
INTRODUCTION

Endotoxins, or lipopolysaccharides (LPS), structural com-
ponents of the outer membranes of Gram-negative bacte-
ria,1 play a pivotal role in the pathogenesis of sepsis
syndrome.2,3 Upon recognition of circulating LPS by a
variety of cell types in the body, important among which
is the monocyte/macrophage,4 numerous inflammatory
mediators are produced in response. These include TNF-
α,5 IL-1β, and IL-6.6 Other cells, such as the endothelial
cell, produce NO.7,8 It is the unregulated overproduction
of such pro-inflammatory mediators rather than LPS
itself9 that leads to the systemic inflammatory response

culminating in the septic shock syndrome.10 More than
300,000 cases of septic shock occur each year in the US,
at least half of which are caused by Gram-negative organ-
isms.11

The absence of specific therapeutic modalities for the
treatment of septic shock has engendered a variety of
experimental approaches, one of which being to target
LPS itself, by the use of an agent that would bind to, and
sequester, this potent microbial product, thereby pre-
venting its recognition by effector cells. The strategy of
sequestering LPS, historically, has been addressed by the
use of either polyclonal or monoclonal antibodies raised
against the structurally conserved regions of the mole-
cule.12,13 However, several clinical studies13Ð16 have, to
date, failed to establish unequivocal clinical value.
Macromolecules of non-immunological origin such as
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the neutrophil granule-associated bactericidal/perme-
ability increasing protein (BPI)17Ð23 and a Limulus-derived
protein (endotoxin neutralizing protein)24Ð27 are also being
evaluated for possible therapeutic effects.

During the last few years, we,28Ð32 as well as others,33Ð35

have explored the possibility of sequestering LPS using
small molecules. The interaction of polymyxin B (PMB),
a peptide antibiotic, with LPS and lipid A36Ð41 has served
as a central paradigm and our strategy has been to first
evaluate peptides designed to be functional analogs of
PMB, and then utilize the observations in developing non-
peptidic small molecules. The relative ease of solid-phase
synthesis and the possibility of selectively modulating the
physicochemical properties by the introduction of specific
functionalities render peptides as valuable test-cases, par-
allels of which can then be attempted with non-peptide
molecules. Several iterations of this approach has allowed
us to incrementally refine the heuristics Ð the rules of
thumb Ð of developing LPS-sequestering agents.
Recently, we had reported a peptide (designated G-2) with
a short hydrophobic core bearing terminally-branched
cationic residues is an effective LPS-sequestrant of low
toxicity.42 Structurally analogous to this peptide are cer-
tain members of lipopolyamines, a class of commercially
available compounds originally developed for purposes of
transfecting DNA into mammalian cells,43,44 and we have
recently shown that the lipopolyamines bind and neutral-
ize LPS potently in vitro and in vivo and are essentially
non-toxic.45

The lipopolyamines, while effective and non-toxic,
bind LPS with an affinity of approximately one-tenth that
of polymyxin B,45 and in our continuing efforts to further
refine the structural correlates in optimal LPS-binding lig-
ands, we now report the characterization of some analogs
of G-2 in which the hydrophobic core has been replaced
by slightly longer amphipathic segments containing either
charged residues interspersed with hydrophobic residues,

or containing exclusively residues of varying polarity
with non-ionizable side-chains. These studies address the
relationship of the mode of amphipathicity Ð the spatial
organization of hydrophobic and cationic/hydrophilic
domains Ð and the LPS-binding properties of these pep-
tides. We show that, for optimal LPS binding, a clear seg-
regation of cationic and hydrophobic domains is
mandatory and that peptides with mixed cationic-amphi-
pathic character are unsuitable, and discuss the implica-
tions for small-molecule design.

MATERIALS AND METHODS

Smooth LPS, Re-chemotype LPS and diphosphoryl hexa-
cyl-type lipid A from Escherichia coli K12 D31m4 were
obtained from List Biologicals (Campbell, CA, USA).
Monodansylcadaverine and polymyxin B were from
Sigma Chemical Co. (St Louis, MO, USA).

Peptide design, synthesis and characterization

Four peptides, designated K0, K1, K2 and NK2 were syn-
thesized, whose sequences are shown in Figure 1. All
four peptides contain an amphipathic core of 11 amino
acids, and the numerical suffix refers to the number of
branched lysine (K) residues at the N-terminus (Fig. 1).
These peptides are longer than G-2,42 and yet not long
enough to be membrane-active.46,47 The hydrophobicity
profiles of the K and NK peptide cores are shown in
Figure 2. The sequences of both peptide cores were
designed to maximize the hydrophobic moment,48Ð50 a
quantitative measure of amphipathicity,51 by an algo-
rithm which sequentially chooses residues 100¡ apart in
a hydrophobicity polar plot52 (David SA, manuscript in
preparation). In the K-series, two pairs of hydrophilic
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Fig. 1. Sequences of the peptides. Residues are numbered from the N-termini. C-termini are amidated. For comparison, the sequence of G-242 is also
shown.



residues at positions i and i +3 (or 4) are oppositely
charged so as to facilitate helical stabilization via ion-pair
formation.53Ð56 In NK2, there are no charged residues, and
the amphipathicity is achieved only by using residues
with non-ionizable side-chains. Both series contain a sin-
gle tryptophan residue in the middle of the core, designed
to serve as an intrinsic probe, in order to facilitate the
monitoring of peptide binding via fluorescence spec-
troscopy. The peptides were synthesized on an LKB
Biolynx semi-automated solid-phase synthesizer using
conventional Fmoc chemistry as reported earlier.42

Reverse-phase HPLC on a C18 column using a acetoni-
trile/water/0.1% trifluoroacetic acid gradient indicated a
purity of at least 95%. The retention times for K0, K1, K2

and NK2 were, 35.2, 34.5, 29.2, and 30.2 min, respec-
tively. The peptides were characterized by amino acid
analyses, [1H]-NMR, absorption and fluorescence spec-
troscopy, and verified by mass spectrometry to be of the
expected masses (1213.44, 1341.62, 1598.98 and 1646.92
Da, respectively).

Fluorescence spectroscopy

All fluorescence experiments were carried out in 2 mM
Tris-HCl, pH 7.2 at 25¡C using an Hitachi fluorescence
spectrophotometer. Effective bandpasses were 5 nm for
both excitation and emission monochromators in all
experiments. Monodansylcadaverine was used as a fluo-
rescent displacement probe for quantitating the relative
affinities of ligand binding to lipid A or Re-LPS exactly as
described earlier.29Ð31,37 The effect of lipid A addition on
the intrinsic tryptophanyl fluorescence of the peptide was
performed at an excitation wavelength of 276 nm and
scanning the emission from 320Ð400 nm. Changes in
intensity are reported as F Ð F0/F0 x 100, where F and F0

are the intensities at maximal emission (362 nm) at a
given lipid A concentration, and in the absence of peptide,
respectively.

Circular dichroism

CD experiments were performed on a Jasco J2000 spec-
tropolarimeter. Small aliquots of concentrated stock
solutions/suspensions of lipid A, smooth LPS, or SDS
were added incrementally to the peptide solution (~10
µM in 10 mM PBS, pH 7.2) in a 1 mm path length
cuvette, and 10 scans were accumulated and averaged
from 190Ð300 nm at a scan rate of 10 nm/min.

Limulus amebocyte lysate (LAL) assay

A quantitative kinetic chromogenic version of the Limulus
amebocyte lysate assay (QCL-1000) from BioWhittaker
(Walkersville, MD, USA) was used. A constant concen-
tration of smooth LPS from E. coli K12 D31m4 (50
ng/ml; 50 µl) was mixed with an equal volume of varying
concentrations of the peptides (or polymyxin B as control)
in endotoxin-free water in a 96-well endotoxin-free
microtiter plate. A 0.1 ml aliquot of reconstituted LAL
reagent (coagulogen + chromogenic substrate) was then
added, and the absorption at 410 nm was monitored con-
tinuously for 60 min with a Dynatech MR5000 plate
reader equipped with kinetic software. Standard curves
were constructed by plotting log LPS concentration
against the logarithm of time (min) required to reach a tar-
get optical density (arbitrarily taken as 1.0 absorbance
unit) and were linear from 0.2Ð500 ng/ml. The kinetic
method thus allowed a much wider dynamic range of
quantitation than the more conventional endpoint method
(linearity range, 0.5Ð20 ng/ml). All standards and samples
were assayed in quadruplicate, and experiments were car-
ried out at 25¡C in order to retard the chromogenic reac-
tion, thereby allowing an acceptable data sampling rate (1
plate read/min).
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Fig. 2. (A) Hydrophobicity profiles of the amphipathic cores of K and NK
peptides. The Cornette Scale50 for residue hydrophobicity is used. The
mean hydrophobicity for the K (open squares), NK (open circles) and G-2
(filled triangles) cores are, respectively, Ð0.678, Ð0.791, and Ð1.23 units.
(B) Discrete Fourier transform of the data points in (A), showing
periodicity for K and NK at 0.27 Hz (3.6 residues). The G-2 core42 lacks
this periodicity.



Cytokine and nitric oxide assays

LPS-responsive murine macrophage-like J774 cells
(American Tissue Type Collection, Washington, DC,
USA) were seeded in a 96-well tissue culture plate at 5 x
105 cells/well. Following overnight culture in RPMI-
1640 supplemented with L-glutamine, 10% fetal bovine
serum, penicillin and streptomycin, the cells were stimu-
lated for 8 h with LPS alone (smooth LPS from E. coli
K12 D31m4; 50 ng/ml), or LPS pre-incubated with
graded concentrations of the peptides K2 and NK2, or
polymyxin B (control). Supernatants were harvested and
assayed for TNF-α by ELISA (Genzyme, Cambridge,
MA, USA). Nitric oxide was measured as nitrite using
the Griess reagent.57

RESULTS AND DISCUSSION

In the dansylcadaverine fluorescent probe displacement
experiments which were employed as an initial biophys-
ical screen, we employed purified diphosphoryl lipid A
rather than native smooth LPS since the pronounced het-
erogeneity of the latter hinders precise quantitation.
None of the K-series peptides bind lipid A with appre-
ciable affinity (ED50 = 40 µM; Fig. 3) while NK2 binds
with low affinity (ED50 = 7.5 µM). The relative binding
affinity of polymyxin B, used as control, is about 0.3
µM, consistent with results we had obtained previ-
ously.29,30,37,42 It should be noted that the dansylcadaver-
ine displacement method that we have used is heavily
biased toward electrostatic interactions, and is not an
adequate descriptor of hydrophobic interactions since
the displacement profiles of polymyxin B and its non-
apeptide derivative are virtually indistinguishable,58

while the two compounds behave quite differently in
terms of neutralizing LPS activity.59 The intrinsic trypto-
phan residue serves as a useful ÔreporterÕ in monitoring
ligand interactions and we had previously employed this
method in characterizing the binding of lipid A to melit-
tin28 and human serum albumin.60 In fluorimetric titra-
tions of lipid A with the peptides, K0, K1 and K2 quench
tryptophan emission intensity in a concentration-depen-
dent manner, the degree of quenching being in the order
K2 > K1 > K0 (Fig. 4). For K1 and K2, but not for K0,
inflections are observed at a peptide:lipid A molar ratio
of 1:1. However, no shifts in emission wavelength were
observed (data not shown). This indicates that the fluo-
rophore does not sense a micro-environment of low
polarity in the presence of lipid A,28 suggesting that the
amphiphilic cores of the peptides do not penetrate the
lipid A superstructures. While the inflections in the fluo-
rescence intensities suggest a 1:1 peptide:lipid A stoi-
chiometry, the feeble intensity changes and the absence
of accompanying blue-shifts suggest that the apparent

ÔbindingÕ is, in fact, merely an adsorption process, dri-
ven by electrostatic attractive forces between the
charged double-layer on the lipid A assemblies,61 and
those on N-termini of the peptides. This would be con-
sistent with the observed correlation of quenching
potency with charge density (K2 > K1 > K0), and the fact
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Fig. 3. Relative binding affinities of the peptides. Dansylcadaverine
displacement activity. K0 (inverted filled triangles), K1 (filled triangles), K2

(filled circles), NK2 (open circles), polymyxin B (control; open squares).
Lipid A, 25 mM; probe, 10 µM; 2 mM Tris-HCl, pH 7.2.

Fig. 4. Tryptophan quenching by lipid A. K0 (filled triangles), K1 (filled
circles), K2 (filled squares), NK2 (filled diamonds). Excitation, 276 nm (5
nm bandpass). Intensity is reported as % change of initial peptide
fluorescence (12.5 µM).



that the quenching is greatly attenuated when titrations are
performed at high ionic strength (50 mM NaCl; data not
shown). Furthermore, the lack of correspondence between
the observed apparent ÔstoichiometryÕ and the number of
positive charges in the peptides suggest that the fluores-
cence data are indicative of a non-specific polyelectrolyte-
type adsorption process. The addition of lipid A to NK2

results in minimal intensity enhancements (Fig. 4), also
with an inflection at 1:1 peptide:lipid A molar ratio, and
accompanied with small (~5 nm) blue-shifts in emission
wavelength, indicative of very weak interactions.

These peptides were designed to be amphiphilic; many
such peptides (including melittin62Ð64) although disordered
in dilute solutions of low ionic strength, become distinctly
helical when bound to ligands of opposite charge. We,
therefore, employed circular dichroism to evaluate the
effect of lipid A, as well as rough (Re) and smooth LPS on
the secondary structure of K2 and NK2. Neither peptide
undergoes any appreciable secondary structural changes
when titrated with lipid A or LPS, but assumes distinct
helical conformations in the presence of SDS, indicating
that the peptides interact with neither lipid A nor LPS, and
that the peptides are, indeed protohelical under appropri-
ate conditions. Figure 5 shows representative CD spectra
of K2. Both K2 and NK2 fail to inhibit either LPS-induced
LAL activity (Fig. 6), or TNF-α and NO production by
J774 cells (Fig. 7).

These results, although ÔuninterestingÕ in that they are
negative and do not immediately suggest leads, are
instructive. Both K2 and NK2 differ from G-242 only in that
the former peptides possess amphipathic cores while that
of G-2 is comprised entirely of hydrophobic residues.
While G-2 is as active as polymyxin B in terms of appar-
ent binding constants as well as LPS-inhibitory activities,
the new peptides are inactive. The K-series peptides, bear-
ing two anionic residues in the core region do not bind
lipid A at all, presumably due to the strongly unfavorable
Born energy65,66 of internalizing the charge in the lipid
interior of very low dielectric constant, while NK2, with
no ionizable residues in its core, binds lipid A only feebly,
and does not inhibit LPS activity. Similar results have
been observed previously with peptides containing repeat-
ing LysÐPheÐPhe motifs35 and random co-polymers of
LysÐLeu (unpublished data). These results, therefore, sug-
gest that, for amphipathic molecules designed to bind
LPS, a clear segregation of the charged and apolar
domains is crucial, and that head-tail (polar) orientation of
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Fig. 5. Representative circular dichroic spectra of 50 µM K2. In 50 mM
PBS, pH 7.2 (dotted line); 50 mM peptide + 125 µM lipid A (dashed line);
K2 (50 µM) in 0.5% SDS (full line), showing a strong induction of
ellipticity at 208 nm, indicative of helical structure in the presence of SDS.

Fig. 6. Chromogenic kinetic Limulus assay. (A) Rise in OD profiles for
endotoxin standards. Curves (left to right) represent chromogenic responses
to 500, 100, 20, 2.5, and 0.5 ng/ml of standard LPS. Target OD was
arbitrarily set to 1.0 absorbance units. (B) Standard curve constructed from
the rise in OD profiles shown in (A). Limulus activation profiles of LPS (200
ng/ml) incubated with graded concentrations of K2 (C) and NK2 (D). Peptide
concentrations in µM: filled circles, 50; filled squares, 12.5; filled triangles,
3.125; inverted filled triangles, 0.78125. (E) Polymyxin B control for
experiments in (C) and (D). Polymyxin B concentrations in µM: stars, 0.195;
crosses, 0.391; +, 3.125; filled diamonds, 50.



the cationic/hydrophobic regions is preferable to mole-
cules with mixed cationic/amphipathic character. An
example of the former (Ôpolar amphipathsÕ) would be cer-
tain members of the lipopolyamine class which have been
shown to sequester LPS and neutralize its activities both
in vitro and in vivo.45 An example of a cationic amphipath
with non-segregated hydrophobic/cationic character
would be squalamine67,68 and some of its analogs.69,70

Squalamine was first isolated as a broad-spectrum antimi-
crobial principle from the stomach of the dogfish shark,67

and has subsequently spawned a great deal of interest in
steroidal-polyamine conjugates. We have been interested
in evaluating these molecules as candidate LPS-sequester-
ing agents because of their cationic/amphipathic charac-
ter. The results obtained from the studies reported in this
paper, however, suggest that squalamine may not be a
potent LPS-binding agent because of the sulfonate moiety
which renders it zwitterionic. Several analogs of
squalamine and related steroidal amines have been syn-
thesized in which both the polyamine appendage and the
steroid backbone have been systematically modified.69,71,72

Of particular interest are the latter analogs some of which,
lacking the sulfonate moiety, have very distinct ÔfacialÕ
amphipathic backbones arising as a consequence of the
stereochemistry of hydrophilic substituents.69 Based on
these results, it would appear that such molecules may not

be attractive candidates as LPS-sequestrants. Some of
these molecules are becoming available and offer a direct
means of testing this hypothesis. Such studies would be
useful in extending and refining our efforts aimed at
rationally developing non-toxic, clinically useful anti-LPS
molecules.
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