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Abstract. Microscopic expressions for the time dependence of solvation energies of newly
created ions and dipoles in a dense dipolar liquid are presented. It is shown that: (i) the
dynamics of solvation of an ion differ considerably from that of a dipole, especially that the
long wavelength (k = 0) component of solvent response is totally absent for dipoles, and (ii) the
translational modes of the solvent molecules lead to a breakdown of Onsager’s conjecture on
the distance dependence of solvent polarization relaxation,

Recent theoretical (Wolynes 1987; Loring and Mukamel 1987; Bagchi and Chandra
1988, 1989; Castner et al 1988; Chandra and Bagchi 1988, 1989b; Rips et al 1988)
and experimental (Castner et al 1987, 1988; Kahlow et gl 1987, 1988, 1989; Maroncelli
and Fleming 1987; Simon and Su 1987, Maroncelli et al 1988; Simon 1988; Barbara
and Jarzeba 1988) studies on solvation dynamics have led to a considerably improved
understanding of the mechanism of solvation. Clearly, an understanding of this
phenomena is fundamental to our understanding of liquid phase chemistry.

In this communication we present microscopic expressions for the time dependence
of solvation energies of ions and dipoles in a dense dipolar liquid. Our expressions
include, for the first time, the contributions of the solvent translational modes in the
polarization relaxation subsequent to the creation of the ion or the dipole. We find that
the solvation dynamics of an ion and that of a dipole differ considerably from each
other. In particular, the long wavelength (k = 0) mode of solvent response is absent in
dipolar solvation while it makes a significant contribution in ionic solvation. We
further show that the well-known Onsager (1977) conjecture, which states that the
polarization relaxation of solvent molecules closer to the solute jon takes place at a
slower rate than of those which are away in the bulk, breaks down in the presence of a
sizeable translational contribution. ‘

The time-dependent solvation energy is given by the following expression

Ean(0)=—1 fer(r)'5P(ra t), (1)

where D(r) is the displacement vector of the solute jon or the dipole and 6P(r, t) is the
polarization fluctuation of the solvent because of the creation of the polar solute
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molecule. It is convenient to work in the Fourier space with k as the Fourier variable. In
Fourier space, the expression for solvation energy is given by

E ()= —3(2m)~3 Jde(k)‘éP(k, t), | @

where D(k) and OP(k, t) are, respectively, the Fourier transforms of D(r) and oP(r, ¢).
The polarization fluctuation of a dipolar solvent is related to the fluctuation in the
position and orientation dependent density by the following relation

OP(r,t) = f doé(w)dp(r, o, 1), 3)

where dp(r, @, 1) = p(r, 0, t) — p.y(r, ®) and &(w) is a unit vector given by angles ®. For a
homogeneous solvent, p,.(r, @)= py/4n, p, is the average number density of the pure
solvent. Thus; an equation of motion of the polarization vector can be obtained from an
equation of motion of the density field. We assume that the decay of the density
fluctuation is given by a generalized Smoluchowski equation, described earlier
(Chandra and Bagchi 1988, 1989a; Calef and Wolynes 1983). It is straightforward to
derive and solve the equation of motion for wavevector-dependent polarization
fluctuation. The longitudinal component of the wavevector-dependent polarization
fluctuation vector is then given by (Chandra and Bagchi 1988, 1989a)

Pk, t)= P (k)exp [ -t/ (k)] “)
with

t1(k) = (2Dg) ™ {[1 + p'(ko)*1[1 — (po/3)(Ca+ 2Cp)1} 7, ©)

where p’ is equal to D (2D x0?), o is the solvent molecular diameter, and Dy and D are,
respectively, the rotational and translational diffusion coefficients of the solvent
molecules. Thus, p’ is a convenient measure of the relative importance of the
translational diffusion mechanism in polarization relaxation. P,(k) is the value of
P(k,t) at t=0. C, and Cj are the anisotropic parts of the two-particle direct
correlation function and are defined by the following equations

c(k, 0, ®) = ¢;o (k) + &) Ck) @) +..., (6)
Ck)=C,I+CpD, | 0
D=3kk—1, @®)

where ¢(k, ®, ") is the Fourier transform of the two particle direct correlation function, -

¢iso(K) is the Fourier transform of the isotropic part of the two particle direct correlation
function and k is a unit vector parallel to k. The decomposition of the tensor C(k), as
given by (7), is valid in the linearized theories of dipolar liquids (such as MSA, LHNC)

' (Gray and Gubbins 1984). In order to evaluate the solvation energy, we need the value

of the function P (k) which is the initial value of the polarization. We assume that P, (k)
is given by the following expression

Py(k)= —(1/4m)[1 — (1/e(k))]1 D(k), ©)

where ¢(k) is the wavevector-dependent static dielectric constant of the dipolar liquid.
Recently, we have presented a microscopic calculation of &(k) for a dipolar liquid
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(Chandra and Bagchi 1989a) and have shown that &(k) has a rich structure as a function
of k.

Since the displacement vector of ionic and dipolar field is known, we can combine the
above equations to obtain microscopic expressions of time-dependent solvation energy
for both ions and dipoles which we present below.

Ionic solvation

The time dependence of solvation energy subsequent to a newly created ion of charge
Ze at time ¢t =0 is given by

_zeg [ 1 1= sinx |?
Ea=% f 0 dk[l —-S—(-k—)]expf—- a0 [ f . de—} ,
(10)

where R is the solute-solvent size ratio, equal to 2a/s, where a is the radius of the solute
ion (assumed to be spherical) and f{(a, R) is a cut-off value greater than or equal to a.
This cut-off arises because of the finite size of the solute and solvent molecules and
enters through the Fourier transformation of the polarization vector. The results are
not critically dependent on this cut-off if an accurate (k) is used. However, our earlier
calculation (Chandra and Bagchi 1989a) has shown that we do not have a reliable
expression for e(k) for large values of k. This is unfortunate because this is the range
which controls the cut-off. A reasonable approximation is to set f(a, Ry=r.=a+g/2
Note that in the continuum model calculations (such as the one performed by Born
many years ago), f{(a, R) = a, that is, the molecular nature of the solvent molecules is
ignored. The cut-off r, is more realistic.

Dipolar solvation

In this case the polarisation vector consists of both longitudinal and transverse
components, so the solvation energy is a sum of two terms. The time-dependence of
solvation energy of a newly created dipole p(=ufi) at time t=0 is given by the
following expression

2 o 1 |
Ecn(t) = ;f—‘;s{ 2 f dq’( ! ‘;(;3)1"3 [k-f (@ R)lexp[ — t/7,(¢")] x

0

BN R e S T T
X[fz(a,m]*fo a0 [1 g(qr)]ew[ 1/e(@)] %
x[ﬂll_[k-f'(a,R)]+ © cosx]z}

——— T dx
k- f(a,R) k- f(a,R) X

where j; (z) is the spherical Bessel function of order unity and argument z and q' =ka.
We have evaluated the integrations involved in (10) and (11); the detailed results will be
presented elsewhere (Chandra and Bagchi 1989b). In the following we summarize the
main results of this communication.

(i) As evident from (10) and (11), E,,(t) depends on the value of the static dielectric
constant, on density of the host solvent, on the parameter p’ and also on the solute—

(11)
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solvent size ratio, R. The decay is, in general, non-exponential for both ions and dipoles.

(ii) In the case of ionic solvation, the relaxation of E.,(t) becomes faster as p’
increases and in fact for sufficiently large p’ (p’ > 0-5) the long time decay approaches the
continuum limit of relaxation given by the longitudinal relaxation time constant
7y, (=1.(k = 0)). The continuum limit is also recovered for large R.

(1ii) We can calculate position and time-dependent polarization by Fourier inverting
(4) and testing the well-known conjecture of Onsager (1977). We find that although
Onsager’s conjecture is accurate for p’ = 0(or for very small p'), it breaks down when )4
is significant (p’ > 0-5). In the latter limit, the nearest-neighbour solvent molecules
relax fastest.

(iv) Equation (11) gives the rather surprising result that the long wavelength, k = 0,
component of solvent response is totall y absent for dipolar solvation. Thus, the continuum
model may be grossly inaccurate in this case because the model includes only the long
wavelength limit of solvent polarization relaxation.

We have shown that the dynamics of ionic and dipolar solvation are quite different
from each other, especially that the role of solvent translational modes are different in

the two cases. This is shown in figure 1 where we have plotted the solvation energy time
correlation function, defined by

Cs(t) = Esolv(t)/Esulv(t = O)> . (12)
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Figure 1. The dependence of the solvation energy time correlation function C(t) for ionic and
dipolar solvation on translational diffusion. The calculated values of CJ() are plotted against
time for several different values of the parameter p'. The values of the static dielectric constant
(go), the reduced density (po0®) and the solute~solvent size ratio (R) are indicated in the figure.
The calculations shown here were carried out by setting (k) = gand f(a,R)=a,
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5.0k Role of Translation on <'l>
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Figure 2. The dependence of the average relaxation time, {(t), for ionic and dipolar
solvation on translational diffusion. The calculated values of () are plotted against p’ for

both ionic and dipolar solvation. The values of the other parameters remain the same as in
figure 1. '

versus time for several values of p’. It can be seen from figure 1, that for p' =0, that is,
when the translational contribution is absent, the dipolar solvation is slower than the
ionic. This is because the relaxation of the k = 0 mode is the fastest in the absence of
translational diffusion (Chandra and Bagchi 1988). The situation, however, changes
drastically when a sizeable translational component is present. For p’ = (-5, the dipolar
and the ionic solvation rates are comparable, as shown in figure 1. For larger p’, the
dipolar solvation becomes faster than the ionic. This is illustrated in figure 2 where the
average solvation energy time, (z), defined by

()= f ", (13)

is plotted against p’ for both dipolar and ionic solvation. It is clear that for large p’,
dipolar solvation proceeds at a faster rate. This is because translational modes are more
important in the dipolar solvation than in the ionic case.

The results presented in this paper may have important consequences in many
charge transfer reactions. Especially, the role of short range correlations and of
translational diffusion mechanism should not be neglected as was usually done in the
past.
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