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Abstract. We find prominent similarities in the features of the time series for the (model
earthquakes or) overlap of two Cantor sets when one set moves with uniform relative
velocity over the other and time series of stock prices. An anticipation method for some
of the crashes have been proposed here, based on these observations.
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1. Introduction

Capturing dynamical patterns of stock prices are major challenges for financial
analysts [1]. The statistical properties of their (time) variations or fluctuations
[1] are now well studied and characterized (with established fractal properties),
but are not very useful for studying and anticipating their dynamics in the market.
Noting that a single fractal gives essentially a time-averaged picture, a minimal two-
fractal overlap time series model was introduced [2–4] to capture the time series of
earthquake magnitudes. We find that the same model can be used to mimic and
study the essential features of the time series of stock prices.

Earthquakes occur due to dynamic stick-slip phenomena at the faults. Tectonic
plates (about 12 such plates are there below the Earth’s solid crust of about 30
km thickness) are in motion (about 2–3 cm/year). The crust portions on each
plate try to follow that motion (creeping phenomenon; with consequent growth in
elastic energy) for the ‘sticking’ period. After a threshold, depending on the sticking
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Figure 1. The overlap of two identical Cantor sets of dimension ln 2/ ln 3
at generation n = 2 as one moves over the other with uniform velocity. The
total measure O of the overlap (total shaded region) varies with time and are
shown for two different time instances.

strength at that fault, the crust portion ‘slips’ and the acquired elastic energy is
released in the form of earthquakes (stored at the fault). At the fault, between two
‘rough’ surfaces where continuous earth materials and the voids appear at all length
scales randomly, the two-surface contact area morphology can be represented by
two fractals [2–4].

We assume that the market crashes occur due to similar ‘stick-slip’ behaviour.
The (market) price dynamics (equivalent to tectonic plate dynamics in the seismic
faults) is perhaps determined by the collective dynamics of all the agents in the
entire market. The agents participating in a particular stock market are like a por-
tion of the Earth’s crust, ‘creeping’ along the moving (tectonic plate-like) market!
This creeping motion continues until the agents reach their own respective thresh-
olds and ‘slip’ to hold back on a different location of the moving plate or price!
The self-similar behaviour of the (nonlinear) dynamics between these two (market
and the participating agents) can therefore be similarly represented by two Cantor
sets in relative motions. The stock price, resulting from these competing dynamics,
would similarly be given (in this model) by a quasi-random time series.

2. The two-fractal overlap model of earthquake

Let us consider first a geometric model [2–5] of the fault dynamics occurring in
overlapping tectonic plates that form the Earth’s lithosphere. A geological fault
is created by a fracture in the Earth’s rock layers followed by a displacement of
one part relative to the other. The two surfaces of the fault are known to be self-
similar fractals. In the model considered here [2–5], a fault is represented by a pair
of overlapping identical fractals and the fault dynamics arising out of the relative
motion of the associated tectonic plates is represented by sliding one of the fractals
over the other; the overlap O between the two fractals represents the energy released
in an earthquake whereas log O represents the magnitude of the earthquake. In the
simplest form of the model, each of the two identical fractals is represented by a
regular Cantor set of fractal dimension log 2/ log 3 (see figure 1, where the repetition
with a period 3n occurs due to the periodic boundary condition). This is the only
exactly solvable model for earthquakes known so far. The exact analysis, for a
discrete version of this model [5], for a finite generation n of the Cantor sets with
periodic boundary conditions showed that the probability of the overlap O (with
uniform weightage for all overlap values along the time series), which assumes the
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values O = 2n−k(k = 0, . . . , n), follows the binomial distribution F of log2 O = n−k
[6]:

Pr(O = 2n−k) ≡ Pr(log2 O = n− k)

=
(

n
n− k

)(
1
3

)n−k (
2
3

)k

≡ F (n− k). (1)

Since the index of the central term (i.e., the term for the most probable event) of
the above distribution is n/3 + δ, −2/3 < δ < 1/3, for large values of n, eq. (1)
may be written as

F
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by replacing n−k with n/3±r. For r ¿ n, we can write the normal approximation
to the above binomial distribution as

F
(n

3
± r

)
∼ 3√

2πn
exp

(
−9r2

2n

)
. (3)

Since log2 O = n− k = n
3 ± r, we have

F (log2 O) ∼ 1√
n

exp

[
− (log2 O)2

n

]
, (4)

not mentioning the factors that do not depend on O. Now

F (log2 O)d(log2 O) ≡ G(O)dO, (5)

where

G(O) ∼ 1
O

exp
[
− (log2 O)2

n

]
(6)

is the log-normal distribution of O. As the generation index n → ∞, the normal
factor spreads indefinitely (since its width is proportional to

√
n) and becomes a

very weak function of O so that it may be considered to be almost constant; thus
G(O) asymptotically assumes the form of a simple power law with an exponent
that is independent of the fractal dimension of the overlapping Cantor sets [6]:

G(O) ∼ 1
O

for n →∞. (7)

3. The Cantor set overlap time series

We now consider the time series O(t) of the overlap set (of two identical frac-
tals [4,5]), as one slides over the other with uniform velocity. Let us again consider
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Figure 2. (a) The time series data of overlap size O(t) for a regular Cantor
set of dimension ln 4/ ln 5 at generation n = 4. (b) Cumulative overlap Qo(t)
and (c) the variation of the cumulative overlap Qo

i (t) for the same series, where
Q is reset to zero after any big event of size greater than ∆ = 150.

two regular Cantor sets at finite generation n. As one set slides over the other,
the overlap set changes. The total overlap O(t) at any instant t changes with time
(see figure 2a). In figure 2b we show the behaviour of the cumulative overlap [4]
Qo(t) =

∫ t

0
O(t̃)dt̃. This curve, for sets with generation n = 4, is approximately

a straight line [4] with slope (16/5)4. In general, this curve approaches a strict
straight line in the limit a →∞, asymptotically, where the overlap set comes from
the Cantor sets formed of a − 1 blocks, taking away the central block, giving di-
mension of the Cantor sets equal to ln(a − 1)/ ln a. The cumulative curve is then
almost a straight line and has then a slope [(a− 1)2/a]n for sets of generation n. If
one defines a ‘crash’ occurring at time ti when O(ti)−O(ti+1) ≥ ∆ (a pre-assigned
large value) and one redefines the zero of the scale at each ti, then the behaviour
of the cumulative overlap Qo

i (t) =
∫ t

ti−1
O(t̃)dt̃, t̃ ≤ ti, has got the peak value

(geometric series) ‘steps’ as shown in figure 2c. The reason is obvious (comes from
the fact that the overlap can take only discrete values 2n−k). This justifies the
simple thumb rule: one can simply count the cumulative Qo

i (t) of the overlaps since
the last ‘crash’ or ‘shock’ at ti−1 and if the value exceeds the minimum value (q0;
suitably defined for the time series), one can safely extrapolate linearly and expect
growth up to αq0 here and face a ‘crash’ or overlap greater than ∆ (= 150 in figure
2). If nothing happens there, one can again wait up to a time until which the cumu-
lative grows up to α2q0 and feel a ‘crash’ and so on (α = 5 in the set considered in
figure 2).
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Figure 3. Data from New York Stock Exchange from January 1966 to
December 1979: industrial index [7]: (a) Daily closing index S(t), (b)
integrated Qs(t), (c) daily changes δS(t) of the index S(t) defined as
δS(t) = S(t + 1)− S(t), and (d) behaviour of Qs

i(t) where δS(ti) > ∆. Here,
∆ = −1.0 as shown in (c) by the dotted line (from [8]).

4. The stock price time series

We now consider some typical stock price time series data, available in the Internet.
The data analysed here are for the New York Stock Exchange (NYSE) Indices [7].
In figure 3a, we show the daily stock price S(t) variations for about 10 years (daily
closing price of the ‘industrial index’) from January 1966 to December 1979 (3505
trading days). The cumulative Qs(t) =

∫ t

0
S(t)dt has again a straight line variation

with time t (figure 3b). Similar to the Cantor set analogy, we then define the major
shock by identifying those variations when δS(t) of the prices in successive days
exceeded a pre-assigned value ∆ (figure 3c). The variation of Qs

i(t) =
∫ t

ti−1
S(t̃)dt̃

where ti are the times when δS(ti) ≤ −1 show similar geometric series like peak
values (see figure 3d); see [8,9].

We observed striking similarity between the ‘crash’ patterns in the Cantor set
overlap model and that derived from the dataset of the stock market index. For
both cases, the magnitude of crashes follow a similar pattern – the crashes occur
in a geometric series.
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Figure 4. Data from New York Stock Exchange from January 1966
to December 1979: utility index [7]: (a) Daily closing index S(t), (b)
integrated Qs(t), (c) daily changes δS(t) of the index S(t) defined as
δS(t) = S(t + 1)− S(t), and (d) behaviour of Qs

i(t) where δS(ti) > ∆. Here,
∆ = −0.530 as shown in (c) by the dotted line.

A simple ‘anticipation strategy’ for some of the crashes may be as follows: If
the cumulative Qs

i(t) since the last crash has grown beyond q0 ' 8000 here, wait
until it grows (linearly with time) until about 17,500 (' 2.2q0) and expect a crash
there. If nothing happens, then wait until Qs

i(t) grows (again linearly with time)
to a value of the order of 39,000 (' (2.2)2q0) and expect a crash, and so on.

The same kind of analysis for the NYSE ‘utility index’, for the same period, is
shown in figure 4.

5. Earthquake magnitude time series

Unlike in the case of stock price time series where accurate data are easily available,
the time series for earthquake magnitudes M(t) at any fault involves considerably
coordinated measurements and comparable accuracies are not easily achievable.
Still, from the available data, as in the case of stock market (where the integrated
stock price Qs(t) shows clear linear variations with time and this fits well with
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Figure 5. Local earthquake data from US Geological Survey Southern Cal-
ifornia catalogs [11]: Top: Time series of successive quakes M(t); Bottom:
integrated Qm(t). The dataset is a record of quakes between 1 January 2003
to 31 March 2004, between depths 0 and 700 km, between latitudes 32◦N and
37◦N and longitudes −122◦W and −114◦W.

that for the cumulative overlap Q◦(t) for the fractal overlap model; see also [10]),
the integrated earthquake magnitude Qm(t) =

∫ t

0
M(t)dt of the aftershocks does

also show such prominent linear variations (see figure 5). We believe, the slopes of
these linear Qm(t) vs. t curves for different faults would give us the signature of
the corresponding fractal structure of the underlying fault. It may be noted in this
context, in our model, the slope becomes [(a−1)2/a]n for an nth generation Cantor
set, formed out of the remaining a− 1 blocks having the central block removed.

6. Summary

Based on the formal similarity between the two-fractal overlap model of earthquake
time series and of the stock market, we considered here a detailed comparison. We
find, the features of the time series for the overlap of two Cantor sets when one
set moves with uniform relative velocity over the other looks somewhat similar to
the time series of stock prices. We analyse both and explore the possibilities of
anticipating a large (change in Cantor set) overlap or a large change in stock price.
An anticipation method for some of the crashes has been proposed here, based on
these observations.

We modeled these ‘quakes’ as accumulated overlaps between two fractals (here
Cantor sets) having uniform relative velocity. The quake magnitudes are given
by the measure of the overlap region between two sets as one moves uniformly
below the other (see the upper panel O(t) in figure 2). Although the overlap has a
quasi-random time variation as shown in this figure, the integrated overlap Qo(t)
shown in the second panel in figure 2, has a very simple linear time variation (exact
linearity appears in the true fractal limit; generation number n going to infinity).
One of our observations, which we consider to be important, is that the slope of
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that linear variation gives a characteristic signature of the fault (or the fractal)
and hence of the earthquake (seismic) time series for that epicentre (see the second
panel in figure 2, for our model, and figure 5, for the real earthquake data). Over
the years, this slope is seen to remain the same, giving a ‘fingerprint’ of the fault.

As argued and indicated in figure 2 (upper panel), the model stock price time
series will have a similar behaviour. That means, the cumulative would again have
a linear time variation – as indeed observed (see figures 3 and 4)! Like in the case of
earthquakes, this slope would give similar ‘fingerprint’ of the market dynamics and,
as seen, this slope differs from market to market (see second panels in figures 3 and
4). Maintaining such characteristic slopes in the time behaviour of the cumulative
of the (stock) market price for over more than a decade (14 years in figures 3
and 4), the markets clearly show quite non-Markovian or non-random features and
well-structured correlated fluctuations: Like the time variations of O(t) in figure 2a
of our Cantor set model, where O(t) is not at all random, neither as correlated as
periodic, the stock prices S(t) have got some strongly correlated, yet quasi-random,
time variations, keeping its cumulative slope with time t preserved.
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