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Dynamics of polar solvation : Route to single exponential relaxation
via translational diffusion’
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Abstract. A microscopic theoretical calculation of time-dependent solvation energy shows
that the solvation of an ion or a dipole is dominated by a single relaxation time if the
translational contribution to relaxation is significant.
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The dynamics of polar solvation is currently a subject of tremendous theoretical
and experimental interest (Calef and Wolynes 1983; Bagchi er al 1984, 1988;
Castner et al 1987, 1988; Maroncelli and Fleming 1987; Nagarajan et al 1987; Su and
Simon 1987; Wolynes 1987; Nichols and Calef 1988; Rips er al 1988). Many recent
experiments on solvation of a newly created charge or a dipole have measured the
solvation time correlation function, C,(f), defined by

v(1)—v(=)
v(0) =¥(®) ’

where the 7’s are the average frequencies of the emission spectra at various times.
Experimental results reveal a rich and diverse behaviour of C,(t). The correlation
function is single exponential in some polar liquids but markedly non-exponential
in some others (Castner et al 1987; Maroncelli and Fleming 1987). If one defines an
average ‘experimental’ relaxation time 7, by

G = (1)

fr.;——-[ dr C,(1), @)
Q

then 7, usually falls in between the Debye relaxation time, 7p , of the polar solvent
and the longitudinal relaxation time 7.[= (e=/&)-7p, Where & and g are
respectively the infinite and zero frequency dielectric constants of the polar
solvent|. As g, increases, 7, approaches 7. However, in some cases, like the
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solvation of excited LDS 50 in methanol andbuta'no'l. 7, 1S substantially smal.ler
than 7, . This last observation has created some copfgsum and lgd to the sugggstn()n
that translational motion of the solvent molecules is important in tk}ls case. Several
theoretical studies have been. carried out to understand the experlmgntal res_ults.

In this work we present the rather surprising result that' the /translational
contribution can not only accelerate the solvation process, but it may also‘rengkzr
the process single exponential in situations where the rotational contribution
proceeds on several relaxation time scales. . .

Our analysis is based on the following Smoluchqwskn—»Vlas:ov equation (SVE) for
the position and orientation dependent density, p(r, w, 1), of the solvent molecules

gf—i— Sp(r,w,t) = DRV2 ép(r,@,t)+DrV? 8p(r, w, r)
Po 2 ' l_ ’ '’ ’ ’ ’
- Dpg (— ) v: j dr' dw’ ¢(r, w,r', w ) Op(r', ', 1)
T
—DT(@ ) V[ dr do’ e(rm ' 0') Sp(, w0 1).(3)

where,
Bp(r,@,1) = p(r,w,1) =~ poq (r, @) = p(r,@,1)~py/ 4, (3a)

where Dy and Dy are, respectively, the rotational and translational diffusion
coefficients of the solvent molecules, p, is the equilibrium solvent density, V and V.
are, respectively, the spatial and the angular gradient operators, and c(roor’,w')
is the two-particle direct correlation function (Gray and Gubbins 1984). Equation 3
is strictly valid for a homogeneous isotropic dense liquid. It is derived on the
assumption that spatial and angular momenta relaxations are very fast and that

inertial effects can be neglected. The polarization fluctuation is given by
8P(r.1) = [ dos &(w) 8p(r. ®, 1), (4)

where &(w) is a unit vector with the orientation given by w. The time dependent
solvation energy is given by

AE(1) = | dk By (k)-6P (k. 1), | (5)

where E (k) is the Fourier transform of the bare field of the ion or the dipole
whose solvation is being investigated. In writing (5) we have assumed that the ion
or the dipole perturbs the solvent only to a smal degree so that oP(k,t) can be
given by (4) and (3). o C ‘

Next, we evaluate P (k, ). This is done by substituting (4) in*(3) and carrying
out the appropriate integrations. We then perform a Fourier transform on the
resulting expression to get (Chandra and Bagchi 1988)

J
57 OP(k,7) = ~(@Dg+ Drk?) oP(k, 1)

+ B @Drt+Dya) C(k)-8P(k, 1), (6)
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where the tensor C(k) is defined by (Gray and Gubbins 1984)
clhw. @) = cu (k) + @(0)-CR)&(@' )+ .. ... (7)

We shall assume that (k) is given by the mean spherical approximation (MSA)
theory; the conclusions presented here, however, do not depend critically on this
assumption. If we divide 8P (k,¢) into the usual longitudinal (P, ) and transverse
( P+) components, then (6) can be solved to obtain

Pi(k.t) = P, (k.0) exp(—t/7, (k). 8)
Prk,t) = Pr(k,0) exp(—t/tp(k)), (9)
with

P

(k) = 2Dg)"! ll +p’('ktr)“’w~ 3 (1 «+—p'(k(r)3) (Cy+ 2(',))le (8a)

-~

| L
k) = QD) 14+ p (koY ~ PL (L4 p (ko)) (ca—cp)| . (9a)
! 3

where p’ = Dy/2Dy o, ris the molecular diameter of a solvent molecule, Cy and
'y, are the usual MSA anisotropy functions (Gray and Gubbins 1984). The
parameter p’ is related to the van der Zwan-Hynes (1983) parameter p by
p' = plalo)® where a is the diameter of the solute. In figure 1, we have plotted
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Figure 1. The longitudinal relaxation time 7, (k) is plotted against the wave vector k for
several values of the parameter p’. The other parameter values are: py = 0-8, ¢, = 30.
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7. (k) against k for several values of the parameter p’. As can be seen from the
graph, there are two distinct regions in the dependence of 7, (k) on k. Near k = 0,
the dependence of 7, (k) on k is weak, especially so far p' < 0-2. Then, 7, (k)
increases sharply, followed by a broad maximum at k,, which is near k = 6-2/¢- It
is interesting to note that ko = 62 corresponds, in the real space, to the nearest
neighbour distance. This maximum reflects the slow structural relaxation in dense
liquids. For small p’, we can write (5) in the following form

AE(t) = ( f dk Ey(k) P, (k,0) ) exp(—t/r.)

k<k,

/ .
i J dk Ey(k) P (k,0) ) exp(—t/Ty), (10)

k. >k>k,

where k is a value between zero and ky,. If 7, (k) is weakly varying near the origin,
then the precise value of k, is not important. In most cases the first term in (10) is
the dominant one. . is a cut-off value which arises because of the molecular nature
of the solute particle. Equation (10) approximately includes the two essential
aspects of 7, (k) for small p’(< 0-2). :

Note that the division in (10) is similar to the one assumed by Wolynes (1987) in
his approximate solution of the dynamic MSA. Equation (10) has a similar
interpretation too. Note also that rp,/7, < gy and that 7, is not identical with 7, .
7p is given by the k— 0 limit of r7(k) which is given by (9a).

The biexponential (or the multi-exponential in the exact treatment) nature of
AE(r) disappears as p’ is increased further. As can be seen from figure 1, as p’
becomes greater than half, 7y, gets substantially smaller than 7,.. This behabiour
is depicted in figure 2 where the ratio 7,,/7, is plotted against p'. For large p’,
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Figure 2. The ratio 7, (k = ky)/7, (k = 0) is plotted against the parameter p’, As p'
increases, the relaxation time constant 7, (k = ku) decreases rapidly. The other
parameter values are the same as in figure 1.
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Table 1. Solvent properties at 20°C*,

= (e./e9) 7 Ty
Solvent p (ps)’ (ps)
Acetonitrile 0-10 0-2 0-4
DMSO 0-10 2.1 3.
Nitrobenzene 018 5.1 3.4
Methanol 0-76 9-2 3.3
n-Butanol I-6 120 66

*from Castner (1988)

the long time dynamics will be dominated by behaviour near k = 0; the rest will
show up only as transients. In order to compare with experiments, we have collected
the values of the parameter p in table I taken from Castner (1988) for LDS-50 in
several polar solvents. Note that p’ = p(a/o)?, where « and o are the diameters
of the solute and the solvent molecules respectively. Our theory predicts that for
methanol and butanol, translational effects will wash out nonexponential behaviour,
except perhaps in very short time periods. In these solvents, we predict that long
time decay will be given by 7, (k = 0). This is drastically different from solvents
with small p value where the long time behaviour will be dominated by 7, (k = k).
We predict that for solvents with large p values the continuum treatment of polari-
zation relaxation is misleading, especially so if the intermediate to large values of
the wave vector are probed by the solute. Such situations may arise in electron
transfer reactions and also in the solvation of a dipole, as observed earlier.

We end this communication with a note of caution. The present calculations are
based on MSA representation of the direct correlation function which is only a
crude representation of a real polar liquid, especially if it is protic and
hydrogen-bonded. However, the translational effects predicted here are expected
to be partially present even in such a solvent.
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