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Abstract. We study the dynamics of a few stochastic learning strategies for
the ‘Kolkata Paise Restaurant’ problem, where N agents choose among N
equally priced but differently ranked restaurants every evening, such that each
agent tries to get dinner in the best restaurant (with each restaurant serving
only one customer and the rest of the customers arriving there going without
dinner that evening). We consider the learning strategies to be similar for all
the agents, and assume that each follows the same probabilistic or stochastic
strategy dependent on information about past successes in the game. We show
that some ‘naive’ strategies lead to much better utilization of services than some
relatively ‘smarter’ strategies. We also show that a service utilization fraction as
high as 0.80 can result for a stochastic strategy, where each agent sticks to his
past choice (independent of success achieved or not, with probability decreasing
inversely in the past crowd size). The numerical results for the utilization fraction
of the services in some limiting cases are analytically examined.
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1. Introduction

The Kolkata Paise Restaurant (KPR) problem [1]–[3] is a repeated game, played between a large
number N of agents having no interaction with each other. In the KPR problem, prospective
customers (agents) choose from N restaurants each evening simultaneously (in parallel decision
mode). N is fixed. Each restaurant has the same price for a meal but a different rank (agreed
upon by all customers) and can serve only one customer any evening. Information regarding
customer distributions for earlier evenings is available to everyone. Each customer’s objective
is to go to the restaurant with the highest possible rank while avoiding the crowd so as to be able
to get dinner there. If more than one customer arrives at any restaurant on any evening, one of
them is randomly chosen (each of them is treated anonymously) and is served. The rest do not
get dinner that evening.

In Kolkata, there were very cheap and fixed-rate ‘Paise Restaurants’, popular among the
daily laborers in the city. During lunch hours, the laborers used to walk (to save transport costs)
to one of these restaurants, and would miss lunch if they got to a restaurant where there were too
many customers. Walking down to the next restaurant would mean failing to report back to work
on time! Paise is the smallest Indian coin, and there were indeed some well-known rankings of
these restaurants because some of them would offer tastier items compared to the others. A more
general example of such a problem would be when society provides hospitals (and beds) in
every locality but local patients go to hospitals of better rank (commonly perceived) elsewhere,
thereby competing with the local patients of those hospitals. Unavailability of treatment in time
may be considered as lack of service for those people and consequently as (social) wastage of
service by those unattended hospitals.

A social planner’s (or dictator’s) solution to the KPR problem is the following. The planner
(or dictator) asks everyone to form a queue and then assigns each one a restaurant with rank
matching the sequence of the person in the queue on the first evening. Then each person is told
to go to the next ranked restaurant on the following evening (for the person in the last ranked
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restaurant, this means going to the first ranked restaurant). This shift process then continues for
successive evenings. Call this solution the fair social norm. This is clearly one of the most
efficient solutions (with utilization fraction f̄ of services by the restaurants equal to unity) and
the system arrives at this solution immediately (from the first evening). However, in reality,
this cannot be the true solution to the KPR problem, where each agent decides on his own (in
parallel or democratically) every evening, based on complete information about past events.
In this game, customers try to evolve a learning strategy to eventually get dinners at the best
possible ranked restaurant, avoiding the crowd. It is seen that the evolution of these strategies
takes considerable time to converge, and even then the eventual utilization fraction f̄ is far below
unity. The KPR problem has some basic features similar to the minority game problem [4, 5]
in that diversity is encouraged (compared to herding behavior) in both. However, it differs from
(two-choice) minority games in terms of the macroscopic size of the choices.

As already shown in [1], a simple random-choice algorithm, if adapted by all the agents,
can lead to a reasonable value of utilization fraction ( f̄ ' 0.63). Compared to this, several
seemingly ‘more intelligent’ stochastic algorithms lead to lower utilization of the services.
Ghosh et al [3] studied a few more such ‘smarter’ algorithms, having several attractive features
(including analytical estimate possibilities), but still failed to improve the overall utilization
fraction beyond its random choice value. Here we develop a stochastic strategy that maintains
a naive tendency (probability decreasing with past crowd size) to stick to any agent’s own
past choice (successful or not), leading to a maximum, so far, value of the utilization fraction
f̄ (' 0.80) in the KPR problem. We also estimate analytically the f̄ values for several such
strategies.

2. Stochastic learning strategies

Let the symmetric stochastic strategy chosen by each agent be such that at any time t the
probability pk(t) of arriving at the kth ranked restaurant is given by

pk(t) =
1

z

[
kα exp

(
−

nk(t − 1)

T

)]
, z =

N∑
k=1

[
kα exp

(
−

nk(t − 1)

T

)]
, (1)

where nk(t) denotes the number of agents arriving at the kth ranked restaurant in period t , T > 0
is a scaling factor and α > 0 is an exponent. Note that under (1) the probability of selecting a
particular restaurant increases with its rank and decreases with its popularity in the immediate
past (given by the number nk(t − 1)). Certain properties of the strategies given by (1) are the
following:

(i) For α = 0 and T → ∞, pk(t) = 1/N corresponds to the complete random choice case for
which we know [1] that the utilization fraction is around 0.63, that is, on an average there
is 63% utilization of the restaurants (see appendix A).

(ii) For α = 0 and T → 0, the agents avoid those restaurants visited last evening and choose
again randomly from the remaining restaurants [1]. With appropriate simulation it was
shown that the distribution of the fraction f of utilization of the restaurants is Gaussian
around 0.46 (see section 2.2).
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2.1. Rank-dependent strategies

For any natural number α and T → ∞, an agent goes to the kth ranked restaurant with
probability pk(t) = kα/

∑
kα, which means in the limit T → ∞ in (1) gives pk(t) = kα/

∑
kα.

Let us discuss the results for such a strategy here.
If an agent selects any restaurant with equal probability P , then the probability that a single

restaurant is chosen by m agents is given by

1(m) =

(
N
m

)
pm(1 − p)N−m. (2)

Therefore, the probability that a restaurant with rank k is not chosen by any of the agents will
be given by

1k(m = 0) =

(
N
0

)
(1 − pk)

N , pk =
kα∑

kα

' exp

(
−kα N

Ñ

)
as N → ∞, (3)

where Ñ =
∑N

k=1 kα
'

∫ N
0 kαdk = (N α+1)/(α + 1). Hence

1k(m = 0) = exp

(
−

kα (α + 1)

N α

)
. (4)

Therefore, the average fraction of agents getting dinner in the kth ranked restaurant is given by

f̄ k = 1 − 1k (m = 0) (5)

and the numerical estimates of f̄ k are shown in figure 1. Naturally for α = 0, the problem
corresponds to random choice f̄ k = 1 − e−1 giving f̄ =

∑
f̄ k/N ' 0.63 and, for α = 1,

f̄ k = 1 − e−2k/N giving f̄ =
∑

f̄ k/N ' 0.58, as already obtained analytically earlier (see
appendix B).

2.2. Strict crowd-avoiding case

We consider here the case (see also [3]) where each agent chooses on any evening (t) randomly
among the restaurants to which nobody had gone the last evening (t − 1). This corresponds
to the case where α = 0 and T → 0 in equation (1). Our numerical simulation results for the
distribution D( f ) of the fraction f of utilized restaurants are again Gaussian with a most
probable value at f̄ ' 0.46. This can be explained in the following way. As the fraction f̄
of restaurants visited by the agents on the last evening is avoided by the agents this evening,
the number of available restaurants is N (1 − f̄ ) for this evening and is chosen randomly by
all N agents. Hence, when fitted to equation (A.1) in appendix A, λ = 1/(1 − f̄ ). Therefore,
following equation (A.1), we can write the equation for f̄ as

(1 − f̄ )

[
1 − exp

(
−

1

1 − f̄

)]
= f̄ . (6)

The solution of this equation gives f̄ ' 0.46. This result agrees well with the numerical results
for this limit (α = 0, T → 0).
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∑
f̄ k/N ) of the

fraction f agent getting dinner any evening for different α values.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

di
st

rib
ut

io
n 

D
(f

)

fraction(f) of restaurants having n-agents on any evening

n>0
n=1
n=2

Figure 2. Numerical simulation results for a typical prospective customer
distribution on any evening.

2.3. Stochastic crowd-avoiding case

In this section, we start with the following stochastic strategy. If an agent goes to restaurant
k in period (t − 1), then the agent goes to the same restaurant in the next period with
probability pk(t) = (1/nk(t − 1)) and to any other restaurant k ′(6= k) with probability pk′(t) =

(1 − pk(t))/(N − 1). In this process, the average utilization fraction is f̄ ' 0.8 and the
distribution D( f ) is a Gaussian around f ' 0.8 (see figure 2).
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Here we make an approximate estimate of f̄ . Let ai denote the fraction of restaurants where
exactly i agents (i = 0, . . . , N ) appeared on any evening and assume that ai = 0 for i > 3.
Therefore, a0 + a1 + a2 = 1, a1 + 2a2 = 1 and hence a0 = a2. Given the strategy, a2 fraction of
agents will make attempts to leave their respective restaurants the next evening (t + 1), while
no intrinsic activity will occur in the restaurants where nobody came (a0) or only one came
(a1) the previous evening (t). This a2 fraction of agents will now get equally divided (each
in the remaining N − 1 restaurants). Of these a2, the fraction going to the vacant restaurants
(a0 in the earlier evening) is a0a2. Hence, the new fraction of vacant restaurants is a0 − a0a2.
In restaurants having exactly two agents (a2 per cent in the last evening), some vacancies will
be created due to this process, and this is equal to (a2/4) − a2(a2/4). Steady state implies that
a0 − a0a2 + (a2/4) − a2(a2/4) = a0 and hence, using a0 = a2, we obtain a0 = a2 = 0.2, giving
a1 = 0.6 and f̄ = a1 + a2 = 0.8. Of course, the above calculation is approximate as none of
the restaurants is assumed to get more than two customers on any evening (ai = 0 for i > 3).
The advantage in assuming a0, a1 and a2 only to be non-vanishing on any evening is that the
activity of redistribution on the next evening starts from this a2 fraction of restaurants. This,
of course, affects a0 and a1 for the next evening, and for steady state these changes must balance.
The computer simulation results also confirm that ai 6 0.03 for i > 3, and hence the above
approximation does not lead to serious error.

3. Evolving stochastic strategy

In this section, we assume that agents have two possible exogenously given values of α : α = 0
or α = 1. We start by taking some random allocation of α over the set of N agents. The strategy
followed by each agent thereafter is the following. If an agent starts with an α = 0(1) and fails
to get dinner for the successive τ evenings, then the next evening the agent shifts to α = 1(0).
The steady state distribution of α values in the population of agents does not depend on the
initial allocation of α values in the population (see figure 3). However, as is obvious, for large
values of τ > N , the stability of the distribution disappears.
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4. Convergence to a fair social norm with deterministic strategies

In the KPR problem, if the rational agents interact, then a fair social norm that can evolve is a
periodically organized state with periodicity N , where each agent in turn gets served in all the
N restaurants and all agents get served every evening. Can we find deterministic strategies (in
the absence of a dictator) such that society achieves this fair social norm? There is one variant of
Pavlov’s win shift lose stay strategy (see [6]–[8]) that can be adopted to achieve the fair social
norm and another variant that can be adopted to achieve the fair social norm in an asymptotic
sense. Of course, these strategies are deterministic in nature.

4.1. Fair strategy

The fair strategy works as follows:

(i) At time (evening) t = 0, agents can choose any restaurant either randomly or
deterministically.

(ii) If at time t agent i was in a restaurant ranked k and was served, then at time t + 1 the agent
moves to the restaurant ranked k − 1 if k > 1 and goes to the restaurant ranked N if k = 1.

(iii) If agent i was in a restaurant ranked k at time t and was not served, then at time t + 1 the
agent goes to the same restaurant.

It is easy to verify that this strategy gives a convergence to the fair social norm in less than or
equal to N periods. Moreover, after convergence is achieved, the fair social norm is retained
ever after. The difficulty with this strategy is that a myopic agent will find it hard to justify the
action of going to the restaurant ranked last after getting served in the best ranked restaurant.
However, if the agent is not that myopic and observes the past history of strategies played by all
the agents, and can figure out that this one evening’s loss is a tacit commitment devised for this
kind of symmetric strategy to work, then this voluntary loss is not that implausible. Therefore,
one needs to run experiments before arguing for or against this kind of symmetric deterministic
strategy. More importantly, the fair strategy can be modified to take care of this justification
problem, provided that one wants to achieve the fair social norm in an asymptotic sense.

4.2. Asymptotically fair strategy

The asymptotically fair strategy works as follows:

(i) At time (evening) t = 0, agents can choose any restaurant either randomly or
deterministically.

(ii) If at time t agent i was in a restaurant ranked k and was served, then at time t + 1 the agent
moves to the restaurant ranked k − 1 if k > 1 and goes to the same restaurant if k = 1.

(iii) If agent i was in a restaurant ranked k at time t and was not served, then at time t + 1 the
agent goes to the restaurant ranked N .

5. Summary and discussion

We consider the KPR problem where the decision made by each agent in each time period t
is independent and is based on the information about the rank k of the restaurants and their
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occupancy given by the numbers nk(t − 1) . . . nk(0). We consider in section 2 several stochastic
strategies where each agent chooses the kth ranked restaurant with probability pk(t) given by
equation (1). The utilization fraction fk of the kth ranked restaurants on every evening is studied
and their average (over k) distributions D( f ) are shown in figure 1 for some special cases. From
numerical studies, we find their distributions to be Gaussian with the most probable utilization
fraction f̄ ' 0.63, 0.58 and 0.46 for the cases with α = 0, T → ∞; α = 1, T → ∞; and α = 0,
T → 0, respectively. For the stochastic crowd-avoiding strategy discussed in section 2.3, we get
the best utilization fraction f̄ ' 0.8. The analytical estimates for f̄ in these limits are also given
and they agree very well with the numerical observations.

Finally, we suggest ways of achieving the fair social norm either exactly in the presence
of the incentive problem or asymptotically in the absence of such an incentive problem.
Implementing or achieving such a norm in a decentralized way is impossible when N → ∞. The
KPR problem has similarity with the minority game problem [5], as in both the games, herding
behavior is punished and diversity is encouraged. Also, both involve learning of the agents
from past successes. Of course, KPR has some simple exact solution limits, a few of which
are discussed here. In none of the cases considered here are learning strategies individualistic;
rather, all the agents choose following the probability given by equation (1). In a few different
limits of such a learning strategy, the average utilization fraction f̄ and their distributions are
obtained and compared with the analytic estimates, which are reasonably close. Needless to
mention, the real challenge is to design algorithms of learning mixed strategies (e.g. from the
pool discussed here) by the agents so that the fair social norm emerges eventually, even when
everyone decides on the basis of their own information independently. As we have seen, some
naive strategies give better values of f̄ compared to most of the ‘smarter’ strategies like strict
crowd-avoiding strategies (section 2.2). This observation in fact compares well with the earlier
observation in minority games (see e.g. [9]).

It may be noted that all the stochastic strategies, being parallel in computational mode,
have the advantage that they converge to a solution at smaller time steps (∼

√
N or weakly

dependent on N ), while for deterministic strategies the convergence time is typically of the
order of N , which renders such strategies useless in the truly macroscopic (N → ∞) limits.
However, deterministic strategies are useful when N is small and rational agents can design
appropriate punishment schemes for the deviators (see [6]).

In brief, the study of the KPR problem shows that a dictated solution leads to one of the
best possible solutions to the problem, with each agent getting his dinner at the best ranked
restaurant with a period of N evenings, and with the best possible value of f̄ (= 1), starting
from the first evening. The parallel decision strategies (employing evolving algorithms by the
agents, and past information, e.g. of n(t)), which are necessarily parallel among the agents and
stochastic (as in democracy), are less efficient ( f̄ � 1; the best one discussed here in section 2.3,
giving f̄ ' 0.8 only). We also note that most of the ‘smarter’ strategies lead to much lower
efficiency.

Is there an upper bound for the value of utilization fraction f̄ (less than unity;
easily achieved in the dictated solution) for such stochastic strategies employed in parallel
(democratically) by the agents in KPR? If so, what is this upper bound value? Also, what is
the learning time required to arrive at such a solution (compared to zero waiting time to arrive
at the most efficient dictated solution) in KPR? These questions are to be investigated in future.
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Appendix A. Random-choice case

Suppose there are λN agents and N restaurants. An agent can select any restaurant with equal
probability. Therefore, the probability that a single restaurant is chosen by m agents is given by
a Poisson distribution in the limit N → ∞:

1(m) =

(
λN
m

)
pm(1 − p)λN−m, p =

1

N

=
λm

m!
exp(−λ) as N → ∞. (A.1)

Therefore, the fraction of restaurants not chosen by any agent is given by 1(m = 0) = exp(−λ),
and this implies that the average fraction of restaurants occupied on any evening is given by [1]

f̄ = 1 − exp(−λ) ' 0.63 for λ = 1 (A.2)

in the KPR problem.

Appendix B. Strict-rank-dependent choice

In this case, an agent goes to the kth ranked restaurant with probability pk(t) = k/
∑

k; that is,
pk(t) given by (1) in the limit α = 1, T → ∞. Starting with N restaurants and N agents, we
make N/2 pairs of restaurants and each pair has restaurants ranked k and N + 1 − k, where
16 k 6 N/2. Therefore, an agent chooses any pair of restaurants with uniform probability
p = 2/N or N agents choose randomly from N/2 pairs of restaurants. Therefore, the fraction
of pairs selected by the agents (from equation (A.1)) is

f0 = 1 − exp(−λ) ' 0.86 for λ = 2. (B.1)

Also, the expected number of restaurants occupied in a pair of restaurants with rank k and
N + 1 − k by a pair of agents is

Ek = 1 ×
k2

(N + 1)2
+ 1 ×

(N + 1 − k)2

(N + 1)2
+ 2 × 2 ×

k(N + 1 − k)

(N + 1)2
. (B.2)

Therefore, the fraction of restaurants occupied by pairs of agents is

f1 =
1

N

∑
k=1,...,N/2

Ek ' 0.67. (B.3)

Hence, the actual fraction of restaurants occupied by the agents is

f̄ = f0 · f1 ' 0.58. (B.4)
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