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Abstract. Over the past decade and a half, many new accurate density functionals, based on the generalized
gradient approximation, have been proposed, and they give energies close to chemical accuracy. However,
accuracy of the energy functional does not guarantee that its functional derivative, which gives the corre-
sponding potential, is also accurate all over space. For example, although the Becke88 exchange—ener gy
functional givesvery good exchange ener gies, its functional derivative goesas - i in comparison to the cor-
rect - % for r® ¥ ,whereristhedistance of theelectron from afinite system. dntheother hand, accuracy
of the potential is of primeimportanceif oneisinterested in properties other than thetotal energy; properties
such as optical response depend crucially on the potential in the outer regions of a system. In this paper we
present a different approach, based on the ideas of Harbola and Sahni, to obtain the potential directly from
the energy density of a given approximation, without taking recourse to the functional derivative route. This
leadsto a potential that is as accurate as the functional itself. We demonstrate the accuracy of our approach
by presenting someresults obtained from the Becke88 functional.
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Introduction as

HohenbergKohn-Sham  density-functiona
(Par and Yang 1989; Dreizler and Gross 1990) provides
the bass of 4l

1 r(n)r(rg
Oy g

theory  (DFT) r(r):éufi(rnz. ®

modern-day  electronic-siructure ccula The  exchangecorrelation  potentid, ux(r), in the Kohn-

tions. As is well known, in this theory electron density  gham  equation is obtaned by taking the functiond
plays the role of the basic variable. Thus the totd energy  gerjvaive 95l of  the  exchange-corrdlation  energy
iss expressed in terms of the density as fndiond, EJH]. Snce the inception of density-
. functional theory, the local-density-gpproximation (LDA)

E[r]1=Tdr]+ Qex(r)r(r)dr and the locd-spin-density-approximation  (LSDA)  (Par

and Yang 1988, Dreézler and Gross 1990) have been the
mainstay of most of the DFT cdculaions. These appro-
ximations ae based on the exchange-corrdaion energies

of homogeneous dectron gas. Thus the exchange energy
intheLDA isgivenas

rorel drdr &+E,.[r]. (€8]

Here Tqr] is the kingtic energy of non-interacting eec-
trons of densty r(r? vext(r) the potentid eectrons are
moving in, ooLdrdm the direct Coulomb energy
of electrons ad' Ex[r] ther exchange-corrdaion
energy. The dendgty is obtaned from the solutions fi(r)
of the Kohn-Sham eguation (dl eguations are written in

atomic units)
1.
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where g is the exchange energy per patide for a homo-
geneous dectron gas, expressed in terms of the densty
r(r)as

3Ke(r)
40

where kp(r):(szr(r))% is the locd Fermi vector. Cor-
relation energy in the LDA is dso given by an expresson
smilar to (4 above with the exchageenergy, €, per
paticle replaced by the corrdation energy, €, per parti-
cde. In the parametrization by Gunnarsson and Lundquist
(1976), correlation energy per dectronisgiven as

g (r) =- ©)
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ad r = [4%(71)]% measures the radius of a sphere enclos
ing one dectron. The corresponding exchange and cor-
relation potentids are given as

Ke(r) ®

v, (r)=-

and
16
Xg

se(r) =-0>0333 I + ©)
e

Snce the LDA is based on homogeneous dectron ges
results, it is expected to be accurae when the density is a
dowly vaying function. However, if the dendty has
large inhomogendty, the eror in the LDA becomes rda
tivdy large. To incorporate the non-locd dependence of
the exchange-corrdation energy on densty, one then
mekes a Taylor series expanson—termed as the gradient
expandon agpproximation or the GEA—of the energy in
terms of the gradient of the dendty. Such a correction to
the LDA was firg proposed for the exchange energy by
Hermen et al (1969). The GEA functiond up to the sec-
ond-order in the dengity gradientsis

JNr 2

B =B+ C O
r

dr, (10)

where C,=—71-—-. The exchagepotentid corre

sponding to the gI?A(\ ur)10tiond is

e4|Nr 7 _N2r U
vfﬂm=¢“aHC@; L2 7 -

a (11)
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For exponentidly decaying dendties, this potentiad beco-
mes dngular & large digances o tha in implementing it
in the Kohn-Sham scheme, a damping teem hes to be
introduced. This is one of the problems with the GEA.
Other problems ae rdaed (Perdew 1985) to the Fermi
hole corresponding to the GEA energy. The GEA has
been further improved upon by rectifying these short-
comings to devdop functionds known as the generd-
ized-gradient  approximation  (GGA). These functionas
have been shown to possess chemicd accuracy. The most
popular ones ae the PW9l (Perdew and Wang 1986;
Perdew 1991) and BeckeB8 (Becke 1988) functionds.

An important point that must be kept in mind in deve-
loping energy functionds is that their functiond deriva

tives be easy to obtan so that the corresponding potentia
can be easly cdoulaed. However, accuracy of a func
tiond does not automaticaly guarantee that its functiona
derivative will dso be accurate For example, the
BeckeB8 functiond gives the exact exchange-energy den
sity - z—lr asymptoticaly but its functiona derivative
goes (Engd et al 1992) as - L. Thus it cannot be expec-
ted to gve propeni&s—such a the highest-occupied
orbitd energy—which depend to a lage extent on the
behaviour of the potentid in the outer regions of a sys
tem, correctly. Further, in atoms the functiond derivaive
dverges (Engd et al 1992) near the nudeus as -+ as
r® 0, whereas the effective potentid is finite a the
nucleus (Unrigr and Gonze 1994; Qian and Sani
2000). Due to this overetimae of the effective loca
potentid close to the nucleus, eectronic properties such
as the dectronnuclear cusp condition, tota s-eectron
dendty and the spin densty a the nucleus are expected
to be poorly represented. Motivated by these issues, a
question that we ask is if it is possble to obtain the effec-
tive potentid without taking the functiond derivative of
the energy functiond. Such an agpproach is ussful on two
fronts Firg, it frees one from fitting an energy functiona
to bring it to a manageeble form so that its functiona
derivative could be obtaned, and secondly by circum-
venting the functiond derivative route to get the effective
potentid, it keeps the accuracy of the potentiad a the
same level as tha of the energy dengty. In the following
we present such an gpproach for the exchange potentid,
based upon the idess of Hater (1951) and Habola and
Sahni (1989). We therefore start with a description of the
Sater potentid, then introduce the idea of dectric fied
due to the Fermi—Coulomb hole, give an exact prescrip-
tion of the exat exchange-corrdation potentid in terms
of this fidd and findly use this prescription to obtain an
agoproximate exchange potentid in terms of the exchange
energy dendty. We employ this scheme with the Becke88
energy functiond and present the results obtained for the
enagies and ionization potentid of some closed shel
atoms.

2. Exchange-corrélation potential from the
Fermi—Coulomb hole

To smplify the HartreeFock theory (Saer 1960), which
has orbita-dependent non-locd  exchenge-potentids, and
meke it computationdly easy, Sater (1951) introduced
the idea of obtaning a locad exchange potentid from the
Fermi hole of an dectron. Without going into the details
of its derivation, which are wdl discussed (Habola and
Sahni 1993) in the litersture, we give the form of the
Sater potentid here. It isgiven as

Py (r,r®
Ojrrq ¢

Vgiater () = (12)
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where ry(r, r@ is the Fermi hole arisng due to the Pauli
excluson principle. It is given in terms of the occupied
orbitds of a sysdem (for smplicity, we are consdering
here only the closed-shell case) as

lgtrr9

ry(r,rg= 2r) (13)
where
or.r =2afi*r)fi(ro, (14

is the Dirac matrix. In the summation above, the index i
refers to quantum numbers other than the spin (summa
tion over spin gives a factor of two that has been incu-
ded explicitly in the expresson above). Sdf-consistent
cdculations with Vgger(r) in place of vy (r) in (2) can be
peformed easily. The results (Harbola and Sahni 1993)
obtained from such cdculaions for some closed-shel
aoms are displayed in comparison with the Hartree-Fock
numbers (Fischer 1977) in table 1. They amply demon-
srate the accuracy of the Saer potentid. The idea of
Sater wes further explored by Habola and Sahni (1989)
who recognized that the Sae potentid was beng cd-
culated by tregting the Fermi hole as a datic charge dis
tribution. However, the Femi hole changes shgpe as a
function of dectron postion in an inhomogeneous den-
sty. Therefore, the correct way to obtain the potentid is
to firs get the dectric fidd due to the Fermi hole and
then cdculate the potentid as the work done in moving
the dectron in this fidd. Thus the correct exchange
potentid isgiven as

W, (r) = - (R« (r9.di¢ (15)
¥
where
Arx(r.r9
E, (r)= o (r-r9dr¢ (16)

is the dectric fidd due to the Fermi hole A comparison
between the two potentids is made in figure 1 for the
Argon aom. It is seen tha the potentid, W, is shalower
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than the exact Sater potentid in the interior of the atom
and both go a -+ outside the atom. Comparison bet-
ween the energies obtaned from the two methods is
mede in table 1. It is evident that both the tota energies
and the highest occupied orbitd energies with W, as the
exchange potentid come out to be closer to Hartree+Fock
than the HSater potentiad. This indicates that the deriva
tion of W invokesthe right physics.

In the discusson above we have introduced the idea of
a fidd due to the Fermi hole and have obtaned the
exchange potentid as the work done in moving an dec-
tron in this field. However, this way of looking a the
potentia is absolutely generd and gpplies equaly wel to
the exchangecorrdaion potentid. Thus the exchange-
corrdldion potentid is (Harbola and Sshni 1989, 19903,
b) the work done in moving an dectron in the fidd of its
Fermi—Coulomb hole plus a smdl component represent-
ing the difference in the interacting and the nor-interact-
ing kinetic energy of a given dendty. The latter has to be
added separady because Coulomb’'s law, on which the
derivation of the potentid is based, cannot teke care of
the kinetic energy component of the Kohn-Sham poten-
tid.

The physcs of obtaning the exchange-corrdation
potentid outlined aove can be derived, as was shown
laer by Holas and March (1995), on the basis of the dif-
ferentid virid theorem. Accordingly, the gradient of the

exchange-correlation potentid isgiven as

Z,5(r)- Zl(r)+ e (r,r9

r(r) Ir-ref

where z35(r) and zi(r) are quantities related to the kinetic-
energy density tensor derived from the fird-order Kohn—
Sham and true densty matrices, respectively. Ther dif-
ference represents the kingtic energy component of the
Kohn-Sham potentid. We point out that the individua
components of the potentid gradients could have a non-
vanishing curl but their sum is adways curl-free. Thus if
one wants to cdculae only the exchange-component of
the potentid, certain approximations, such as the centrd-
fidd approximation in the case of atoms have to be made

- N”xc r)=

(r-r9dr¢ (17)

Table 1. A comparison of the total energies and highest-occupied orhital energies as
obtained by employing the Slater (12) and the W, (15) exchange potentia in the
Kohn-Sham eguation. The numbers are compared with the corresponding Hartree—
Fock (HF) theory results. Negative of the total energy and the orbital energy are given.

—Total energy (Hartree) —&nax (Ryd.)

Atom Slater W, HF Slater W, HF

He 2862 2862 2862 1836 1836 1:836
Be 14661 14671 14673 0653 0626 0619
Ne 128601 128642 128647 1824 1313 1301
Mg 199633 199606 199615 0668 0621 0506
Ar 526x703 526804 526818 1276 1478 1482
Ca 676606 67643 676x758 0449 0402 0,891
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(Sahni 1997). Note that sdf-consgtent caculations with
the potentid being cadculaed dbove ae possble only a
the exchange-only levd snce only the exchange potentid
can be cadculated directly from the orbitds by employing
(15) and (16). On the other hand, the prescription above
has been employed a great ded to study the properties of
the exact Kohn-Sham potentid. We dso note that the
aguments employed to derive the potentid ae equdly
vdid for the excited-states and as such a locd potentia
for the excited date can dso be deived (Habola and
Sahni 1989, Sahni et al 2001) from the fied aising from
the Fermi—Coulomb hole Excted-dae energy cadcula
tions (Sen 1992, Singh and Deb 1999) based on this
potertid lead to highly accurate excitation energies.

Equation (17) above gives a way of congructing the
exact  exchange-corrdation  potentid, which is  coven-
tiondly obtaned as the functiond derivative of the
exchangecorrelation  energy  functiona.  Derivation  of
the potentid as the functiond derivative is based on the
minimizetion of the energy whereas the equation above is
derived directly from the Schrodinger equation. The two
methods, of course, lead to the same results.

We now use the physics discussed above to derive an
goproximate  exchange potentid in terms of the exchange
energy density. As desxribed earlier, such an  gpproach
hes the advantage of obviating the need to take functiond
derivatives of an exchange energy functiond so that any
error associated with that processis minimized.

3. Exchangepotential in terms of the exchange
ener gy density

To deive (Habola and Sen 2002) the exchange potentid
in terms of the exchange energy density, we rewrite the
dectric fidd (16) dueto the Fermi hole as

Nr, (r,r9
r-rg]
where Vggae(r) is the exact Saer potentid as given by

(12). We now approximate the second term by consider-
ing the gradient expanson of the Fermi hole up to the

Ex(r) =-NVgge (r) + dr ¢ 18

first-order in the gradient of the dendgty. This gives
(Wang et al 1990)
\er(r,rqd o= - kF(r) (19
[r-rg 2p

Now recognizing that the Sater potentia is nothing but
twice the exchange energy, (r) per particle, we obtain

an gpproximate exchange potential
(1) =26,r) +2E0L 20
2p
The expresson awove is exact in the limit of homogene-

ous dectron gas as it leads to vx:—';—F. For inhomoge-

neous systems we expect the second term on the right
F

hand sde of (20) to be different from - - S we
parametrize the potentia as
Ke(r) 1)

vy (1) =2 —_—,
(=28()+ D

with b as a parameter. For a given agpproximate g, the
parameter bisfixed by minimizing the energy functiona

E[r]1=Tdr]+ Qe (F)r(r)dr

+%037““r)r(“D drdr &+ 3, (1)r (r)dr,

[r-rd )

with respect to it. For example, if we use the BeckeS88
exchange enagy functiond, in which g (form appropricte
for spin-unpolarized systemsiswritten here) isgiven as

3K: (1) X2
(r)=-—F7"+-9da (23
S » 9 0 Cagn annin)’
where s indicates the up or the down spin, X :|N:/53|

and g=00042, we find tha b=2%, 28, and 2%, and or
Ne, Ar, and Xe, respectively. It is gratifying to note tha
the minimizing b is cose to 2 and converges to this value
for large systems, as expected.

We point out tha minimizing energy with respect to b
is like searching for a minimum with a redricted st of
dendties. Thus the energy obtaned by us would lie
above that given by the dendties corresponding to the
functional derivative potentid, since the latter is equiva
lent to minimization with respect to al possible densities.

We now present the results of sdf-condstent calcula
tions for some cdlosed-shdl aoms by employing the
expresson of (21) for the exchange potentid in conjunc-
tion with the Becke38 exchange energy functiond given
above. In the reaults reported, we have not minimized the
total energy with respect to b for each system but have
teken an average fixed vdue of b=2%25 Before pre
senting the numbers obtained by us, we note that since
the BeckeB8 exchangeenergy per paticle goes & - -+
for asymptotic distances from the nucleus, the potentia
in these regions as given by (21) goes correctly as - Tl
On the other hand, asymptoticaly the functiond deriva-
tive of the BeckeB8 functiond goes (Engd et al 1992) as
-1, As such we may expect that the highest occupied
orbital energies as obtained by us will be better than
those given by the functiond derivative of the BeckeS8
functional. In table 2 we compare our results with those
obtained by solving the Kohn-Sham eguation with the
exchange potentid cadculated as the functiond derivetive
of the BeckeB8 functiond, and dso with the Hartreetock
results. It is evident from the numbers presented that the
potentiad of (21) leads to accurate energies that are only
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Table 2. A comparison of the total energies and highest-occupied orbital energies as
obtained by employing the Becke88 (B88) potential and the potential derived from
(21) (PW) in the Kohn-Sham eguation. The numbers are compared with the corre-
sponding Hartree—Fock (HF) theory results. Negative of the total energy and the orbi-

tal energy are given.

—Total energy (Hartree) —6enax (Ryd.)

Atom B88 PW HF B88 PW HF

He 2863 2862 2862 108 15874 1836

Be 14666 14663 145673 0862 0482 0619

Ne 128690 128°686 128%647 0009 1230 1301

Mg 199%32 199%626 199%615 0298 0422 0’606

Ar 526800 5265792 526818 0684 0910 1482

Ca 676%753 676545 676758 0231 05340 0391
parts-per-million  different from those obtaned by 0 —T e r———
employing the functiond derivaive of the BeckeB8 o| |
functiond in the Kohn-Sham equation. Note tha the :
energies obtaned by us lie aove those given by the 20t et

. . . . . . | mi
functiona derivative potentid. This is expected as was " - D_@ﬂﬁ:g'
alk sladar

pointed out aove On the other hand, since (21) gives
the asymptotic behaviour of the potentid more accu-
rately, the highest occupied orbitad energies obtained by
us ae Substantidly better: they ae larger in magnitude
than the corresponding BeckeB8 orbitd energies, and
closer to their HatreetFock vaues. Proximity of the two
sets of numbeas to the HartreeFock theory numbers
points to the correctness of the approach taken by us.

In figure 1, we have dso plotted the sdf-consistent
exchange potentid of (21) and the Becke88 functiond
derivative dong with the Sater and the W, exchange
potentials. It is evident that the Becke88 and the potentia
of (21) are very close to each other and dso to W, from
about 0%3au. onwads However, near the nucleus, the
BeckeB8 potentid goes to —¥ whereas the potentid of
(21) is finite. Further, it is closer to the W potentia than
the Sater potentiad dthough it aso is dightly deeper than
the W, potentid. Far from the nucleus the difference bet-
ween the BeckeB8 potentid (- 1) and the potentid of
(21 (-ri, is not apparent in the figure because of the
scdeused.

One quantity that brings out the difference in the beha
viour of the potentids near the nucleus rather clearly is
the cusp condition satisfied by the density. According to
this condition, the ground-state density of a neutra atom
satisfies (see, for example, Nagy and Sen 2001) the rda
tionship

1 dr
d -z

= 24
2r dr|, (24

where Z is the aomic number. In the cadculations employ-
ing the functiond-derivative of the Becke38 functiond,
the left-hand dde of (24) gives —204, —404, —10%4,
—1204, 1894 and 2004, repectivdy, for He, Be,

Exchange potential {Ryd.)

T : e
ri{a.u.)

Figure 1. Different exchange potentials, W, (15), modbecke
(21), Becke (functional derivative of the Becke88 functional of
(23)), and the Slater potential (12), for the Argon atom in
Rydberg units.

Ne, Mg, Ar and Ca. On the other hand, the potentia of
(21) leads to the correct cusp condition being satisfied for
al these systems.

4. Conclusions

We have presented an agpproach to obtaining the Kohn—
Sham  exchange potetid directly from the exchange
energy per paticle obviaing the need to cdculate the
functiond derivative of the corresponding functiond. We
have employed the method proposed in conjunction with
the BeckeB88 functiond and shown that our method not
only gives the potentiad close to the functiond derivative
of the functiond but dso improves its behaviour sgnifi-
cantly for al values of dectron postions. Thus in addi-
tion to the energies beng in agreement with those given
by the potentid derived as the functiona derivative, the
highest-occupied orbital energies obtained by our method
are superior to the latter. Further, the densties obtained
adso saisfy the correct cusp condition. This indicates the
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correctness of our approach. We are now employing the
potentiadl derived to peform cdculaions on aomic
anions and molecules by incduding corrdation effects
through the LYP functiond. We ae dso planning to
include higher order correction to the potentid derived,
dthough it is difficult due to the dectric fidd from the
third-order correction to the LDA hoe having (Wang et
al 1990) a nonvanishing longitudind component.  Inves-
tigationsin this direction arein progress.

In the past dso, atempts have been made to correct the
LDA potentid, paticulaly to improve its asymptotic
behaviour. One of these corrections was introduced in the
context of the Xa potentid by Later (1955) and is known
as the Latter correction. More recently, van-Lesuwen and
Baerends (LB) (1994) added a correction, which is based
on the BeckeB8 functiond, to the LDA to make it asymp-
toticdly accurate. The numbers obtaned by the LB
potentid show a vast improvement over the LDA
numbers. However, the derivation by LB is adhoc. Grit-
snko et al (1995) have proposed a partitioning of the
exchange potetid into a long range Saer and a short
range response component. By replacing the Sater com-
ponent with the GGA energy densty and moddling the
response  component, their scheme adso yieds reasonable
accurate representation of the optimized potentia. Our
derivation places such partitioning of the potentid on a
rigorous andyss, based on the physcs of the Fermi hole,
which can be sydematicdly improved by incduding
higher-order  corrections.  Further  work on  peforming
sf-consgent  cadculations  with  correlation  potentid
added to the potentid above is adso in progress and will
be reported in the future.
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