ay, confinement has little effect and

ang,corr
the correlation energies approach their free-system values.

Helium and Li" show similar dependence on R except the maximum in E,  is shifted

corr

inward to R =2.73 ay for helium and to R = 1.84 q, for Li*. Also, the crossover between E

rad ,corr

and E was found to be unique to H', with E at all

ang,corr ang,corr

remaining lower than E

rad ,corr

values of R for Z > 2.

4. Conclusions
In this work, we have reported accurate values for non-relativistic, radial limit and Hartree-

Fock energies for confined two-electron systems with Z =0, 1, 2 and 3 and have used them to



find the radial and angular contributions to the correlation energy over a range of values of
nuclear charge and confinement. We find that the correlation energies are relatively constant
except at very tight confinement, even though the system energies vary significantly.

Gimarc [13] conjectured that the partitioning of E and E, with changing R would

ang corr rad corr
differ from the free-system values. The correctness of his conjecture can be easily seen in
Figures 1 and 2. The behavior of the system is can be characterized in terms of the following
observations.

1. E is the primary contributor to £, for ballium, H", He and Li" at tight confinement.

ang ,corr corr
This is consistent with our picture of tight confinement reducing the opportunities for radial
correlation and most of the correlation energy resulting from inclusion of angular terms in the

wavefunction. As R increases, E

ung.corr tOr H, He and Li" increases monotonically with
decreasing slope approaching the free-system value from below. As Z increases, the value of R at

which free-system behavior is obtained decreases, consistent with decreased size of the atom/ion.

Similarly, the free-system value of £

g cor d€CTEASES a8 Z Increases. We expect those trends to
continue for Z > 3.

2.ForH,Heand Li", E decreases with increasing R, approaching the free-system value

rad ,corr
from above. This is consistent with our picture of increased opportunity for the electrons to be at
different distances from the nucleus as the volume of the system increases, The slope of the

E versus R curve is negative at small R, becomes increasingly negative as R increases, then

ang,corr
passes through a minimum before increasing to zero for large R. These minima in the slope occur
at R =5.32 ap, 1.49 ap and 1.18 a, for H', He and Li" respectively. As Z increases, we expect the

minima to shift to smaller R.



3. When E and E

ang ,corr rad ,corr

are added to give E_ _, the result is a maximum in £_  that

occurs at a value of R that is slightly larger than the minima listed above. Based on the behavior

of £ and E_

ang corr vad.cor discussed above, we expect the maximumin £, to shift to smaller R
and lower energy with increasing Z.

E and E

ang corr rad.cor are found as small differences between the non-relativistic, radial limit
and Hartree-Fock energies. They are determined by the electron-nuclear attraction, the electron-
electron repulsion and the requirement that the wavefunction go to zero at R. The detailed
interactions behind the shapes of the curves are both interesting and complicated. Better
understanding of the details of these interactions offers interesting possibilities for future work.
It is hoped that this careful investigation of correlation for a series of two-electron systems
will be a boon to the electronic structure community, both through a provision of benchmark

quality data, and through additional physical understanding of the phenomena of correlation dual

functions of confining and nuclear potentials.
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Table 1. Selected energies for confined 2¢”, H, He and Li". R is in a ;. Energies are in £,

R (ay) E yr Eg' E’ E rad.corr E angcorr E conr YoE corr
2¢7 0.05 3983.548808 3983.545675 3983.493858 -0.003133 -0.051816 -0.054950 0.0014
1.0 11.641749 11.638807 11.590839 -0.002942 -0.047969 -0.050910 0.4392
5.0 0.739762 0.737467 0.701614 -0.002295 -0.035853 -0.038148 5.4372
10.0 0.266624 0.264870 0.238049 -0.001755 -0.026821 -0.028575 12.0040
H 005 3885.925658 3885.922469 3885.870899 -0.003188 -0.051570 -0.054759 0.0014
1.0 6.637526 6.633326 6.589644 -0.004200 -0.043682 -0.047882 0.7266
5.0 -0.425815 -0.438594 -0.461974 -0.012779 -0.023380 -0.036159 7.8270
10.0 -0.486150 -0.509209 -0.524688 -0.023059 -0.015478 -0.038538 7.3449
) -0.487930 -0.514489 -0.527748 -0.026560 -0.013258 -0.039818 7.5449
He 0.05 3787.859261 3787.856017 3787.804693 -0.003245 -0.051324 -0.054569 0.0014
1.0 1.061203 1.055135 1.015755 -0.006067 -0.039380 -0.045448 4.4743
5.0 -2.861390 -2.878668 -2.903409 -0.017278 -0.024741 -0.042019 1.4472
10.0 -2.861680 -2.879025 -2.903724 -0.017345 -0.024699 -0.042044 1.4479
) -2.861680 -2.879025 -2.903724 -0.017345 -0.024699 -0.042044 1.4479
Li® 0.05 3689.341971 3689.338669 3689.287592 -0.003302 -0.051077 -0.054379 0.0015
1.0 -5.318324 -5.326867 -5.362399 -0.008544 -0.035531 -0.044075 0.8219
5.0 -7.236415 -7.252486 -7.279912 -0.016071 -0.027426 -0.043497 0.5975
10.0 -7.236415 -7.252487 -7.279913 -0.016072 -0.027426 -0.043498 0.5975
o0 -7.236415 -7.252487 -7.279913 -0.016072 -0.027426 -0.043498 0.5975

72 term Hylleraas expansion in s and ¢

%70 term Hylleraas expansion in s, # and u
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