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Abstract. The density functional descriptors of chemical reactivity given by electronegativity, global 
hardness and softness are reported for a representative set of spherically confined atoms of IA, IIA, VA 
and VIIIA series in the periodic table. The atomic electrons are confined within the impenetrable spherical 
cavity defined by a given radius of confinement satisfying the Dirichlet boundary condition such that the 
electron density vanishes at the radius of confinement. With this boundary condition the non-relativistic 
spin-polarized Kohn–Sham equations were solved. The electronegativity in a confined atom is found to 
decrease as the radius of confinement is reduced suggesting that relative to the free state the atom loses 
its capacity to attract electrons under confined conditions. While the global hardness of a confined atom in-
creases as the radius of confinement decreases, due to the accompanying orbital energy level crossing, it 
does not increase infinitely. At a certain confinement radius, the atomic global hardness is even reduced 
due to such crossover. General trends of the atomic softness parameter under spherically confined condi-
tions are reported and discussed. 
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1. Introduction 

The purpose of this paper is to study the Density 
Functional Theory (DFT) based global descriptors 
of chemical reactivity for atoms confined within the 
impenetrable spherical boundary using an accurate 
and consistent computational DFT model. In this 
section, we shall first briefly define the reactivity 
parameters considered in this work followed by an 
outline of the computational procedure adopted by us. 
 Density functional theory has been successfully ap-
plied to study the electronic structures of a wide va-
riety of chemical systems. The tremendous success of 
this theory is mainly due to (a) the significantly less 
computational effort required in carrying out the ac-
curate electronic structure calculations through its 
practical implementation, (b) the fact that a natural 
set of indices can be defined within the theory which 
are useful descriptors of reactivity of chemical systems. 

 According to the Hohenberg and Kohn (HK) theo-
rems,1 the ground state energy functional of an N-
electron system with density ρ(r) in an external poten-
tial υ, is given by. 
 

 [ ( )] [ ( )] ( ) ( )d ,E Fρ ρ υ ρ= + ∫r r r r r  (1) 

 
where )]([ rρF  is called the universal HK-functional 
containing the contribution of the kinetic energy (T) 
and the electron-electron interaction (Vee) of the 
system. The usual minimization of the energy functional 
of (1) using the method of Lagrange multipliers subject 
to the constraint, ,)( rr dN ρ∫=  leads to the Euler–
Lagrange equation, 
 
 ),(/)]([)(]/[ rrr δρρδυδρδµ υ FE +==  (2) 

 
where the constant µ has been identified, in the grand 
canonical ensemble at 0 K, as the electronic chemical 
potential.2 This quantity arising within the DFT, meas-
ures the escaping tendency of an electronic cloud in the 
ground state system. Being a constant over all space 
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for the ground state of an atom or molecule, µ, is 
recognized as a global reactivity index. It has been 
also shown, that the chemical potential is the slope of 
the curve E versus N at a fixed external potential3 
 
 .)/( υµ NE ∂∂=  (3) 

 
Within the finite difference approximation this slope 
can be written in terms of the ionization potential I, 
and the electron affinity A. In this way, the DFT 
chemical potential can be associated with the negative 
of the Mulliken electronegativity (χ),3 as 
 
 ( ) / 2 .I Aµ χ≈ − + = −  (4) 

 
The chemical potential can be considered as a function 
of N and υ, and describe a change in the system from 
[N, υ] → [N + dN, υ + ∂υ] according to 
 

 d ( ) ( ) d .dN fµ η υ= + ∂∫ r r r  (5) 

 
This consideration leads to the definition of another 
two important indices, which have been used to 
study chemical reactivity. The global hardness, η, 
and the local reactivity index f, called the Fukui 
function.4 
 Parr and Pearson5 have defined the former as, 
 
 .)/( 22

2
1

υη NE ∂∂=  (6) 

 
The factor 1/2 is arbitrary in the original definition 
and it is not considered in this paper. From (6), η is the 
curvature of the curve E versus N, which is always 
positive.2 Within the finite difference approxima-
tion, 
 
 .AI −≈η  (7) 

 
The inverse of global hardness defines the global 
softness,6 

 

 .)/(/1 υµη ∂∂== NS  (8) 

 
Hardness and softness are concepts that have been used 
to explain chemical reactivity for many years.7 The 
hardness can be interpreted as the resistance of a 
system to the flux of electrons. On another hand, 
Politzer8 has shown for atoms that the softness cor-
relates linearly with the polarizability. 

 Forty years ago, Kohn and Sham (KS)9 proposed 
the idea that made DFT calculations feasible, in this 
theory the energy functional is partitioned as, 
 

[ ( )] [ ( )] [ ( )] [ ( )] ( ) ( )d ,E Ts J Excρ ρ ρ ρ υ ρ= + + + ∫r r r r r r r

 (9) 
 
and the electron density is written as a function of N 
Kohn–Sham orbitals, ψi(r), 
 

 ∑=
N

i
i

2|)(|)( rr ψρ . (10) 

 
In (9), Ts is the kinetic energy functional of the non-
interacting reference system, 
 

 .)(||)()]([ 2
2
1 〉∇−〈= ∑

N

i
iiTs rrr ψψρ  (11) 

 
The J functional contains the contribution of the Cou-
lombic electron–electron interaction, 
 

 
1 ( ) ( )

[ ( )] d d ,
2 | |

J
ρ ρ

ρ
′

′=
′ −∫∫

r r
r r r

r r
 (12) 

 
and Exc is the exchange-correlation functional, 
 

)].([)]([)]([)]([)]([ rrrrr ρρρρρ JVeeTsTExc −+−=  
  (13) 
 
The form of the Exc functional is unknown and it is 
usually modeled via different approximations.2  
 Minimizing the energy functional of (9), keeping 
the orbitals to be orthonormal, gives the set of one-
electron KS equations 
 

21
2

(r )
(r) dr (r) (r) (r).

| r r | XC i i i
ρ

υ υ ψ ε ψ
′ ′− ∇ + + + = ′− 

∫  

 (14) 
 

Several codes have been implemented to solve (14) 
numerically for atoms, molecules and solids. The 
strategies to solve the equations that emerge in the 
numerical approach depend on the boundary condi-
tions. 
 In previous work, the non-relativistic spin-polarized 
Kohn–Sham equations were solved for atoms subjected 
to Dirichlet boundary conditions.10 Under these condi-
tions the electronic density is made to approach zero 
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at a given arbitrary distance, Rc, simulating the effect 
of high pressure on the system. In that report10 the 
electronic structure of H, He, Ne and Na was analyzed 
under extreme confinement conditions, and a complete 
agreement with the previously reported accurate results 
were obtained thus providing a suitable reliable method10 
to study atoms under the spherical confinement con-
ditions within the DFT. 
 The study of confined quantum systems is very 
interesting due to its utility as a model in the wide 
variety of applications covering a range of novel experi-
mental conditions, for example, atoms and molecules 
under high pressures,11–41 atoms and molecules in 
cavities,41 electrons in quantum wells and quantum 
dots,42–45 among others. We refer to the published 
reviews46–47 on confined atomic and molecular elec-
tronic structure calculations for a comprehensive ac-
count of the various interesting applications. 
 Different proposals have been used to study many-
electron confined atoms. As compared to the confined 
atomic calculations using the Dirichlet boundary 
conditions, the results derived from other arbitrary 
prescriptions to meet the corresponding boundary 
condition do not usually satisfy the rigorous theo-
retical requirements of the cavity model. However, 
there is set of common and useful conclusions, which 
can be derived from all such calculations. The core 
orbitals are generally found to be less sensitive to the 
effects due to the confinement than the valence orbi-
tals.10,34,40 A large number of the confined atoms 
studied10,37,38 exhibit a well defined s-d orbital energy 
level crossing. It has also been suggested that the 
chemical reactivity34 of atoms under compression 
undergoes significant modifications. 
 Recently, Chattaraj and Sarkar48 have analyzed, in 
the context of DFT reactivity indices, the ionization 
energy, softness and polarizabilty among other pro-
perties of some confined atoms and atomic ions. 
These authors used the method proposed by Boeyens,34 
where a cutoff function is employed to incorporate 
confining condition. Such a procedure, clearly, does 
not satisfy the Dirichlet boundary condition as con-
sidered in the previous work.10 As a consequence 
several exact theoretical requirements of the spherical 
cavity model are not met when arbitrary cutoff functions 
are employed. For example, the spherical cavity model 
requires that the 1s state of the spherically confined 
hydrogen atom at Rc = 2⋅0 au is expected to correspond 
to the energy value of – 0⋅125 au corresponding to the 
2s state of the free hydrogen atom. While this condition 
is exactly followed within the Dirichlet boundary 

condition calculations the cutoff function methods 
produce energies that are significantly higher by a 
factor of 3–4 depending upon the choice of cutoff 
function. Similar discrepancies are also observed for 
the other degeneracy conditions for example the simul-
taneous degeneracy of the 2s and 3d states at Rc = 6⋅0 
au. It is therefore important to examine the DFT de-
scriptors of chemical reactivity in the light of more 
accurate confined atom calculations. 
 In this paper we use the confinement approach 
proposed in Ref. [10] to study DFT reactivity indices 
such as electronegativity, hardness and softness. We 
have evaluated these quantities via the finite difference 
approximation according to (4) and (7). Thus, I and 
A are also evaluated for atoms of the families IA, 
IIA, VA and VIIIA of the periodic table. 

2. Methodology 

The non-relativistic spin-polarized Kohn–Sham equa-
tions,2 were solved with the numerical code described 
earlier.10 The local Perdew–Wang exchange-correlation 
potential49 was used as approximation to υxc in (14). 
For all atoms studied in this work the confinement 
radii were moved from 1 to 7 au with a step of 0⋅1 a.u. 
Furthermore, in this report the reactivity indices µ, η 
and S are in terms of I and A, such that this procedure 
demands the computation of the neutral, anion and 
cation systems for each atom. In order to avoid holes 
in the electron configuration, and in this way satisfy 
the requirement of the ground state in the Kohn–Sham 
method, we found for each atom the electron con-
figuration associated to the minimal energy for each 
confinement radius. For example, for the Kr atom at 
1 au the confined neutral system has an electron 
configuration [Ar]3d104f 8, but at 1⋅1 a.u. the respec-
tive electron configuration is [Ar]4s23d104f 6. Thus, 
for each confinement radius we searched for the most 
stable electron configuration for neutral, cation and  
anion for each confined species following Hund’s 
maximum multiplicity rule. 

3. Results 

3.1 Orbital energies 

From the initial stages of the theoretical studies of 
confined atoms, it has been recognized that when the 
confinement is increased in an atom its orbital energies 
cross over. In figure 1 we depict some orbital energies 
for the Kr atom with configuration [Ar]4s23d104p6. It 
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is clear that at 1 au the unoccupied 4 f orbital is most 
stable than the 4s orbital, this behavior suggests the 
ground state configuration [Ar]3d104f 8. The relevant re-
sult from this observation is the change in the multi-
plicity, since with this transition the multiplicity changes 
from 1 to 7, and the atom goes from a closed to an 
open shell system. 

3.2 Ionization potential and electron affinity 

In table 1 we have compared the total electronic energy 
E for a confined He atom as a function of the radius 
of confinement with those derived respectively from 
the confined variational Hartree–Fock method and 
the confined cutoff method. The presently calculated 
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Figure 1. Orbital energies for the Kr atom confined 
with Rc = 1–7 a.u. The orbital energies are in hartrees. 
 
 
Table 1. A exchange-only comparison of the presently 
calculated total electronic energy, with the self-interaction 
correction, for confined He atom with the confined varia-
tional Hartree–Fock31 and the confined cutoff meth-
ods.34,48 All values are in atomic units. 

Rc  –E (present) –E (HF31) –E (cutoff48) 
 

10 2⋅8617 2⋅8616 2⋅906 
6 2⋅8616 2⋅8614 2⋅906 
5 2⋅8614 2⋅8613 2⋅9059 
4 2⋅8586 2⋅8585 2⋅9054 
3 2⋅8311 2⋅8038 2⋅9052 
2⋅5 2⋅7666 2⋅7664 2⋅8857 
2 2⋅5626 2⋅5625 2⋅847 
1⋅5 1⋅8642 1⋅8642 2⋅6795 
1 1⋅0612 1⋅0612 1⋅966 
0⋅5 –22⋅791 –22⋅791 –4⋅952 

values derived from an exchange-only potential are 
found to be in excellent agreement with the HF esti-
mates at all radii. This establishes the high degree of 
accuracy of the total energy calculations employed 
in the present work. In order to obtain the hardness, 
softness and electronegativity in this work we evaluated 
the I and A. In figure 2 we show a typical behavior 
that we observed for the I in all analyzed atoms. It is 
clear in this figure that there is an Rc value where I 
becomes negative, which means that the confined 
atom prefers the ionized system. Thus the atomic 
critical radius, RI, is defined such that I is zero on this 
point. Since we use a step of 0⋅1 au, for each case, 
we interpolate the I with four points, in order to  
get the RI. In table 2 we list the RI found for the  
atoms considered in this work, also the RI obtained 
from other works are included in table 2.31,34,36 The RI 
reported previously in other works is based on Koop-
mans’ theorem or on the Slater transition-state approxi-
mation. Thus our results are more reliable since the I 
is evaluated as an energy difference and we are in-
cluding correlation effects. As discussed previously,36 
the RI reported by Boeyens34 are in disagreement 
with the other results. This observation along with 
the incorrect description of the energy degeneracy con-
ditions of the confined atoms resulting from the arbi-
trary cutoff function method34 of confined atom 
calculations, highlights the serious limitations of such 
methods in comparison to the those employing the 
direct Dirichlet boundary condition.10 
 The behavior of A as a function of Rc for the con-
fined Kr atom is shown in figure 3. Comparing figures 2 
and 3 we can see that the behavior of A is different  
 

 
 
Figure 2. Ionization potential for the Kr atom estimated 
by computing the total energy of neutral atom and cation for 
each confinement radius. All quantities are in atomic units. 
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with respect to that observed for I. First, around 
1 a.u. of Rc, A is a non-monotonous crescent function 
since it exhibits a step. Second, although A is a cres-
cent function it shows deeper values with respect to I, 
this observation is important for the following dis-
cussion related with hardness in the next section. 
The main conclusion obtained from figures 2 and 3 
is that a confined atom prefers to eject an electron for a 
critical Rc. 

3.3 Electronegativity 

Electronegativity behavior as a function of Rc for 
the confined Kr atom is shown in figure 4. According 
to (4), the electronegativity is obtained from an average 
between I and A. Due to the negative values of I and 
A, downwards from Rc, the electronegativity attains 
negative values, as we can see in figure 4. Physically 
negative values for χ represent a tendency to repel  
 
 

Table 2. Atomic ionization radii for all 
atoms considered in this work. All distances 
are given in Å. 

 Critical radius 
 

Atom This work Other works 
 

Li 2⋅17 2⋅26a 
  1⋅25b 
  2⋅21c 

Na 2⋅26 2⋅39ª 
  2⋅73b 

K 2⋅71 2⋅88a 
  3⋅74b 

Be 1⋅70 1⋅70a 
  1⋅09b 

Mg 1⋅98 2⋅02a 
  2⋅36b 

Ca 2⋅54 2⋅52a 
  3⋅26b 

N 1⋅21 1⋅29a 
  1⋅56b 

P 1⋅69 1⋅79a 
  2⋅20b 

As 1⋅77 

Ne 0⋅97 0⋅98a 
  1⋅20b 
  0⋅97c 

Ar 1⋅36 1⋅38ª 
  1⋅81b 

Kr 1⋅68 
aRef. 36; bRef. 34; cRef. 31 

electrons, since χ > 0 represents the tendency of an 
atom to attract electrons. From figures 2 and 4, we 
may say that when an atom is confined, it starts to 
lose its capacity to attract electrons and, after that, 
the confined atom ejects an electron since the ion-
ization radius is less than that Rc where the electro-
negativity starts to attain negative values. The ele-
ctronegativity behavior found by us, as a function of 
Rc, differs enormously from that presented earlier.48 
Whereas we found negative χ for small Rc values, ear-
lier researchers46 obtained positive values for this 
quantity. Evidently in that work,48 such discrepancy 
arises due to the way the confinement is imposed. 
 
 

 
 

Figure 3. Electron affinity for the Kr atom estimated by 
computing the total energy of neutral atom and anion for each 
confinement radius. All quantities are in atomic units. 
 

 
 

Figure 4. Electronegativity as a function of the con-
finement radius, Rc, for the Kr atom estimated by the  
finite difference approximation. All quantities are in atomic 
units. 
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Thus, according to them, the capacity to attract elec-
trons in a confined atom increases when Rc is re-
duced. In order to check our finite difference results, 
we numerically evaluated the derivative of the total 
energy with respect to the number of electrons at a 
fixed Rc. We evaluated directional derivatives of the 
energy, because the discontinuity of the derivative of 
the total energy with respect to the number of electrons. 
For the confined Kr atom at Rc = 1 au we moved the 
number of electrons from 36 to 36⋅15 and 35⋅85, 
each 0⋅05 electrons. Thus, a four-point interpolation 
function was used to evaluate the directional deriva-
tive. With this procedure we found µ+ = 19⋅63 a.u. 
and µ– = 19⋅82 or χ+ = –19⋅63 a.u. and χ– = –19⋅82. For 
this Rc, using I and A values, we calculated the mean 
χ+ = –19⋅63 a.u. Thus, we observed that with numerical 
derivatives and the finite difference approximation 
the electronegativity has a negative sign for the con-
fined Kr at Rc = 1 a.u. As we can see, with two differ-
ent ways to evaluate the electronegativity, this 
quantity is reduced when an atom is confined, and 
for Rc less than a critical radius the electronegativity 
changes its sign. It is worth noting that for this case 
the finite difference approximation gives a similar value 
of χ with respect to the numerical derivatives. 

3.4 Hardness and softness 

In figure 5 we present the hardness as a function of 
Rc for the confined Kr atom. We can see the inter-
esting behavior of the hardness for the confined Kr  
 
 

 
 
Figure 5. Hardness as a function of the confinement ra-
dius, Rc, for the Kr atom estimated by the finite differ-
ence approximation. All quantities are in atomic units. 

atom. If we have the free Kr (large Rc values) the 
hardness exhibits asymptotic behavior. However, when 
we start confining the atom, the hardness still increases 
but at a different rate. It is clear in this figure that in 
Rc = 4⋅9 a.u., the incremental rate of hardness is re-
duced, precisely at the point where the anion exhibits 
the electron transition, [Ar]3d104s24p65s1 to [Ar] 
3d104s24p64d1. According to figure 1, the orbital 5s 
energy increases at a faster rate with respect to that 
of the 4d orbital, when Rc is reduced. For the con-
fined Kr atom we found several electron transitions, 
particularly for small Rc. These orbital transitions 
induce the behavior shown for the hardness in figure 5 
where we can see a maximum at Rc =1⋅3 a.u. Thus 
when an atom is confined it does not show an infini-
tum hardness, instead of this expected behavior the 
orbital transitions provoke a reduction in this quan-
tity. It is worth to note that the hardness exhibit posi-
tive values for all Rc. This behavior is presented since 
according to figures 2 and 3, A always is less than I 
and therefore the difference I – A is positive. 
 There are systems, such as neon, where the electron 
transitions are not manifested in the Rc interval consid-
ered, for these cases the hardness increases rapidly. 
For that reason we decided to contrast the softness of 
all studied atoms in the same plot. The softness as a 
function of Rc for each family of all confined atoms 
considered in this work is depicted in figure 6. From 
this figure, we can obtain several observations. First, 
at the biggest Rc used in this study the confined atoms 
with the biggest softness, as expected, are those that 
belong to family IA, and the confined atoms with 
smallest softness are the atoms that belong to family 
VIIIA. Second, for small Rc values, all atoms exhibit 
almost the same values of softness. Third, the confined 
nitrogen atom exhibits a different behavior with re-
spect to the atoms of other families since in principle 
it should present a softness less than the phosphorus, 
but it does not. This behavior can be attributed to the 
open shell presented in atoms of that family. The 
most important observation obtained from figure 6 is 
that the changes in the electronic configuration induce 
increment in the softness when the atoms are extremely 
confined. 

4 Conclusions 

For an atom confined within an impenetrable spherical 
cavity the electronegativity is found to decrease relative 
to the free atom. If the confinement is increased, the 
electronegativity changes its sign and after that the 
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Figure 6. Softness as a function of the confinement radius, Rc, for some atoms of the families IA, IIA, VA and VIIIA 
of the periodic table. The softness was estimated as the inverse of the hardness. All quantities are in atomic units. 
 
 
atom prefers to be ionized. On the other hand, while 
the softness undergoes a reduction under confinement, 
in some specific atoms different behaviour is attained. 
In these specific atoms, the energy level crossover 
as Rc decreases leads to the changes in electronic 
configuration as a consequence of which the softness 
is increased. This observation indicates that a con-
fined atom cannot be infinitely hard – chemical hard-
ness is thus numerically found to be a finite positive 
quantity. 
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