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Abstract. Over the past decade and a half, many new accurate density functionals, based on the generalized 
gradient approximation, have been proposed, and they give energies close to chemical accuracy. However, 
accuracy of the energy functional does not guarantee that its functional derivative, which gives the corre-
sponding potential, is also accurate all over space. For example, although the Becke88 exchange–energy 
functional gives very good exchange energies, its functional derivative goes as 

2
1
r

−  in comparison to the cor-
rect r

1−  for r →→  ∞∞ , where r is the distance of the electron from a finite system. On the other hand, accuracy 
of the potential is of prime importance if one is interested in properties other than the total energy; properties 
such as optical response depend crucially on the potential in the outer regions of a system. In this paper we 
present a different approach, based on the ideas of Harbola and Sahni, to obtain the potential directly from 
the energy density of a given approximation, without taking recourse to the functional derivative route. This 
leads to a potential that is as accurate as the functional itself. We demonstrate the accuracy of our approach 
by presenting some results obtained from the Becke88 functional. 
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1. Introduction 

Hohenberg–Kohn–Sham density-functional theory (DFT) 
(Parr and Yang 1989; Dreizler and Gross 1990) provides 
the basis of all modern-day electronic-structure calcula-
tions. As is well known, in this theory electron density 
plays the role of the basic variable. Thus the total energy 
is expressed in terms of the density as  
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Here Ts[ρ] is the kinetic energy of non-interacting elec-
trons of density ρ(r), vext(r) the potential electrons are 
moving in, rr
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1 ρρ  the direct Coulomb energy 

of electrons and Exc[ρ] their exchange–correlation 
energy. The density is obtained from the solutions φi(r) 
of the Kohn–Sham equation (all equations are written in 
atomic units)  
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The exchange–correlation potential, vxc(r), in the Kohn–
Sham equation is obtained by taking the functional 
derivative 

)(

][xc

rδρ
ρδE  of the exchange–correlation energy 

functional, Exc[ρ]. Since the inception of density-
functional theory, the local-density-approximation (LDA) 
and the local-spin-density-approximation (LSDA) (Parr 
and Yang 1988; Dreizler and Gross 1990) have been the 
mainstay of most of the DFT calculations. These appro-
ximations are based on the exchange–correlation energies 
of homogeneous electron gas. Thus the exchange energy 
in the LDA is given as  
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where εx is the exchange energy per particle for a homo-
geneous electron gas, expressed in terms of the density 
ρ(r) as  
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where kF(r) 3
1

))(3( 2 rρπ=  is the local Fermi vector. Cor-
relation energy in the LDA is also given by an expression 
similar to (4) above with the exchange-energy, εx, per 
particle replaced by the correlation energy, εc, per parti-
cle. In the parametrization by Gunnarsson and Lundquist 
(1976), correlation energy per electron is given as  
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=r  measures the radius of a sphere enclos-

ing one electron. The corresponding exchange and cor-
relation potentials are given as  
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Since the LDA is based on homogeneous electron gas 
results, it is expected to be accurate when the density is a 
slowly varying function. However, if the density has 
large inhomogeneity, the error in the LDA becomes rela-
tively large. To incorporate the non-local dependence of 
the exchange–correlation energy on density, one then 
makes a Taylor series expansion—termed as the gradient 
expansion approximation or the GEA—of the energy in 
terms of the gradient of the density. Such a correction to 
the LDA was first proposed for the exchange energy by 
Herman et al (1969). The GEA functional up to the sec-
ond-order in the density gradients is  
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=xC  The exchange-potential corre-
sponding to the GEA functional is  
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For exponentially decaying densities, this potential beco-
mes singular at large distances so that in implementing it 
in the Kohn–Sham scheme, a damping term has to be 
introduced. This is one of the problems with the GEA. 
Other problems are related (Perdew 1985) to the Fermi 
hole corresponding to the GEA energy. The GEA has 
been further improved upon by rectifying these short-
comings to develop functionals known as the general-
ized-gradient approximation (GGA). These functionals 
have been shown to possess chemical accuracy. The most 
popular ones are the PW91 (Perdew and Wang 1986; 
Perdew 1991) and Becke88 (Becke 1988) functionals. 
 An important point that must be kept in mind in deve-
loping energy functionals is that their functional deriva-

tives be easy to obtain so that the corresponding potential 
can be easily calculated. However, accuracy of a func-
tional does not automatically guarantee that its functional 
derivative will also be accurate. For example, the 
Becke88 functional gives the exact exchange-energy den-
sity 

r2
1−  asymptotically but its functional derivative 

goes (Engel et al 1992) as .
2
1
r

−  Thus it cannot be expec-
ted to give properties—such as the highest-occupied 
orbital energy—which depend to a large extent on the 
behaviour of the potential in the outer regions of a sys-
tem, correctly. Further, in atoms the functional derivative 
diverges (Engel et al 1992) near the nucleus as 

r
1−  as 

r → 0, whereas the effective potential is finite at the 
nucleus (Umrigar and Gonze 1994; Qian and Sahni 
2000). Due to this overestimate of the effective local 
potential close to the nucleus, electronic properties such 
as the electron–nuclear cusp condition, total s-electron 
density and the spin density at the nucleus are expected 
to be poorly represented. Motivated by these issues, a 
question that we ask is if it is possible to obtain the effec-
tive potential without taking the functional derivative of 
the energy functional. Such an approach is useful on two 
fronts: First, it frees one from fitting an energy functional 
to bring it to a manageable form so that its functional 
derivative could be obtained, and secondly by circum-
venting the functional derivative route to get the effective 
potential, it keeps the accuracy of the potential at the 
same level as that of the energy density. In the following 
we present such an approach for the exchange potential, 
based upon the ideas of Slater (1951) and Harbola and 
Sahni (1989). We therefore start with a description of the 
Slater potential, then introduce the idea of electric field 
due to the Fermi–Coulomb hole, give an exact prescrip-
tion of the exact exchange–correlation potential in terms 
of this field and finally use this prescription to obtain an 
approximate exchange potential in terms of the exchange 
energy density. We employ this scheme with the Becke88 
energy functional and present the results obtained for the 
energies and ionization potential of some closed shell 
atoms.  

2. Exchange–correlation potential from the 
Fermi–Coulomb hole 

To simplify the Hartree–Fock theory (Slater 1960), which 
has orbital-dependent non-local exchange-potentials, and 
make it computationally easy, Slater (1951) introduced 
the idea of obtaining a local exchange potential from the 
Fermi hole of an electron. Without going into the details 
of its derivation, which are well discussed (Harbola and 
Sahni 1993) in the literature, we give the form of the 
Slater potential here. It is given as  
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where ρx(r, r′) is the Fermi hole arising due to the Pauli 
exclusion principle. It is given in terms of the occupied 
orbitals of a system (for simplicity, we are considering 
here only the closed-shell case) as  
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where  

γ (r, r′) = 2∑iφi *(r)φi (r′), (14) 

is the Dirac matrix. In the summation above, the index i 
refers to quantum numbers other than the spin (summa-
tion over spin gives a factor of two that has been inclu-
ded explicitly in the expression above). Self-consistent 
calculations with VSlater(r) in place of vxc(r) in (2) can be 
performed easily. The results (Harbola and Sahni 1993) 
obtained from such calculations for some closed-shell 
atoms are displayed in comparison with the Hartree–Fock 
numbers (Fischer 1977) in table 1. They amply demon-
strate the accuracy of the Slater potential. The idea of 
Slater was further explored by Harbola and Sahni (1989) 
who recognized that the Slater potential was being cal-
culated by treating the Fermi hole as a static charge dis-
tribution. However, the Fermi hole changes shape as a 
function of electron position in an inhomogeneous den-
sity. Therefore, the correct way to obtain the potential is 
to first get the electric field due to the Fermi hole and 
then calculate the potential as the work done in moving 
the electron in this field. Thus the correct exchange 
potential is given as  
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is the electric field due to the Fermi hole. A comparison 
between the two potentials is made in figure 1 for the 
Argon atom. It is seen that the potential, Wx, is shallower

than the exact Slater potential in the interior of the atom 
and both go as 

r
1−  outside the atom. Comparison bet-

ween the energies obtained from the two methods is 
made in table 1. It is evident that both the total energies 
and the highest occupied orbital energies with Wx as the 
exchange potential come out to be closer to Hartree–Fock 
than the Slater potential. This indicates that the deriva-
tion of Wx invokes the right physics. 
 In the discussion above we have introduced the idea of 
a field due to the Fermi hole and have obtained the 
exchange potential as the work done in moving an elec-
tron in this field. However, this way of looking at the 
potential is absolutely general and applies equally well to 
the exchange–correlation potential. Thus the exchange–
correlation potential is (Harbola and Sahni 1989, 1990a, 
b) the work done in moving an electron in the field of its 
Fermi–Coulomb hole plus a small component represent-
ing the difference in the interacting and the non-interact-
ing kinetic energy of a given density. The latter has to be 
added separately because Coulomb’s law, on which the 
derivation of the potential is based, cannot take care of 
the kinetic energy component of the Kohn–Sham poten-
tial. 
 The physics of obtaining the exchange–correlation 
potential outlined above can be derived, as was shown 
later by Holas and March (1995), on the basis of the dif-
ferential virial theorem. Accordingly, the gradient of the 
exchange–correlation potential is given as  
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where z1s(r) and z1(r) are quantities related to the kinetic-
energy density tensor derived from the first-order Kohn–
Sham and true density matrices, respectively. Their dif-
ference represents the kinetic energy component of the 
Kohn–Sham potential. We point out that the individual 
components of the potential gradients could have a non-
vanishing curl but their sum is always curl-free. Thus if 
one wants to calculate only the exchange-component of 
the potential, certain approximations, such as the central-
field approximation in the case of atoms, have to be made

 

Table 1. A comparison of the total energies and highest-occupied orbital energies as 
obtained by employing the Slater (12) and the Wx (15) exchange potential in the 
Kohn–Sham equation. The numbers are compared with the corresponding Hartree–
Fock (HF) theory results. Negative of the total energy and the orbital energy are given. 

 – Total energy (Hartree) – εmax (Ryd.) 
 

Atom Slater Wx  HF Slater Wx HF 
 

He 2⋅862 2⋅862 2⋅862 1⋅836 1⋅836 1⋅836 
Be 14⋅561 14⋅571 14⋅573 0⋅653 0⋅626 0⋅619 
Ne 128⋅501 128⋅542 128⋅547 1⋅824 1⋅713 1⋅701 
Mg 199⋅533 199⋅606 199⋅615 0⋅568 0⋅521 0⋅506 
Ar 526⋅703 526⋅804 526⋅818 1⋅276 1⋅178 1⋅182 
Ca 676⋅606 676⋅743 676⋅758 0⋅449 0⋅402 0⋅391 
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(Sahni 1997). Note that self-consistent calculations with 
the potential being calculated above are possible only at 
the exchange-only level since only the exchange potential 
can be calculated directly from the orbitals by employing 
(15) and (16). On the other hand, the prescription above 
has been employed a great deal to study the properties of 
the exact Kohn–Sham potential. We also note that the 
arguments employed to derive the potential are equally 
valid for the excited-states and as such a local potential 
for the excited state can also be derived (Harbola and 
Sahni 1989; Sahni et al 2001) from the field arising from 
the Fermi–Coulomb hole. Excited-state energy calcula-
tions (Sen 1992; Singh and Deb 1999) based on this 
potential lead to highly accurate excitation energies.  
 Equation (17) above gives a way of constructing the 
exact exchange–correlation potential, which is coven-
tionally obtained as the functional derivative of the 
exchange–correlation energy functional. Derivation of 
the potential as the functional derivative is based on the 
minimization of the energy whereas the equation above is 
derived directly from the Schrödinger equation. The two 
methods, of course, lead to the same results.  
 We now use the physics discussed above to derive an 
approximate exchange potential in terms of the exchange 
energy density. As described earlier, such an approach 
has the advantage of obviating the need to take functional 
derivatives of an exchange energy functional so that any 
error associated with that process is minimized.  

3. Exchange potential in terms of the exchange 
energy density 

To derive (Harbola and Sen 2002) the exchange potential 
in terms of the exchange energy density, we rewrite the 
electric field (16) due to the Fermi hole as  
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where VSlater(r) is the exact Slater potential as given by 
(12). We now approximate the second term by consider-
ing the gradient expansion of the Fermi hole up to the 
first-order in the gradient of the density. This gives 
(Wang et al 1990)  
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Now recognizing that the Slater potential is nothing but 
twice the exchange energy, εx(r) per particle, we obtain 
an approximate exchange potential  
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The expression above is exact in the limit of homogene-
ous electron gas as it leads to .F

x π
k−=v  For inhomoge-

neous systems we expect the second term on the right 
hand side of (20) to be different from π

Fk−  so we 
parametrize the potential as  
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with β as a parameter. For a given approximate εx, the 
parameter β is fixed by minimizing the energy functional  
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with respect to it. For example, if we use the Becke88 
exchange energy functional, in which εx (form appropriate 
for spin-unpolarized systems is written here) is given as  
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where σ indicates the up or the down spin, 3/4

||

σρ

ρσ
σ

∇=x  
and γ = 0⋅0042, we find that β = 2⋅5, 2⋅3, and 2⋅0, and for 
Ne, Ar, and Xe, respectively. It is gratifying to note that 
the minimizing β is close to 2 and converges to this value 
for large systems, as expected.  
 We point out that minimizing energy with respect to β 
is like searching for a minimum with a restricted set of 
densities. Thus the energy obtained by us would lie 
above that given by the densities corresponding to the 
functional derivative potential, since the latter is equiva-
lent to minimization with respect to all possible densities.  
 We now present the results of self-consistent calcula-
tions for some closed-shell atoms by employing the 
expression of (21) for the exchange potential in conjunc-
tion with the Becke88 exchange energy functional given 
above. In the results reported, we have not minimized the 
total energy with respect to β for each system but have 
taken an average fixed value of β = 2⋅25. Before pre-
senting the numbers obtained by us, we note that since 
the Becke88 exchange-energy per particle goes as 

r2
1−  

for asymptotic distances from the nucleus, the potential 
in these regions as given by (21) goes correctly as .1

r
−  

On the other hand, asymptotically the functional deriva-
tive of the Becke88 functional goes (Engel et al 1992) as 

.
2

1
r

−  As such we may expect that the highest occupied 
orbital energies as obtained by us will be better than 
those given by the functional derivative of the Becke88 
functional. In table 2 we compare our results with those 
obtained by solving the Kohn–Sham equation with the 
exchange potential calculated as the functional derivative 
of the Becke88 functional, and also with the Hartree–Fock 
results. It is evident from the numbers presented that the 
potential of (21) leads to accurate energies that are only
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Table 2. A comparison of the total energies and highest-occupied orbital energies as 
obtained by employing the Becke88 (B88) potential and the potential derived from 
(21) (PW) in the Kohn–Sham equation. The numbers are compared with the corre-
sponding Hartree–Fock (HF) theory results. Negative of the total energy and the orbi-
tal energy are given.  

 – Total energy (Hartree) – εmax (Ryd.) 
 

Atom  B88  PW  HF B88 PW HF 
 

He 2⋅863 2⋅862 2⋅862 1⋅108 1⋅374 1⋅836 
Be 14⋅566 14⋅563 14⋅573 0⋅362 0⋅482 0⋅619 
Ne 128⋅590 128⋅586 128⋅547 0⋅909 1⋅230 1⋅701 
Mg 199⋅632 199⋅626 199⋅615 0⋅298 0⋅422 0⋅506 
Ar 526⋅800 526⋅792 526⋅818 0⋅684 0⋅910 1⋅182 
Ca 676⋅753 676⋅745 676⋅758 0⋅231 0⋅340 0⋅391 

 
 
parts-per-million different from those obtained by 
employing the functional derivative of the Becke88 
functional in the Kohn–Sham equation. Note that the 
energies obtained by us lie above those given by the 
functional derivative potential. This is expected as was 
pointed out above. On the other hand, since (21) gives 
the asymptotic behaviour of the potential more accu-
rately, the highest occupied orbital energies obtained by 
us are substantially better: they are larger in magnitude 
than the corresponding Becke88 orbital energies, and 
closer to their Hartree–Fock values. Proximity of the two 
sets of numbers to the Hartree–Fock theory numbers 
points to the correctness of the approach taken by us.  
 In figure 1, we have also plotted the self-consistent 
exchange potential of (21) and the Becke88 functional 
derivative along with the Slater and the Wx exchange 
potentials. It is evident that the Becke88 and the potential 
of (21) are very close to each other and also to Wx from 
about 0⋅03 a.u. onwards. However, near the nucleus, the 
Becke88 potential goes to –∞ whereas the potential of 
(21) is finite. Further, it is closer to the Wx potential than 
the Slater potential although it also is slightly deeper than 
the Wx potential. Far from the nucleus the difference bet-
ween the Becke88 potential )( 2

1
r

−  and the potential of 
(21) ),( 1

r
−  is not apparent in the figure because of the 

scale used.  
 One quantity that brings out the difference in the beha-
viour of the potentials near the nucleus rather clearly is 
the cusp condition satisfied by the density. According to 
this condition, the ground-state density of a neutral atom 
satisfies (see, for example, Nagy and Sen 2001) the rela-
tionship  
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where Z is the atomic number. In the calculations employ-
ing the functional-derivative of the Becke88 functional, 
the left-hand side of (24) gives –2⋅04, –4⋅04, –10⋅04, 
–12⋅04, –18⋅04 and –20⋅04, respectively, for He, Be,

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ne, Mg, Ar and Ca. On the other hand, the potential of 
(21) leads to the correct cusp condition being satisfied for 
all these systems. 

4. Conclusions 

We have presented an approach to obtaining the Kohn–
Sham exchange potential directly from the exchange-
energy per particle, obviating the need to calculate the 
functional derivative of the corresponding functional. We 
have employed the method proposed in conjunction with 
the Becke88 functional and shown that our method not 
only gives the potential close to the functional derivative 
of the functional but also improves its behaviour signifi-
cantly for all values of electron positions. Thus in addi-
tion to the energies being in agreement with those given 
by the potential derived as the functional derivative, the 
highest-occupied orbital energies obtained by our method 
are superior to the latter. Further, the densities obtained 
also satisfy the correct cusp condition. This indicates the 

Figure 1. Different exchange potentials, Wx (15), modbecke 
(21), Becke (functional derivative of the Becke88 functional of 
(23)), and the Slater potential (12), for the Argon atom in 
Rydberg units. 
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correctness of our approach. We are now employing the 
potential derived to perform calculations on atomic 
anions and molecules by including correlation effects 
through the LYP functional. We are also planning to 
include higher order correction to the potential derived, 
although it is difficult due to the electric field from the 
third-order correction to the LDA hole having (Wang et 
al 1990) a non-vanishing longitudinal component. Inves-
tigations in this direction are in progress.  
 In the past also, attempts have been made to correct the 
LDA potential, particularly to improve its asymptotic 
behaviour. One of these corrections was introduced in the 
context of the Xα potential by Latter (1955) and is known 
as the Latter correction. More recently, van-Leeuwen and 
Baerends (LB) (1994) added a correction, which is based 
on the Becke88 functional, to the LDA to make it asymp-
totically accurate. The numbers obtained by the LB 
potential show a vast improvement over the LDA 
numbers. However, the derivation by LB is adhoc. Grit-
senko et al (1995) have proposed a partitioning of the 
exchange potential into a long range Slater and a short 
range response component. By replacing the Slater com-
ponent with the GGA energy density and modelling the 
response component, their scheme also yields reasonable 
accurate representation of the optimized potential. Our 
derivation places such partitioning of the potential on a 
rigorous analysis, based on the physics of the Fermi hole, 
which can be systematically improved by including 
higher-order corrections. Further work on performing 
self-consistent calculations with correlation potential 
added to the potential above is also in progress and will 
be reported in the future.  
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