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1 Introduction

Even from everyday experience, one can understand that almost without
any exception income and wealth in a society are unequally distributed
among its people and from time immemorial, this inequality has been
a constant source of irritation in all societies. There are several non-
trivial issues and questions related to this obseravtion. In fact, the issue
of inequality in terms of income and wealth has been perhaps the most
fiercely debated one in economics. Economists and philosophers have
spent much time on the normative aspects of this problem (Sen, 1999;
Foucault, 2003; Scruton, 1985; Rawls, 1971). The direct and indirect
effects of inequality on the society have also been studied extensively.
In particular, the effects of inequality on the growth of the economy
(Aghion et al, 1999; Barrow, 1999; Benabou, 1994; Forbes, 2000) or
on the political-economic scenario (Alesina and Rodrik, 1992; Benabou,
2000; Alesina and Perotti, 1993; Blau and Blau, 1982) have attracted major
attention. Relatively less emphasis had been put on the sources of the
problem itself. But there remain very important questions that beg to be
answered. How are income and wealth distributed? What are the forms of
the distributions? Are they universal or do they depend upon the specific
conditions in the individual country? And the most important question
is, if inequality is universal, as some of its gross features obviously are,
then what is the reason for such universality? More than a hundred years
back, this problem caught attention of Pareto and he found that wealth
distribution follows a power law decay for the richer section of the society
(Pareto, 1897). Much later Champernowne also considered this problem
systematically and he came up with a probabilistic theory to justify Pareto’s
claim (Champernowne, 1953). Separately, Gibrat worked on the same
problem and he proposed a law of proportionate development (Gibrat,
1931). It was subsequently found in numerous studies that the distributions
of income and wealth indeed possess some globally stable and robust
features (see e.g., Yakovenko and Rosser, 2009 for a review). In general,
the bulk of the distribution of both income and wealth seems to fit both
the log-normal and the gamma distributions reasonably well. Economists
usually prefer the log-normal distribution (Montroll and Shlesinger, 1982;
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Gini, 1921) whereas statisticians (Hogg et al, 2007) and more recently
physicists (Yakovenko and Rosser, 2009; Chatterjee et al, 2005; Chatterjee
and Chakrabarti, 2007), tend to rely more on the gamma distribution. And
the upper end of the distribution, that is the tail of the distribution, is agreed
to be described well by a power law as was found by Pareto. Although
the exact nature of such distributions are yet to be finalized, there is a
general agreement on the observation that income and wealth distributions
show regularities independent of the country-specific conditions and these
observed regularities in patterns may be indicative of a natural law of
economics.

Here, we survey some multi-agent dynamic models inspired by the
physics of energy distribution in many-body thermodynamic systems.
Specifically, we intend to discuss a very simple microeconomic model
with a large number of agents and consider the asset transfer equations
among the agents due to trading in such an economy. It will be shown
that this type of asset transfer among the agents in an economy closely
resembles the process of energy transfer due to collisions among particles
in a thermodynamic system like an ideal gas. The steady state distribution
for such a system is an exponential one, as was found by Gibbs a hundred
years back (see e.g., Yakovenko and Rosser, 2009). We then see that
several modified versions of the same model produce gamma function like
behavior for the distribution of money among the agents in the economy. A
further modification of the model produces a power law for the upper or tail
end of the distribution of money, as has been found empirically. Next, we
discuss the analytical aspects of the models and provide some exact results
and derivations of the same. So far this is the only known class of models
which, starting from microeconomics of utility maximization and solving
for the resultant dynamical equations in the line of rigorously established
statistical physics, can reproduce quite reliably the major features of both
of the income and wealth distributions in economies.

This paper is organized as follows. In section 2, we review the data
gathered on income and wealth distributions. In section 3, we consider a
simple microeconomic framework as our basic model. In the next section,
we discuss a number of different modifications of the model focusing
on different economic behaviorial assumptions that lead to a number of
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intriguing results. In section 5, we review some analytical results of the
models considered.

2 A Short Review of Data

The distributions of income and wealth have long been subject to de-
tailed empirical analysis and tests. To put the result briefly, these studies
(Yakovenko and Rosser, 2009; Chatterjee et al, 2005; Chakrabarti et al,
2006) indicate that

P(m)∼
{

mα exp(−m/T ) for m < mc,

m−(1+ν) for m≥ mc,
(1)

where P denotes the number density of people with income or wealth m
and α , ν denote exponents and T denotes a scaling factor. The power law
in income and wealth distribution (for m≥ mc) is named after Pareto and
the exponent ν is called the Pareto exponent. The crossover point (mc) is
extracted from the crossover of the Gamma (or log-normal) distribution to
the power law tail. The existence of both features in the same distribution
was possibly first demonstrated by Montroll and Shlesinger (1982) who
observed that while the top 2-3 % of the population (in terms of income)
followed a power law with Pareto exponent ν ' 1.63, the rest followed a
lognormal distribution. That study led economists to fit the region below
mc to a log-normal form, logP(m) ∝ −(logm)2. This form has indeed
been seen in several studies (see e.g., Souma, 2000; Di Matteo et al, 2004;
Clementi and Gallegati, 2005). But there are enough empirical evidences
that the Gamma distribution form Eqn. (1) fits better with the data, (see
e.g., the remarkable fit with the Gibbs distribution in Yakovenko and Silva,
2005; Drăgulescu and Yakovenko, 2001; Drăgulescu and Yakovenko,
2001a; see also Purica, 2004). There are many studies concluding that the
tail is described well by a power law (see e.g., Souma, 2000; Drăgulescu
and Yakovenko, 2001; Drăgulescu and Yakovenko, 2001a; Aoyama et al,
2000). Interestingly, the tail of the distribution of income of companies
also follows a power law (see e.g., Okuyama et al, 1999; Axtell, 2001). It
may, however, be noted that the above-mentioned inferences are drawn
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primarily from the income tax data which does not encompass the bottom
of the distributions and has some other problems like those induced by
personal biases of the tax-payers etc. Hence, a combination of household
survey data and upper income range data from income tax sources (see e.g.,
Bach et al, 2009) would encompass the whole spectrum of the population
and would provide a more reliable picture of the entire income distribution
(see also Atkinson and Brandrolini, 2009; Atkinson et al, 2009).

While there is no dearth of empirical analysis on the income distribu-
tion, relatively few studies have considered the distribution of wealth due
to the lack of an easily available data source. However, Drăgulescu and
Yakovenko (2001a), Levy and Solomon (1997), Coelho et al (2005), Sinha
(2006) have studied wealth distributions extensively. Hegyi et al (2007)
studied the wealth distribution in Hungarian medieval society. Similar
studies are done on the wealth distribution of ancient Egyptian societies
(14-th century BC) (Abul-Magd, 2002) as well. The general feature ob-
served in these limited empirical studies of wealth distribution is that of
a power law behavior for the wealthiest 5−10% of the population, and
gamma or log-normal distribution for the rest of the population.

To sum up, numerous investigations during the last ten years revealed
that the tail of the income distribution indeed follows a power law with
the value of the Pareto exponent ν generally varying between 1 and 3
(Di Matteo et al, 2004; Clementi and Gallegati, 2005; Drăgulescu and
Yakovenko, 2001a; Levy and Solomon, 1997; Sinha, 2006; Oliveira et al,
1999; Aoyama et al, 2003, Clementi and Gallegati, 2005a). The rest of the
low income population, follow a different distribution which is debated to
be either gamma (Drăgulescu and Yakovenko, 2001; Levy and Solomon,
1997; Aoyama et al, 2003; Chakrabarti and Marjit, 1995; Ispolatov et al,
1998; Drăgulescu and Yakovenko, 2000) or log-normal (Di Matteo et al,
2004; Clementi and Gallegati, 2005; Clementi and Gallegati, 2005a).

The striking similarities observed in the income distributions for differ-
ent countries indicate that probably the same process governs the distribu-
tions of assets in different economies though these economies are superfi-
cially different. There is a huge literature on modelling the economies in
analogy with large systems of interacting particles, by physicists. From
that perspective, the economy is often viewed as a thermodynamic system
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in which the distribution of income among the agents is readily identified
with the distribution of energy among the particles in a gas. In particular, a
class of kinetic exchange models have provided a simple mechanism for
understanding the unequal distribution of assets. These models have been
successful to capture the key factors in economic interactions that result
in different economies with different socio-political structures converging
to similar forms of unequal distribution of resources (see Chatterjee et al,
2005 and Chakrabarti et al, 2006, which consists of a collection of large
number of technical papers in this field).

3 The Model

We intend to discuss a minimal model to analyze the effects of stochastic
trading processes on the asset holding in the steady state of an economy.
Chakrabarti and Chakrabarti (2009) considered an N-agent exchange econ-
omy. Each of the agents produces a single perishable commodity which
is different from all other commodities produced. Money is treated as a
non-perishable commodity which facilitates transactions. All commodities
along with money can enter the utility function of any agent as arguments.
These agents care for their future consumptions and hence they care about
their savings in the current period as well. Initially, all of these agents are
endowed with an equal amount of money which is assumed to be unity.
With successive tradings their money-holding will change with time. As
will be shown, the steady state distribution of money among the agents
is independent of the initial amount endowment. At each time step, two
agents are chosen at random to carry out transactions among themselves
following the utility maximization principle. The utility functions are of
Cobb-Dauglas type. We also assume that the preference structure of the
agents are time-dependent that is the parameters of the utility function vary
over time (Lux, 2005; Silver et al, 2002). Below, we consider a typical
transaction that leads to the dynamics of money among the agents.

Suppose agent 1 produces Q1 amount of commodity 1 only and agent
2 produces Q2 amount of commodity 2 only and the amounts of money in
their possession at time t are m1(t) and m2(t) respectively (clearly, mi(0) =
1 for i=1,2). Since neither of the two agents possess the commodity
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produced by the other agent, both of them will be willing to trade with
each other and buy the other good by selling a fraction of their own
productions as well as with the money that they hold. Hence, at each
time step there would be a net transfer of money from one agent to the
other due to trade. Our focus is on how the amounts money held by the
agents change over time due to the repetition of such a trading process.
For notational convenience, we denote mi(t +1) as mi and mi(t) as Mi (for
i = 1,2).

Utility functions are defined as follows. For agent 1, U1(x1,x2,m1) =
xα1

1 xα2
2 mαm

1 and for agent 2, U2(y1,y2,m2) = yα1
1 yα2

2 mαm
2 where the argu-

ments in both of the utility functions are consumption of the first (i.e., x1
and y1) and second good (i.e., x2 and y2) and amount of money in their
possession respectively. For simplicity, we assume that the sum of the
powers is normalized to 1 i.e., α1 + α2 + αm = 1. Let the commodity
prices to be determined in the market be denoted by p1 and p2. Now,
we can define the budget constraints as follows. For agent 1 the budget
constraint is p1x1 + p2x2 +m1 ≤M1 + p1Q1 and similarly, for agent 2 the
constraint is p1y1 + p2y2 + m2 ≤ M2 + p2Q2. In this set-up, we get the
market clearing price vector ( p̂1, p̂2) as p̂i = (αi/αm)(M1 + M2)/Qi for
i = 1, 2 (see Chakrabarti and Chakrabarti, 2009).

By substituting the demand functions of xi, yi and pi for i = 1, 2 in the
money demand functions, we get the most important equation of money
exchange in this model. We make a restrictive assumption that α1 in the
utility function can vary randomly over time with αm remaining constant.
It readily follows that α2 also varies randomly over time with the restriction
that the sum of α1 and α2 is a constant (1-αm). In the money demand
equations derived from the above-mentioned problem, we substitute αm
by λ and α1/(α1 +α2) by ε to get the money evolution equations as

m1(t +1) = λm1(t)+ ε(1−λ )(m1(t)+m2(t))
m2(t +1) = λm2(t)+(1− ε)(1−λ )(m1(t)+m2(t))

(2)

where mi(t) ≡Mi and mi(t + 1) ≡ mi. For a fixed value of λ , if α1 is a
random variable with uniform distribution over the domain [0,1−λ ], then
ε is also uniformly distributed over the domain [0,1]. For the limiting
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value of αm in the utility function (i.e., αm→ 0 which implies λ → 0), we
get the money transfer equation describing the random sharing of money
without savings (see Chakrabarti and Chakrabarti, 2009 for derivation and
a discussion in details).

A noteworthy feature of this model is that the exchange equations are
not sensitive to the level of production that is even if for some reason the
level of production alters (due to production shock) the form of the transfer
equations will remain the same provided the form of the utility function
remains the same. Also, the model captures the possibility of coupling in
the evolution of assets (money). This set of equations forms the basis of
our subsequent analysis.

4 Stochastic Models

As is shown above, the results of the economic activities (production, trade
and consumption) is represented by a pair of asset transfer equations (see
Eqn. (2)). What we basically do is to study the steady state behavior of
some modifications of this pair of equations. In the following models,
one considers a closed economic system where total money M and total
number of agents N is fixed. It is assumed that the system is conservative
and no migration occurs. Each agent i posesses money mi(t) at time t. In
any trading, a pair of agents i and j exchange their money (Chakrabarti
and Marjit, 1995; Ispolatov et al, 1998; Drăgulescu and Yakovenko, 2000;
Chakraborti and Chakrabarti, 2000; Chakrabarti and Chakrabarti, 2009)
such that their total money is (locally) conserved and none end up with
negative money (mi(t)≥ 0, i.e., debt not allowed):

mi(t +1) = mi(t)+∆m; m j(t +1) = m j(t)−∆m (3)

following local conservation:

mi(t)+m j(t) = mi(t +1)+m j(t +1); (4)

time (t) changes by one unit after each trading.
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4.1 Model A: Random Sharing of Money

The simplest model considers random sharing of the total money between
the trading partners. Assuming λ → 0 in Eqn. (2), we get

mi(t +1) = ε[mi(t)+m j(t)]
m j(t +1) = (1− ε)[mi(t)+m j(t)]

(5)

for the i-th and the j-th agent, where ε is a random fraction uniformly
distributed between 0 and 1. This is the simplest set of equations of
money transfer among the agents. Interestingly, the same set of equations
represents transfer of energy among particles due to collisions in an ideal
gas except that there all mi’s (money) in Eqn. (5) are substituted by the
colliding particles’ energies. Note that money remains conserved in this
model. While deriving the probability density function, we must account
for all possible divisions of the total amount of money i.e., mi(t)+m j(t).
Clearly all trading actions must satisfy the condition that

P(mi)P(m j) = P(ε[mi +m j])P((1− ε)[mi +m j]) (6)

for all ε , 0 ≤ ε ≤ 1. However, if we consider the distinct possibility
that the entire amount of money accrues to one individual only and the
other becomes pauper, we can solve the model very easily. Using that
particular kind of trading, we get

P(mi)P(m j) = P(mi +m j)P(0). (7)

Clearly the steady state (t → ∞) distribution of money is a Gibbs (expo-
nential) distribution:

P(m) = P(0)exp(−m/T );T = M/N. (8)

Hence, no matter how uniform or justified the initial distribution is, the
eventual steady state correspond to the exponential distribution where
most of the people have got very little money. This steady state result is
seen to be very robust. Several variations of the mode of trading, and of
the ‘trading network’ (on which the agents can be put at the nodes and
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each agent trade with its ‘neighbors’ only), whether compact, fractal or
small-world like (Oliveira et al, 1999) leaves the distribution unchanged.
There are still other studies where variations like random sharing of an
amount 2m2 only (not of m1 +m2) when m1 > m2 (trading at the level of
the relatively poorer agent in the trade), lead even to a drastic situation:
all the money in the market drifts to one agent and the rest become truely
pauper (Hayes, 2002; Chakraborti, 2002).

4.2 Model B: With Constant λ

We now consider Eqn. (2) with constant λ for the i-th and j-th agents:

mi(t +1) = λmi(t)+ ε(1−λ )(mi(t)+m j(t))

m j(t +1) = λm j(t)+(1− ε)(1−λ )(mi(t)+m j(t)).

Note that λ acts as a savings factor in this model, where each trader at time
t saves a fraction λ of its money mk(t) (for k =i, j) and trades randomly
with the rest (see Chakraborti and Chakrabarti, 2000).

The market (non-interacting at λ = 1) becomes ‘interacting’ for any
non-vanishing λ (< 1). For fixed λ (same for all agents), the steady state
distribution P(m) of money is exponentially decaying on both sides of
the mode of the distribution i.e., the most-probable amount of money per
agent. The mode also shifts away from m = 0 (for λ = 0) to M/N as
λ → 1 (Fig. 1). This self-organizing feature of the market, induced by
sheer self-interest of saving by each agent without any global perspective,
is very significant since the fraction of people below a particular poverty
line decrease as the saving fraction λ increases and most people end up
with some finite, non-zero fraction of the average money in the market
(Chakraborti and Chakrabarti, 2000). Although this fixed saving propensity
does not give yet the Pareto-like power-law distribution, the Markovian
nature of the scattering or trading processes (see Eqn. (7)) is effectively
lost. Indirectly through λ , the agents get to know (start interacting with)
each other and the system co-operatively self-organises towards a stable
form with a non-vanishing most-probable amount of money-holding (see
Fig. 1).
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Figure 1:
Steady state money distribution P(m) (y-axis) is plotted against money m (x-axis) for the
model with uniform savings. +, ×, ∗ and � denotes distributions with λ = 0, 0.3, 0.6

and 0.9 respectively. All data sets shown are for average money per agent M/N = 1 and
N = 100.

Angle (Lux, 2005; Angle, 1986; Angle, 2006) proposed an early ver-
sion of the above model several years back in sociology journals. Angle’s
‘Inequality Process’ is described by the following equations:

mi(t +1) = mi(t)+Dtwm j(t)− (1−Dt)wmi(t)
m j(t +1) = m j(t)+(1−Dt)wmi(t)−Dtwm j(t)

(9)

where w is a fixed fraction and Dt takes value 0 or 1 randomly. The numer-
ical simulation results of Angle’s model fit well to Gamma distributions.

In the model with uniform savings, the distribution of the monetary
assets shows a self organizing feature. A peaked distribution with a most-
probable value indicates an economic scale. Empirical findings in homo-
geneous groups of individuals as in waged income of factory labourers
in UK and USA (Willis and Mimkes, 2004) and data from population
survey in USA among students of different school and colleges support
this observation (Angle, 2006).
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4.3 Model C: With Distributed λ

In reality, people face different constraints resulting in different patterns
of saving or at a more basic level, their attitudes towards savings may not
be the same i.e., the parameters of their utility functions may differ from
one person to another. This in turn implies that the saving parameter λ is
very heterogeneous. To imitate this situation, we allow λ to be distributed
within the population (Chatterjee et al, 2003; Chakrabarti and Chatterjee,
2004; Chatterjee et al, 2004). The evolution of money in such a trading
can be written as:

mi(t +1) = λimi(t)+ ε
[
(1−λi)mi(t)+(1−λ j)m j(t)

]
m j(t +1) = λ jm j(t)+(1− ε)

[
(1−λi)mi(t)+(1−λ j)m j(t)

]
.

(10)

The trading rules are same as before, except that

∆m = ε(1−λ j)m j(t)− (1−λi)(1− ε)mi(t) (11)

here; where λi and λ j are the saving propensities of agents i and j. The
agents have fixed (over time) saving propensities, distributed independently,
randomly and uniformly (white) within an interval 0 to 1: agent i saves
a random fraction λi (0≤ λi < 1) and this λi value is quenched for each
agent (λi are independent of trading or t). Studies show that for uniformly
distributed saving propensities, ρ(λ )= 1 for 0≤ λ < 1, one gets eventually
P(m)∼ m(1+ν), with ν = 1 (see Fig. 2). The eventual deviation from the
power law in Q(m) in the inset of Fig. 2 is due to the exponential cutoff
contributed by the rare statistics for high m value.

It may be noted in this connection that such a dispersion in the savings
propensity λ is often seen in most of the economies with 0.2 as the most
probable value (Purica, 2004). However, as will be shown in Sec. 5, the
Pareto distribution results in only when the dispersion of λ continues up
to unity.

A direct analytical derivation of the pareto law found above, is provided
in section 5.3. It is seen that the variation in ε plays no role in it. The
key factor is the distribution of the savings propensity λ . Refering to
section 3, we can define the utility functions as follows. For agent 1,
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Figure 2:
Steady state money distribution P(m) for the distributed λ model with 0≤ λ < 1 for a

system of N = 1000 agents with the average money per agent M/N = 1. A power-law is
observed with 1+ν = 2.

U1(x1,x2,m1) = xα1
1 xα2

2 mαm
1 and for agent 2, U2(y1,y2,m2) = yβ1

1 yβ2
2 mβm

2 .
Again for simplicity, we assume that the sums of the powers are normalized
to 1 i.e., α1 + α2 + αm = 1 and β1 + β2 + βm = 1. We make a crucial
assumption that αm ' βm and αm,βm→ 1. Also, we assume that α1 =
α2' β1 = β2.Then by doing the same exercise as in section 3 and denoting
αm and βm by λ1 and λ2 respectively, we can approximate the money
evolution equations in the following form,

m1(t +1) = λ1m1(t)+
1
2

((1−λ1)m1(t)+(1−λ2)m2(t))

m2(t +1) = λ2m2(t)+
1
2

((1−λ1)m1(t)+(1−λ2)m2(t)) .

(12)

Note that ε is constant here (equals to 1/2) and λ is the variable. The above
set of equations also produce the Pareto distribution in the steady state (see
sections 5.2 and 5.3 for analytical derivations of the same).
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4.4 Model D: Taxation and Redistribution

This model was studied by Drăgulescu and Yakovenko (2001) and Guala
(2009). We return to Eqn. (5) which captures the process of random sharing
of money. In this model trading process takes place in two steps. In the
first step, we assume that prior to trade a fixed fraction τ of money is taxed
from both of them. Random sharing occurs with the rest of the money.
In the second step, the total amount of money taxed is distributed equally
among all the agents in the economy.

mi(t +1/2) = ε(1− τ)(mi(t)+m j(t))
m j(t +1/2) = (1− ε)(1− τ)(mi(t)+m j(t))

(13)

For all k,

mk(t +1) = mk(t +1/2)+ τ
(mi(t)+m j(t))

N
. (14)

This model also gives rise to gamma-like features in the steady state distri-
bution. But it has a pecularity in that it shows transition from exponential
to gamma function as τ goes up and then after a threshold, it returns to an
exponential for higher values τ . Guala (2009) shows that the optimal tax
rate is about 0.325 where optimality refers to equality among the agents.

4.5 Model E: Risk Aversion and Insurance

Chakrabarti and Chakrabarti (2009) proposed this model with a different
interpretation. In this model, the money transfer process takes place in
two steps. The process is again governed by Eqn. (5). We assume that
the agents are risk-averse. Hence, prior to trade they reach an agreement
that whoever will be the winner, shall transfer a fraction f of his excess
of money to the loser. This is akin to an insurance where the agents
sacrifice higher gains to avoid losses. In the first step, the agents trade in
an absolutely random fashion. This step follows from Eqn. (2) above if we
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consider that λ → 0. Hence,

mi(t +1/2) = ε[mi(t)+m j(t)]
m j(t +1/2) = (1− ε)[mi(t)+m j(t)].

(15)

The agents agree to split the excess amount of money. Hence the agent
with more money, transfers a fraction f of the excess to the agent with
less money. It is reasonable to assume that 0≤ f ≤ 0.5. If mi(t +1/2)≥
m j(t +1/2), excess of money, δ = mi(t +1/2)−m j(t +1/2). Hence,

mi(t +1) = mi(t +1/2)− ( f δ )
m j(t +1) = m j(t +1/2)+( f δ ).

(16)

This process is repeated at each time step until the system reaches a steady
state and the distribution p(m) of money among the agents in the steady
state are studied. Substituting for δ , mi(t + 1/2) and m j(t + 1/2) in the
above equation, we get the reduced equations

mi(t +1) = g[mi(t)+m j(t)]
m j(t +1) = (1−g)[mi(t)+m j(t)].

(17)

The expression of g in the above equations is g = f +(1−2 f )ε . It may be
noted that g is a linear transformation of an uniformly distributed variable
ε . Hence, g is also uniformly distributed and its domain is [ f ,1− f ]. With
rising values of f , this model shows a transition from pure exponential
(for f = 0) to a ∆ distribution (for f = 0.5) in money holding. Gamma
like distributions emerge for values of f between the two extremes.

There are other useful stochastic models which are also able to generate
exponential or gamma function like probability density functions for the
distribution of money. Studies of these models agree with the general form
of the steady state distributions obtained here. However, these models
have no theoretical support from economics. One can see for example
Scalas et al, 2006; Garibaldi et al, 2007 and Kar-Gupta, 2006 for a detailed
discussion on this type of models.
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5 Analytical Studies

There have been a number of attempts to study the uniform savings model
(Model B, Sec. 4.2) analytically (see e.g., Das and Yarlagadda, 2005),
but no closed form expression for the steady state distribution P(m) has
yet been arrived at. The exact distributions for the model with taxation
(Model D) and the model with risk averse agents (Model E) are also
unknown whereas the model with distributed savings (Model C) has been
solved in several ways (Chatterjee et al, 2005a; Chatterjee et al, 2005b;
Mohanty, 2006; Repetowicz et al, 2005; Richmond et al, 2005). Below,
we discuss a very simple method of obtaining the moments of the steady
state distributions of the models B and D up to any order without knowing
the actual distribution.

The mathematical structures of the discrete and continuous (both in
time and space) versions of the kinetic exchange equations under strict and
not-so-strict conservation laws are well-studied. The major findings are
the precise analysis of the Boltzmann-type equations resulting from the
binary collision models (Markowich, 2007), links between the steady state
distributions and a number of particular asymptotes (Markowich, 2007;
Toscani and Brugna, 2009), possible extensions to incorporate multiple
interacting species, generation of bimodal distribution of income/opinion
formation, effects of taxes etc (During et al, 2008; Toscani, 2009). How-
ever, we stick to the descriptive part of the ideal gas like markets only.
Below follows some non-rigorous but useful technical results.

5.1 Moments of the Distribution

We denote expectation or average of a variable x by E(x) and the central
moment of order n > 1 (µn) of a variable x as

E(x−E(x))n = E

(
n

∑
l=0

(
n
l

)
xlE(−x)(n−l)

)
. (18)

For n = 2, E(x−E(x))n corresponds to the variance of x and is denoted by
V (x). Since the systems are conservative and the initial endowments were
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unity for all agents, it is obvious that E(mi) would be unity. So we can
write the n-th moment of the distribution of money without subscript as

E(m−1)n = E

(
n

∑
l=0

(
n
l

)
ml(−1)(n−l)

)
. (19)

We assume that mi and m j are independent variables. Using the money-
transfer equation in Eqn. (19), one can find out µn iteratively for any n
(i.e., if the moments up to (n−1)-th order are known then it is possible to
find the n-th moment by the above equation). For example, we find out the
second moment of the steady state distribution of model B in section 4.2
by assuming that the first moment is set to unity i.e., the average money
M/N = 1. Note that for the i-th agent, the time evolution of money is

mi(t +1) = λmi(t)+ ε(1−λ )[mi(t)+m j(t)].

By taking expectations on both sides we get E(m) = 1. Also, in the steady
state, V (mi) = E(x2)− [E(x)]2 where x = λmi +ε(1−λ )(mi +m j). Using
the fact that E(x) = 1, we get

V (mi)= λ
2E(m2

i )+(1−λ )2E(ε2[mi+m j]2)+2λ (1−λ )E(ε)E(mi[mi+m j])−1.

Using symmetry in the agent indices i and j, one gets E(ε2[mi +m j]2) =
[V (ε) + 1/4][2V (m) + 4]. Since V (ε) = 1/12 (as ε is uniformly dis-
tributed), we get the following equation after rearranging terms

V (m) = λ
2[V (m)+1]+

2
3
(1−λ )2[V (m)+2]+λ (1−λ )[V (m)+2]−1.

Simplifying the above expression we get the result for λ 6= 1,

V (m) =
(1−λ )
(1+2λ )

. (20)

Chakrabarti and Chakrabarti (2009) also discusses the second moment of
the distribution of the model E.

Patriarca et al (2004) claimed through heuristic arguments (based on
numerical results) that the distribution of model B is a close approximate
form of the Gamma distribution

P(m) = Cmα exp[−m/T ] (21)
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where T = 1/(α +1) and C = (α +1)α+1/Γ(α +1), Γ being the Gamma
function whose argument α is related to the savings factor λ as:

α =
3λ

1−λ
(22)

which implies T = (1−λ )/(1+2λ ) and it may be noted that in the case
considered here (with M/N = 1), T happens to be equal to the variance
of the distribution itself. The same value of the parameter is obtained
through moment calculation above (Richmond et al, 2005; Chakrabarti
and Chakrabarti, 2009). Also, when compared with Eqn. (1), mc → ∞.
The qualitative argument forwarded here Patriarca et al (2004) is that, as
λ increases, effectively the agents (particles) retain more of its money
(energy) in any trading (scattering). This can be taken as implying that
with increasing λ , the effective dimensionality increases and temperature
of the scattering process changes. This result has also been supported by
numerical results in Bhattacharya et al (2005). However, Repetowicz et al
(2005) and Richmond et al (2005) analyzed the moments, and found that
moments up to the third order agree with those obtained from the form of
the Eqn. (21), and discrepancies start from fourth order onwards. Hence,
the actual form of the distribution for this model still remains to be found
out.

It is seen that the values of the parameters of the distribution derived by
the above-mentioned technique (without any distributional assumption),
are identical to those found by Patriarca et al (2004). Although this
technique enables one to derive the exact values of the moments up to any
order, it has an obvoius drawback that it can not be applied to the models
where one does not get any representative equation. For example, this
technique does not apply to model D (sec. 4.4).

We review now some of the analytical results on the steady state distri-
bution P(m) of money resulting from the equations Eqn. (10) representing
the trading and money dynamics (Model C, Sec. 4.3) in the distributed
savings case.
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Figure 3:
Steady state money distribution P(m) against m in a numerical simulation of a market

with N = 200, following equations Eqn. (10) with ε = 1/2. The dotted line corresponds
to m−(1+ν); ν = 1. The average money per agent M/N = 1.

5.2 Distribution of Money Difference

In the process defined by Eqn. (10), the total money (mi +m j) of the pair
of agents i and j remains constant, while the difference ∆mi j evolves as

(∆mi j)t+1 ≡ (mi−m j)t+1 =
(

λi +λ j

2

)
(∆mi j)t

+
(

λi−λ j

2

)
(mi +m j)t

+(2ε−1)[(1−λi)mi(t)+(1−λ j)m j(t)].
(23)

Numerically, as shown in Fig. 2, we observe that the steady state money
distribution in the market becomes a power law, following such tradings
when the saving factor λi of the agents remain constant over time but varies
from agent to agent widely. As shown in the numerical simulation results
for P(m) in Fig. 3, the law, as well as the exponent, remains unchanged
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even when ε = 1/2 for every trading (Chatterjee et al, 2004). Clearly, the
third term in Eqn. (23) is zero for ε = 1/2. Even in the case where ε → 1,
the third term in the above equation becomes unimportant for the critical
behavior. For simplicity, we concentrate on this case, where the above
evolution equation for ∆mi j can be written in a more simplified form as

(∆mi j)t+1 = λ̄i j(∆mi j)t + λ̃i j(mi +m j)t , (24)

where λ̄i j = 1
2(λi + λ j) and λ̃i j = 1

2(λi− λ j). As such, 0 ≤ λ̄ < 1 and
−1

2 < λ̃ < 1
2 .

The steady state probability distribution D for the modulus ∆ = |∆m|
of the mutual money difference between any two agents in the market
can be obtained from Eqn. (24) in the following way provided ∆ is very
much larger than the average money per agent = M/N. This is because,
using Eqn. (24), large ∆ can appear at t + 1, say, from ‘scattering’ from
any situation at t for which the right hand side of Eqn. (24) is large. The
possibilities are (at t) mi large (rare) and m j not large, where the right hand
side of Eqn. (24) becomes' (λ̄i j + λ̃i j)(∆i j)t ; or m j large (rare) and mi not
large (making the right hand side of Eqn. (24) becomes' (λ̄i j− λ̃i j)(∆i j)t);
or when mi and m j are both large, which is a much rarer situation than the
first two and hence is negligible. Consequently for large ∆, the distribution
D(∆) satisfies

D(∆) =
∫

d∆
′ D(∆′) 〈δ (∆− (λ̄ + λ̃ )∆′)+δ (∆− (λ̄ − λ̃ )∆′)〉

= 2
〈(

1
λ

)
D
(

∆

λ

)〉
, (25)

where the δ functions take care of the ∆ values permitted by Eqn. (24)
and we have used the symmetry of the λ̃ distribution and the relation
λ̄i j + λ̃i j = λi, and have suppressed labels i, j. Here 〈. . .〉 denote average
over λ distribution in the market, and δ denotes the δ -function. Taking
now a uniform random distribution of the saving factor λ , ρ(λ ) = 1 for
0≤ λ < 1, and assuming D(∆)∼ ∆−(1+ν) for large ∆, we get

1 = 2
∫ 1

0
dλ λ

ν = 2(1+ν)−1, (26)
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giving an unique value of ν = 1. This also indicates that the money
distribution P(m) in the market also follows a similar power law variation,
P(m)∼ m−(1+ν) and ν = 1. Distribution of ∆ from numerical simulations
also agree with this result.

Chatterjee et al (2005) and Chatterjee et al (2005a) analysed the master
equation for the kinetic exchange process and found its solution for a
special case. For a pioneering study of the kinetic equations for the two-
body scattering process and a more general solution, see Repetowicz et al
(2005) and Richmond et al (2005).

5.3 Average Money at any Saving Propensity and the Distribution

Patriarca et al (2005) and Patriarca et al (2006) studied the relationship
between a particular saving factor λ and the average money held by an
agent characterized by that savings factor and these numerical studies
revealed that the product of the average money and the unsaved fraction
remains constant i.e.,

〈m(λ )〉(1−λ ) = C (27)

where C is a constant; here 〈x〉 denotes ensemble average over x for a
particular value of λ . Mohanty (2006) justifies this result rigorously using
a mean-field type approach. It is assumed that the distribution of money of
a single agent over time is stationary, which means that the time averaged
value of money of any agent remains unchanged independent of the initial
value of money. Assuming that the i-th agent interacts with all agents over
time and taking the expectation of Eqn. (10), one can write

〈mi〉= λi〈mi〉+ 〈ε〉

[
(1−λi)〈mi〉+ 〈

1
N

N

∑
j=1

(1−λ j)m j〉

]
. (28)

The last term on the right can be replaced by the average over the agents
(denoted by a constant C) and since ε is assumed to be distributed randomly
and uniformly in [0,1], so that 〈ε〉= 1/2, Eqn. (28) reduces to

(1−λi)〈mi〉= C.

www.economics-ejournal.org 21



conomics: The Open-Access, Open-Assessment E-Journal

Since the right side is free of any agent index, it suggests that this relation
is true for any arbitrary agent, i.e., 〈mi〉(1−λi) = constant, where λi is the
saving factor of the ith agent (as in Eqn. (27)) and what follows is:

dλ ∝
dm
m2 . (29)

Here, m represents 〈mi〉 defined above. An agent with a particular saving
propensity factor λ therefore ends up with a characteristic average money
m given by Eqn. (27) such that one can in general relate the distributions
of the two:

P(m) dm = ρ(λ ) dλ . (30)

This, together with Eqn. (27) and Eqn. (28) gives (Mohanty, 2006)

P(m) = ρ(λ )
dλ

dm
∝

ρ(1− c
m)

m2 , (31)

giving P(m)∼ m−2 for large m for uniform distribution of savings factor
λ , i.e, ν = 1; and ν = 1 + δ for ρ(λ ) = (1−λ )δ . This study therefore
explains the origin of the universal (ν = 1) as well as the non-universal
(ν = 1+δ ) Pareto exponent values in the distributed savings model.

6 Summary and Discussion

Income and wealth distributions across the population in many countries
are found to possess some robust characteristics. As has been discussed in
section 2, it is empirically found that the bulk (about 90%) of the population
fits a gamma like distribution: after an initial steep rise, an exponential
decay is seen in the number of persons with income/wealth. There are
considerable deviations from exponential decay in the high income/wealth
range and the income and wealth data in that range (for the top 5-10% of
the population in any country) fit well to Pareto distribution (power law)
with the value of the exponent ranging between 1 and 3.

As has been discussed in section 3, the simple exercise of utility maxi-
mization (with a well known utility function) in a bilateral trading frame-
work gives rise to a pair of money exchange equations. The system
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depicted by this set of equations is conserved and the coupling behaviour
is captured well by the same set of equations. This has led to a completely
new, statistical formulation of the models of market economies. The dy-
namics of money in such a model, reveals interesting features about the
steady state distribution of money among the interacting agents. Self-
organisation is a key emerging feature of these kinetic exchange models
when saving factors are introduced. In the model with uniform savings (see
Sec. 4.2), the Gamma-like distribution of money shows stable distribution
with a most-probable value indicative of an economic scale dependent on
the saving propensity, λ . Empirical observations in homogeneous groups
of individuals supports this theoretical prediction (see e.g., Willis and
Mimkes, 2004; Angle, 2006). The moments of the distribution can be
found (see Sec. 5) very easily.

Next, the saving propensity is assumed to vary from agent to agent (see
Sec. 4.3). The emergence of a power law tail in money-holding is apparent
in cases where the saving factor does not change with tradings or time t for
the same agent (i.e., where each trader has a different characteristic saving
propensity). The money exchange equations can be cast into a master
equation, and the solution to the steady state money distribution giving
the Pareto law with ν = 1 have been derived using several approaches
(see Sec. 5). Then we discuss two different models focusing on different
economic institutions that can also give rise to the same gamma function-
like behavior for the distribution of assets in the steady state. The first
one considers taxation (see Sec. 4.4) whereas the second one considers
insurance against losses (see Sec. 4.5). The moments of the resulting
distributions of the last model can be found up to any order (see Sec. 5).
The possibilities of emergence of self organizations in markets, evolution
of the steady state distributions, emergence of Gamma-like distribution for
the bulk and the power law tail, are seen to be captured well by this class
of market models.

It has been debated for long whether the distributions derived from
these models are representing the income distributions or wealth distri-
butions or simply, the distributions of a conserved asset called money.
Given that we have considered this class of models in the framework of
general equilibrium theory, we opt for the last interpretation. Clearly,
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money is treated as a commodity here which has no storage cost. An
important role of money in this model is that it is an asset which transfers
purchasing power to the future (see section 3). For the sake of clarity, it
may be mentioned that the distributions derived so far, are concerned with
money only. Strictly speaking, there is no income (no wage earned from
labor supply) in these models and neither is there any wealth accumulation
(no capital stock). The reason is that the production side is completely
ignored in these models. This may be considered as a future direction of
research to consider a model of production and to derive income/wealth
distribution directly from that framework. However, the essential nature of
both income and wealth and their distributions are captured very well by
this class of models. In short, in this class of models money (asset) works
as a proxy for income/wealth. Since the distributions derived for money
compares extremely well with the empirical data of income/wealth, we
believe that these models provide important insights for income/wealth
distributions as well.

This class of models has also been critisized for assuming that the law
of conservation holds. Gallegati et al (2006) notes that “in industrialized
capitalist economies, income is most definitely not conserved". While
this observation is certainly true that income and wealth in an economy
grows over time, it does not contradict the models stated above. The
growth of income and wealth over time, is by definition a time-series
observation whereas the models presented here tries to explain cross-
section observations (data taken at a single instance or within a very short
period of time). The main arguement in favour of the ideal gas like models
is that billions of small transactions that take places in a very short span of
time can generate the essential stochastic features of the kinetic exchange
models and the corresponding distributions.

Though the models considered above (Sec. 4) follow from established
principles of the utility maximization paradigm (Sec. 3) and the analysis of
their kinetics (Sec. 5) have a rigorous foundation based on hundred years’
old statistical physics, they are not matured enough yet to be put to use
in practice directly. Nevertheless, they present a workable and tractable
approach for analysing a statistically large economy. They illuminate
the statistical effects of a number of mechanisms and institutions of the
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economy and reproduce the distributions of assets seen in reality quite
reliably; as such they may provide a new foundation of macroeconomics
(Lux and Westerhoff, 2009). In future, policy making may also benefit
from such detailed understanding of the mechanisms by which distributions
of income and wealth emerge out of collective exchanges (Hogan, 2005).
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