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The Fisher-Shannon plane which embodies the Fisher information measure in conjunction with the Shannon
entropy is tested in its ability to quantify and compare the informational behavior of the process of atomic
ionization. We report the variation of such an information measure and its constituents for a comprehensive set
of neutral atoms, and their isoelectronic series including the mononegative ions, using the numerical data
generated on 320 atomic systems in position, momentum, and product spaces at the Hartree-Fock level. It is
found that the Fisher-Shannon plane clearly reveals shell-filling patterns across the periodic table. Compared to
position space, a significantly higher resolution is exhibited in momentum space. Characteristic features in the
Fisher-Shannon plane accompanying the ionization process are identified, and the physical reasons for the
observed patterns are described.
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I. INTRODUCTION

Shannon entropy �1� �S� and the Fisher information mea-
sure �2� �I� of the probability distributions are becoming in-
creasingly important tools of scientific analysis in a variety
of disciplines of scientific enquiry. Jaynes’ maximum entropy
principle, which utilizes S, provides a method for construct-
ing the whole of statistical thermodynamics �3� which has
led to a large variety of applications centered around S. On
the other hand, the Frieden extreme physical information
principle �4� uses the Fisher information measure to derive
important laws of chemistry and physics �5�, such as the
equations of the nonrelativistic quantum mechanics �6� or
relevant results in density functional theory �7,8�. While the
Shannon entropy has remained the major tool in information
theory, there have been noteworthy applications of Fisher
information �7–12�. Overall, these studies suggest that both S
and I can be used as complementary tools to describe the
information behavior, pattern, or complexity of physical sys-
tems and the electronic processes involving them.

Measuring the complexity of a general system is yet an-
other interesting area of contemporary research which has
roots in information theory. One of the proposals due to
López-Ruiz, Mancini, and Calbet �LMC� �13� defines the
statistical complexity measure simply as the product of dis-
equilibrium and the Shannon entropy of the probability dis-
tribution. Here, the disequilibrium is defined as the expecta-
tion value of the probability density �quadratic distance from
the equiprobability�. The LMC measure has been criticized
�15,16� and modified, leading to the definition of shape com-
plexity �17,18�, which satisfies several desirable properties of
invariance under scaling, translation, and replication and has
been further generalized �19,20� to include Rényi and Tsallis
entropy measures. The utility of such generalized complexity
measures has been demonstrated recently �21,22�. Another
simple and related measure of complexity has been also pro-
posed by Shiner, Davison, and Landsberg �SDL complexity�
as a product of disorder-order factors �23�, both of which are

expressed in terms of Shannon entropy values.
In view of the fact that for a normal distribution the Fisher

measure estimates the inverse of variance and the disequilib-
rium defined as the density expectation value measures the
square root of inverse variance, it is possible, in principle, to
employ Shannon entropy in conjunction with Fisher informa-
tion to describe the complexity of atomic systems and study
their associated electronic properties such as ionization and
polarizability. Relative to the LMC measure, using the
Fisher-Shannon plane as a measure of complexity offers the
advantage of �a� incorporating a global measure of uncer-
tainty �Shannon� and a local or intrinsic measure of accuracy
�Fisher� and �b� obtaining a higher sensitivity particularly
where the density oscillations are involved. This has moti-
vated us to study the Fisher-Shannon plane to describe the
ionization process in the position and momentum spaces. We
note here that the Shannon entropies in the position and mo-
mentum spaces alone were used earlier �24� to study the
electron correlation effects in the He, Li, Be, and Ne isoelec-
tronic series. The Fisher-Shannon plane has been applied
successfully to various fields—e.g., to the analysis of signals
�25� and the study of electron correlation �26� within the
He-isoelectronic series. Other similar analyses have been
done using the well-known Cramer-Rao plane where the in-
volved magnitudes are the variance and the Fisher informa-
tion of the distribution �27,28�.

The aim of this work is to carry out a comprehensive
analysis in the Fisher-Shannon plane for simple, but strongly
organized N-electronic systems �N=2–54� of neutral atoms
and their singly charged ions. In particular, we have studied
�a� the behaviors in the Fisher-Shannon plane accompanying
the process of gain or loss of one electron for an atom at
constant Z and �b� the isoelectronic variation of this informa-
tion measure of over a fairly extended range of Z values.
Both partial variations with respect to the electron number N
and the nuclear charge Z are found to show characteristic
features in the Fisher-Shannon plane. This study tests the
feasibility of using the Fisher-Shannon plane as a
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information-theoretical tool to describe changes in the elec-
tronic density as a function of electron number N and nuclear
charge Z, respectively. The outline of this paper is as follows.
In Sec. II the defining tools of carrying out the Fisher-
Shannon analysis are presented. Sections III and IV present
and discuss the results of such analyses on the isoelectronic
changes and ionization, respectively. Finally, in Sec. V we
have summarized the main conclusions of the present work.

II. FISHER-SHANNON PLANE FOR ELECTRONIC
DENSITIES

The study of the main physical properties of many fer-
mion systems involves, as basic variables, the one-particle
densities in both position and momentum spaces, ��r� and
��p�, respectively, as shown in the density functional theory
�29�:

��r� =� ���r,r2, . . . ,rN��2dr2 ¯ drN, �1�

��p� =� ���p,p2, . . . ,pN��2dp2 ¯ dpN, �2�

where ��r ,r2 , . . . ,rN� denotes the normalized wave function
of the N-electron system, ��p ,p2 , . . . ,pN� is its Fourier
transform, and all densities are normalized to unity.

As we have pointed out before, information theory is be-
ing applied successfully to the study of the electronic struc-
ture of atoms and molecules. We use in this case Shannon
entropy and Fisher information Sr and Ir in position space r,
defined, respectively, by

Sr = −� ��r�ln ��r�dr = − �ln ��r�� , �3�

Ir =� �����r��2/��r��dr = ���ln ��r��2� �4�

��·� denotes the expectation value�. Their momentum-space
counterparts Sp and Ip are defined in an analogous manner
using instead of the charge density ��r�, the momentum den-
sity ��p�.

In this study it is sufficient to deal with the spherically
averaged electron densities ��r� or ��p�, each normalized to
unity; therefore, we can use one-dimensional integrals.

There are a number of candidates for a direct measure of
uncertainty or spread of a one-dimensional probability distri-
bution ��r�, the most well known being the variance of the
distribution V=�2 �� is the root-mean-square deviation�:

V = �2 = �r2� − �r�2. �5�

A second candidate, which shares all the virtues of � �same
units as r, translation and reflection invariance, linear scal-
ing, and vanishing when approaching a � function� is the
inverse participation ratio or informational energy �30�,

1

D
= 	� �2�r�dr
−1

= ���r��−1. �6�

D, which, as noted earlier, behaves like the inverse of �, is
also used in many different fields to represent the Onicescu
information energy �31�, self-similarity �32�, disequilibrium
�13�, purity in quantum mechanics, or simply average den-
sity. 1−D is also called dissimilarity or linear entropy in
contrast with the nonlinear Shannon entropy. It is also an
experimentally measurable quantity �14�.

However, the magnitude 1/D is in fact only a special case
�	=1� of what may be called rényi lengths �33�, which are
closely related to rényi entropies �its logarithm�, and their
reciprocals were also extensively investigated in Ref. �34�:

L	 = 	� �	+1�r�dr
−1/	

. �7�

The so-called exponential entropy, denoted by Nr=eSr, guar-
antees positivity and is simply given by direct measure of
spread L	 in the limit 	→0. Thus Shannon entropy �or
power Shannon entropy� behaves like a measure of delocal-
ization or lack of structure of the electronic density in the
position space. Thus Sr is maximal when knowledge of ��r�
is minimal. This magnitude has been extensively used in the
study of many-electron systems and a variety of important
results have been obtained �35�. In particular, it has been
related to the quality of the basis set �36� and correlation of
the wave function �37� as well as many atomic and molecu-
lar properties �38�. Of course, in general, all the moments of
the electronic density give information on the quantification
of the spreading of the density around the origin. A variety of
relations, bounds, and inequalities between them and other
functionals of the density, or ever including the own density
�39�, are published �40�.

It has been demonstrated that the �much less used� mo-
mentum density, particularly from an entropic perspective,
provides complementary insight into chemical phenomena of
atoms or molecules �41�. The Shannon entropy in momen-
tum space is largest for systems where electrons are of un-
determinable speed and is smaller for systems with a high
proportion of relaxed atoms—i.e., low p. This momentum
entropy Sp is closely related to Sr by the well-known uncer-
tainty relation of Bialynicki-Birula and Mycielski �42�,
which shows that the sum of both entropies—i.e., ST=Sr
+Sp—cannot decrease arbitrarily and is a balanced measure
by taking into account the entropic boundary of the distribu-
tion in both spaces. The usual interpretation �in one-electron
atomic systems� is that localization of the electron’s position
results in an increase in kinetic energy and a delocalization
of the momentum density. A weak nuclear potential would
imply a delocalized electron density and hence a localized
electron momentum density �41� in n dimensions,

ST = Sr + Sp 
 n�1 + ln �� , �8�

generalizes the well-known Heisenberg bound �r2��p2�

n2 /4. There are similar uncertainty inequalities that relate
Rényi lengths as well as power entropies in position and
momentum spaces �43�.
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It is worthy to mention that the generalized Shannon en-
tropies such as Rényi �44�, Tsallis �45�, or Havrda-Charvat
�46� entropies are less commonly used in the informational
study of electron distributions. Similarly, Fisher information,
which is a measure of the localization of distribution, has not
been used until very recently to investigate directly elec-
tronic densities. However, it is a well-known statistical esti-
mator and its role in information theory, density functional
theory, and inverse problems was emphasized recently
�7–12,47,48�.

Besides, Fisher information fulfills important uncertainty
relations such as the Cramer-Rao bound IV
1 or the Stam
uncertainty Ir�4Vp and Ip�4Vr �43�. Taking into account
the previous bounds and simply redefining the entropy power
as

J =
1

2�e
e�2/n�S, �9�

it has been shown �43� that

P � IJ 
 n . �10�

Some of the above information magnitudes have been re-
cently used to analyze atomic systems and their properties.
In �49� LMC and SDL complexities are compared for the
neutral atoms �2Z54�. The net Fisher information mea-
sure is found to correlate well with the inverse of the ioniza-
tion potential and dipole polarizability �50�. Some studies on
atomic similarity, using magnitudes closely related to D or to
relative Shannon entropies, have been also reported �51,52�.
Very recently a comparative analysis of I and D shows that
they both vary similarly with Z within the neutral atoms,
exhibiting the same maxima and minima, but Fisher infor-
mation presents a significantly enhanced sensitivity in the
position and momentum spaces in all systems considered
�53�.

In this work, the lower bound �10� to the product of these
two important and complementary magnitudes �similar to the
Cramer-Rao one� and the inverse behavior of I and J as
measures of localization and uncertainty, respectively, as
well as their inverse local and global meaning, suggest the
use of a product measure P= IJ, in line with the CLMC=DS
measure of complexity �13,17–19�, which can be called the
Fisher-Shannon measure. The trajectories of different elec-
tronic processes or systems can be easily represented in a J
versus I plane where lines of equal Fisher-Shannon measure
can recognize the different content of complexity, structure,
and pattern of each process or system. To the best of our
knowledge this �or closely related� Fisher-Shannon measure
has been only applied in two previous studies �25,26�. Some
more interesting properties of this product measure such as
scaling and uncertaintylike relationships have been also ex-
amined �43�.

As described in the Introduction, we apply the Fisher-
Shannon measure to isoelectronic series of ions �Sec. III� and
to monoionization processes �Sec. IV�, in position �Pr

= IrJr�, momentum �Pp= IpJp�, and product �Prp= IrpJrp�
spaces, where

Prp = IrpJrp = IrIpJrp = IrIp
1

2�e
e�2/n��Sr+Sp�. �11�

In the computations the atomic wave functions of Koga et al.
�54� have been employed to calculate the atomic densities
and their corresponding informational measures for all the
atomic systems.

III. FISHER-SHANNON ANALYSIS OF ISOELECTRONIC
SERIES

Isoelectronic series studies provide a well-known bench-
mark for the study of atoms and molecules. In this section
results concerning the application of the entropic functionals,
defined previously, are presented. We have analyzed nine
isoelectronic series corresponding to N=2–10 electron sys-
tems. Each series consists of 21 systems of equal electronic
charge N and nuclear charge running from Z=N to Z=N
+20. In this form we study how Fisher-Shannon measure
characterizes, from the informational point of view, this set
of 189 different systems. On the one hand, the effect of de-
creasing nuclear charge �from Z+N to N� can be studied and
on the other the electronic organization of each isoelectronic
series can be investigated.

Fisher and Shannon measures are calculated for each iso-
electronic series in position, momentum, and product spaces
in order to compare them and have a more complete and
accurate analysis of these systems. We shall now present the
results of our calculations as displayed in a J vs I plane—i.e.,
the Fisher-Shannon plane.

Figures 1 and 2 show, respectively, the results in r and p
spaces in a double-logarithmic scale. Line P=JI=3, in both
spaces, divides the Fisher-Shannon plane into two regions.
The left area is the forbidden region by inequality �10�, and
parallel lines to it show isocomplexity processes showing
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FIG. 1. Fisher-Shannon plane for isoelectronic series in r space.
Double-logarithmic scale. Numbers in the graph indicate N—i.e.,
electrons of the series. Systems of large Z are on the lower-right
zone of the figure. Neutral systems are in the upper-left zone. The
dashed line shows the rigorous lower bound IJ=3 for P=JI. Atomic
units �a.u.� are used.
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that an increase �decrease� in uncertainty �J� in them is com-
pensated for by a proportional decrease �increase� of accu-
racy �I�. Each isoelectronic series follows a trajectory in the
Fisher-Shannon plane that can be easily analyzed. The iso-
electronic series corresponding to He shows an almost con-
stant P=4 line in both spaces, showing that the effect of
increasing the nuclear charge produces, obviously, more lo-
calization �I� and consequently less uncertainty �J�. However
this fact does not affect very much to the product measure,
P=JI.

Systems with large nuclear charge in r space �Fig. 1� are
located in the right-lower zone of the figure, showing a high
localized structure �I large�, independently of the isoelec-
tronic series they belong. The trajectories of the isoelectronic
series show that the product measure in this zone is almost
constant. However, when nuclear charge is decreased, sys-
tems deviate from the constant isoproduct lines and show
greater complexity. Neutral systems �on the left-upper zone
of the J-I plane�, breaking definitely this false linearity, show
the largest complexity in r space and are characterized by a
relatively lower localization and greater uncertainty when
compared to members of their same series.

It is interesting to note the exact reciprocal behavior suf-
fered by all series in the complementary p space �Fig. 2�.
Now systems of large nuclear charge are located in the left-
upper zone of the figure, showing a low-p localization in this
space and high entropy; on the contrary, neutral systems are
located in the low-entropy and high-localization region and
show a deviation from the isoproduct lines, which implies as
in the r case, the largest structure and complexity.

The distance between systems in the same isoelectronic
series falls with Z, showing more similarity between systems
with large nuclear charge; on the contrary, systems with low
Z separate more and more, showing different trends.

Figure 3 presents the trajectories of the nine isoelectronic
series in the product space. It is important to remark now the

radical change in the slopes of all series in comparison with
those of r and p planes. Systems with heavy nuclei are on the
left and neutral systems on the right. Localization in this
product �rp� plane is very different, whereas the joint en-
tropy does not change so drastically. Once again neutral sys-
tems show more complexity than the cations of their series.
The shell structure is now present, showing that systems fill-
ing the 2s subshell present more complexity than those fill-
ing the 2p subshell. Also noble gases show the smallest com-
plexity compared with other atoms.

In Figs. 2 and 3, a different behavior is displayed by the
N=2 series compared to the other series. This is due to the
fact that N=2 series is unique in that it is devoid of a shell of
core electrons. Equivalently, all electrons have principal
quantum number n=1 in this series whereas for others a
valence shell is introduced with n=2.

In conclusion, it is clear from these Figs. 1–3 that in ad-
dition to the independent studies in the position or momen-
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FIG. 3. Fisher-Shannon plane for isoelectronic series in product
rp space. Double-logarithmic scale. Numbers in the graph indicate
N—i.e., electrons of the series. Systems of large Z are on left zone
of the figure. Neutral systems are in the right zone. The dashed line
shows the rigorous lower bound IJ=18�e for P=JI. Atomic units
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tum space, the product-space behavior is important in itself.
Further, a suitable combination of a measure of uncertainty
�randomness� or a measure of concentration �localization�,
like, e.g., P, seems desirable to study the isoelectronic
changes in the electronic density.

IV. FISHER-SHANNON PLANE FOR IONIZATION
PROCESSES

In this section we study the Fisher-Shannon trajectories
followed in monoionization processes. Then we focus now,

not in the core of the atom like in the previous section, but in
the outer electronic layer. In doing so we calculate the infor-
mational measures: I, J, and P to analyze a set of 149 atomic
systems including anions, neutral species, and cations.

In Fig. 4, and now in a linear scale, the Fisher-Shannon
�FS� plane in position space is plotted for these systems.
Some facts are worthy to remark on in this figure. First, it is
clear that the FS plane reproduces faithfully the atomic shell
structure, systems of large Z being highly localized and or-
ganized, whereas light systems have much more entropy.
Second, changes in the ionization processes of heavy atoms
are smaller than those suffered by light atoms. Furthermore,
the complexity, for a given Z, is largest for the anion fol-
lowed by neutral atoms and cations, respectively. Third, ion-
ization in s subshells is a process characterized by a consid-
erable gain of complexity as compared to those in p or d
subsells which increases only moderately the product of I
and J measures.

Figures 5�a�–5�c� show the Fisher-Shannon plane in mo-
mentum space, separately for anions, neutrals, and cations,
for more clarity. Again the reciprocal behavior in this space
is the opposite that in r space. Systems of large Z are now
less localized and have more entropy. Light systems are more
localized in p space. Besides in the process of loss of elec-
trons entropy increases whereas Ip decreases, which is just
the reciprocal of r-space behavior.

It is important to remark that the same calculations for
ionic systems are done using Shannon S, Rényi, or Tsallis
entropies, showing similar results. In the same way, the use
of disequilibrium D �6�, instead of Fisher information, also
shows analogous complexity �17� trends.

Finally, in Fig. 6, for variety, complexities of all these
systems in the product space are shown. Total information
content increases while losing an electron with overall orga-
nization �with Z� but showing the characteristic trends of the
shell structure. Maxima in s subshells are notorious and also
the relative minima in noble gases �or some anomalous fill-
ing in d shells�.
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FIG. 5. Fisher-Shannon plane for ionization processes in p
space. Triple figure. Linear scale. Numbers in the graph indicate the
corresponding subshell. The dashed line shows the rigorous lower
bound IJ=3 for P=JI. Atomic units �a.u.� are used.

FIG. 6. Fisher-Shannon complexity �Prp= IrpJrp� vs Z for ion-
ization processes in rp space. Linear scale. Atomic units �a.u.� are
used.
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V. CONCLUSIONS

Fisher information and Shannon entropy are used together
to construct a product informational measure �P=JI�, taking
into account global �J� and local �I� characteristics of the
electronic densities. Besides, one factor �J� measures ran-
domness or uncertainty whereas the other measures localiza-
tion or intrinsic accuracy �I� in the corresponding electronic
system. This product informational measure can be a new
candidate for measuring the complexity or organization of
systems and processes in a similar form than SDL or LMC
complexities do. The Fisher-Shannon plane is useful to rep-
resent the informational trajectories of the different processes
or systems under investigation.

Using the Fisher-Shannon measure, 320 atomic systems
in position, momentum, and product spaces are analyzed. In
concrete we study the informational effect of increasing or
decreasing the nuclear charge in isoelectronic series. It is
shown that behaviors in r and p spaces are just the opposite
for each isoelectronic series. The joint behavior in rp space

shows more clearly the increase in complexity when the
nuclear charge is decreased.

Concerning the monoionization processes the whole
structure of the periodic table is reproduced. Again the trends
in r and p space are opposite. Fisher-Shannon complexity,
for a given Z obeys the order that anion�neutral�cation.
Fisher-Shannon complexity increases, overall, with Z but
systems filling ns subshells present maxima and noble gases
relative minima.

We finally conclude that in addition to r or p space, the
information analysis in product space provides a more com-
plete understanding of changes in N and Z for electronic
systems.
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