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Fisher–Shannon plane and statistical complexity of atoms

J.C. Angulo a,c, J. Antolín b,c, K.D. Sen d,∗

a Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071-Granada, Spain
b Departamento de Física Aplicada, EUITIZ, Universidad de Zaragoza, 50009-Zaragoza, Spain

c Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071-Granada, Spain
d School of Chemistry, University of Hyderabad, Hyderabad-500046, India

Received 25 May 2007; accepted 27 July 2007

Available online 6 August 2007

Communicated by B. Fricke

Abstract

Using the Hartree–Fock non-relativistic wave functions in the position and momentum spaces, the statistical measure of complexity C, due
to López-Ruiz, Mancini, and Calbet for the neutral atoms as well as their monopositive and mononegative ions with atomic number Z = 1–54
are reported. In C, given by the product of exponential power Shannon entropy and the average density, the latter is then replaced by the Fisher
measure to obtain the Fisher–Shannon plane. Our numerical results suggest that in overall the Fisher–Shannon plane reproduces the trends given
by C, with significantly enhanced sensitivity in the position, momentum and the product spaces in all neutral atoms and ions considered.
© 2007 Elsevier B.V. All rights reserved.
1. Introduction

The study complexity of the physical and biological systems
is a topic of great contemporary research interest. It is difficult
to define a universal measure of complexity. The quantification
of complexity of real systems have led to a variety of measures,
e.g., the algorithmic complexity [1,2], the statistical measure of
complexity C, defined by López-Ruiz, Mancini, Calbet (LMC)
[3,4] and the simple two-parameter disorder–order derived mea-
sure of complexity Γα,β according to Shiner, Davison, Lands-
berg (SDL) [5,6]. However, it is only very recently [7,8], that
the studies on the electronic structural complexity of neutral
atoms using the non-relativistic Hartree–Fock (HF) wave func-
tions [9] for atoms with atomic number Z = 1–54, have been re-
ported. Both C and Γα,β measures are defined as the product of
two global information measures. It is interesting to explore the
possibility of a statistical complexity measure which is given as
the product of a global and a local information measure. In this
Letter, we have examined numerically such a quantity defined
by the Fisher–Shannon information plane/product (FSIP) in the
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position and momentum spaces for the set of neutral atoms as
well as their monopositive and mononegative ions with atomic
number Z = 1–54 using the non-relativistic Hartree–Fock (HF)
wave functions [10,11]. These results are compared with the
corresponding estimates of C in order to ascertain the suitability
of the FSIP as a possible measure of complexity. We note here
that the FSIP has been earlier proposed [12] as a tool for study-
ing the electron correlation effects in the Hookean atoms and
the helium iso-electronic series. To our knowledge, the present
Letter examines, for the first time, the feasibility of FSIP as
measuring the complexity of atoms. Our test set is specifically
chosen to include the ionized states in addition to the neutral
atoms since the extent of ionization defines the nature of chem-
ical bonding.

2. LMC complexity measure

The LMC measure C is given by

(1)C = H · D,

where H denotes a measure of information and D represents
the so-called disequilibrium or the distance from equilibrium
(most probable state). The form [3] of C is designed such that
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it vanishes for the two extreme probability distributions cor-
responding to perfect order (H = 0) and maximum disorder
(D = 0), respectively.

For H in Eq. (1), we have used the exponential power Shan-
non entropy in the position and momentum spaces [14,15]

(2)Jr = 1

2πe
e2Sr/3,

(3)Jp = 1

2πe
e2Sp/3,

where the Shannon information entropy in position and mo-
mentum spaces are defined as

(4)Sr = −
∫

ρ(r) lnρ(r) d3r,

(5)Sp = −
∫

γ (p) lnγ (p)d3p.

In Eqs. (2)–(5), ρ(r) and γ (p) denote the spherically averaged
electron density distributions in the position and momentum
spaces each normalized to unity. The Shannon entropy is a
global measure of the spread of the probability distribution. The
quantities Jr and Jp chosen to describe the entropy part, H , of
statistical complexity is different from the original shape com-
plexity [4] which uses the simple exponential Shannon entropy
satisfying the desirable invariance properties [13]. We note here
that all the conclusions drawn in the present work remain valid
with both these choices for H . To our knowledge, numerical
studies involving Jr and Jp to describe the statistical complex-
ity for atomic and ionic systems are presented here for the first
time.

The disequilibrium Dr in the position space is calculated as
the density expectation value given by

(6)Dr =
∫

ρ2(r) d3r.

Analogously, the momentum space disequilibrium Dp is given
by

(7)Dp =
∫

γ 2(p)d3p.

The quantity D represents the quantum self similarity [16–18],
information energy [19], or linear entropy [20,21]. Most signif-
icantly, it is also an experimentally measurable quantity [22]. It
is important to note here that D, for the normal distribution, is
a direct measure of the square root of inverse variance. In the
following discussions, the products JrDr , JpDp and JrpDrp ,
where Jrp and Drp are given by the products 1

2πe
e2(Sr+Sp)/3

and DrDp , will be used to denote the LMC complexity mea-
sures Cr , Cp and Crp , respectively. We note here that in defin-
ing Jrp we have used the net Shannon entropy, ST given by
Sr + Sp , and have computed its exponential power entropy to
obtain Prp . Using JrJp instead would simply scale down the
numerical values by a constant term uniformly without altering
any conclusions.
3. Fisher–Shannon information plane

Fisher information measure [23], I , was originally intro-
duced as a measure of intrinsic accuracy in statistical estima-
tion theory. Sears, Parr and Dinur [24] noted that the quan-
tum mechanical kinetic energy can be considered a measure
of the information distribution, and through its relation to the
Weizsacker kinetic energy term, I assumes a special position
in quantum mechanics and density functional theory (DFT).
Over the years, I has proved to be a very useful concept,
e.g., the equations of non-relativistic quantum mechanics [25]
have been derived using the principle of minimum I [26].
The time-independent Kohn–Sham equations and the time-
dependent Euler equation of DFT were also derived by applying
the above principle [27,28]. Other applications include the stud-
ies on single-particle systems under a central potential [29], the
two-electron entangled artificial atom proposed by Moshinsky
[30], modified Thomas–Fermi atoms [31] and the derivation of
analytical relationship [32] between the integrands defining Sr

and Ir . In a recent paper [33], the product of inverse of atomic
I with D has been found to show good correlations with the
ionization potentials and static dipole polarizabilities for the
neutral atoms across the periodic table. Very recently, interest-
ing new bounds relating to the I have been derived [34,35] for
the central potentials.

The Fisher information (intrinsic accuracy) measures [23]
for position and momentum are

(8)Ir =
∫ [ �∇ρ(r)]2

ρ(r)
d3r, Ip =

∫ [ �∇γ (p)]2

γ (p)
d3p.

In position space, Ir measures the narrowness and the oscilla-
tory nature of the probability distribution. For the normal dis-
tribution, for example, Ir is a direct measure of the inverse of
variance whereas Dr measures the square root of the inverse
variance. Such a resemblance has led us to examine the Fisher–
Shannon planes for position and momentum given by Pr = JrIr

and Pp = JpIp , respectively, as a possible measure of statisti-
cal complexity similar to C in the corresponding spaces. In this
Letter, we shall compare the complexity measures Cr , Cp and
Crp with the FSIPs given by Pr , Pp and Prp , respectively, for
the test set of atoms and ions as listed in the introduction. We
conclude this section by noting the isoperimetric inequality in
three dimensions given by [36,37]

(9)Pr = JrIr � 3,

and

(10)Pp = JpIp � 3.

Thus, a noteworthy feature of the measure of complexity given
by FSIP is that it possesses a universal lower bound given by
Eqs. (9)–(10).

4. Results and conclusions

In the present work, the non-relativistic HF densities used
are identical to those employed in a recent study on atomic
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Fig. 1. A comparison of (a) 35 × Dr with Ir , (b) 90 × Dp with Ip , and
(c) 5000 ×Drp with Irp corresponding to the neutral atoms as a function of Z.

quantum similarity [18] wherein the spherically averaged den-
sities are generated using Koga–Roothaan–Hartree–Fock wave
functions [10,11]. The momentum space wave functions were
computed using analytic expressions given in terms of the linear
expansions of the Slater type functions describing the posi-
tion space HF wave functions. All the necessary integrals have
been estimated by means of the numerical quadrature using the
spherically averaged electron density.

In the discussion which follows, first we shall be specif-
ically displaying the variations in disequilibrium, D, and I

with the nuclear charge for the neutral atoms Z(= 1–54). In
Fig. 1(a), we have compared the estimates of Dr (35 times)
with Ir corresponding to the neutral atoms as a function of Z.
It is observed that while Dr increases monotonically with Z,
Fig. 2. A comparison of 35 × Cr and Pr corresponding to neutral atoms as a
function of Z.

Fig. 3. A comparison of 90 × Cp and Pp corresponding to the neutral atoms as
a function of Z.

Ir goes down at Z = 5,46, then relatively less pronounced at
Z = 11, and decreases from 51 to 53. Over most of the region,
otherwise, Ir follows the Dr curve. In Fig. 1(b), we have sim-
ilarly displayed the variation of Dp (90 times) with Ip for the
neutral atoms wherein it is found that the two quantities show
similar trends. More significantly, the locations of extrema in
both Dp and Ip are observed at the identical values of Z. For
example, minima occur at Z = 2,10,18,36,54 (noble gases)
as well as Z = 24,29,46 (anomalous shell-filling), while the
maxima are located at Z = 3,12,20,30,38,43, and 48, respec-
tively. As compared to the position space, it is observed that the
shell structure is revealed more clearly in the momentum space
through out for all atoms. The observations concerning Dp and
Ip in Fig. 1(b) also hold good when DrDp (5000 times) and
IrIp are plotted, as in Fig. 1(c). We shall now consider the nu-
merical comparison between C and P values in the position,
momentum and the product spaces for the neutral atoms. In
Fig. 2, we have plotted Cr and Pr for the neutral atoms as a
function of Z. It is observed that the shell structure is more
clearly delineated through Pr . Further, the increase in complex-
ity at the onset of a new shell originating at the alkali metal
atoms is more sensitively reflected in Pr . The overall similarity
between Cr and Pr is found to be excellent. These observa-
tions are also found to hold good in the momentum space as
displayed in Fig. 3, wherein we have plotted Cp and Pp for
the neutral atoms. Here, the appearance of the extrema are even
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Fig. 4. A comparison of 5000 × Crp with Prp corresponding to the neutral
atoms, positive ions, and negative ions as a function of Z.

more profoundly displayed through Pp in comparison with Pr

noted earlier in Fig. 2. The trends in D, I , C and P for the pos-
itive and negative ions in the position and momentum spaces
are found to be similar as in the neutral atoms. In order to avoid
repetitions these variations are not displayed separately. How-
ever, in the product space we shall now consider all the systems
together. Thus, in Fig. 4(a)–(c) we have plotted the quantities
Crp and Prp for the neutral, positive and negative ions, respec-
tively. In view of the essential similarity between Crp and Prp it
is finally concluded from Fig. 4 that in comparison to the LMC
measure, FSIP presents itself as an alternative measure of com-
plexity for electron probability density of atoms and ions with
the notable characteristics that (a) it includes a global informa-
tion (J ) and a local statistical measure (I ), and (b) the variation
in complexity with Z is revealed more sensitively.

5. Future work

Some possibilities of future work that follow from the
present study will be briefly mentioned now. The well-known
relative Shannon entropy [38] of the density ρ1(r) with respect
to a prior distribution ρ2(r) is defined as

(11)S1,2
r =

∞∫
0

4πr2ρ1(r) log

(
ρ1(r)

ρ2(r)

)
dr,

which is zero in case of ρ1(r) as equal to ρ2(r) and otherwise
positive, under the same condition of normalization. Analo-
gously, the relative Fisher information measure of the density
ρ1(r) with respect to a prior distribution ρ2(r) may be defined
as

(12)I 1,2
r =

∞∫
0

4πr2ρ1(r)

[
d

dr
log

(
ρ1(r)

ρ2(r)

)]2

dr,

which is zero in case of ρ1(r) as equal to ρ2(r) and otherwise
positive. Choosing the prior as constant or unity, Ir has the sig-
nificance of a measure of disorder. In general, I

1,2
r offers itself

as a new quantum similarity measure [16]. It would be also
useful to analyze the isoelectronic variations of Crp and Prp

by including a larger set of multiply charged positive ions [12]
and study, e.g., the Z dependence of the statistical complexity
measures. Finally, a more detailed analysis of the variation of
statistical complexity with the process of ionization, e.g., the
variation in [ dC

dN
]Z as a function of Z and the active sub-shell

in atoms would be useful. The results of such studies will be
reported elsewhere.
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