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Failure due to fatigue in �ber bundles and solidsSrutarshi Pradhan (1) and Bikas K. Chakrabarti (2)Saha Institute of Nu
lear Physi
s,1/AF Bidhan Nagar, Kolkata 700 064, India.Abstra
tWe 
onsider �rst a homogeneous �ber bundle model where all the �bers have got the samestress threshold (σc) beyond whi
h all fail simultaneously in absen
e of noise. At �nitenoise, the bundle a
quires a fatigue behavior due to the noise-indu
ed failure probabilityat any stress σ. We solve this dynami
s of failure analyti
ally and show that the averagefailure time τ of the bundle de
reases exponentially as σ → σc from below and τ = 0 for
σ ≥ σc. We also determine the avalan
he size distribution during su
h failure and �nd apower law de
ay. We 
ompare this fatigue behavior with that obtained phenomenologi
allyfor the nu
leation of Gri�th 
ra
ks. Next we study numeri
ally the fatigue behavior ofrandom �ber bundles having simple distributions of individual �ber strengths, at stress σless than the bundle's strength σ̃c (beyond whi
h it fails instantly). The average failuretime τ is again seen to de
rease exponentially as σ → σ̃c from below and the avalan
he sizedistribution shows similar power law de
ay. These results are also in broad agreement withexperimental observations on fatigue in solids. We believe, these observations regarding thefailure time are useful for quantum breakdown phenomena in disordered systems.
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I. Introdu
tionIf one puts a load or stress (σ) on a solid or applies a voltage a
ross an ele
tri
al 
ir
uit, astrain in the solid or a 
urrent through the 
ir
uit develops whi
h grows linearly (Hooke'slaw or Ohm's law) with the stress or voltage. If the external load on the system in
reasesbeyond its threshold limit (σc), the system fails: stress σ drops to zero due to fra
ture of thesolid. The same o

urs when the voltage on the network ex
eeds its limit and the 
urrentdrops to zero due to the fuse of the 
ir
uit. Similar failures o

ur in diele
tri
 materials whenthe ele
tri
 �eld a
ross the sample ex
eeds beyond its limit, and diele
tri
 breakdown setsin. These failures usually nu
leate around the defe
ts in the solid and the failure behaviorand its statisti
s therefore 
ru
ially depends on the disorder or impurity distribution withinthe sample. These (quasi-stati
) failure properties of disordered solids have been studiedextensively in re
ent years [1℄.The dynami
s of these failures in su
h systems are quite intriguing and is being studiedvery intensively these days. The 
riti
al dynami
s of failure and its universality 
lass in thedemo
rati
 (global load sharing) �ber bundle model [2℄ has been established very re
ently [3℄.These dynami
s of failure are intrinsi
 and indu
ed by the su

essive stress redistributionsdue to the failure of weaker �bers. However, an important kind of dynami
al failure due tofatigue [4℄ o

urs in su
h disordered systems when the �bers have an e�e
tive probability tofail under any stress [5℄, or as the mi
ro-
ra
ks within the solid grow at the 
ra
k-tips withtime due to 
hemi
al di�usion in the atmosphere [4℄. The system then fails under a stressless than its normal strength (σc) and the time of failure (τ) depends on the load applied onthe sample: τ 6= 0 for σ < σc and τ ≃ 0 for σ ≥ σc.Here, we study �rst a phenomenologi
al theory of 
ra
k nu
leation, following Gri�th[4, 6℄, at �nite temperature (T ) and estimate the average failure time τ at any stress σ lessthan σc. We then develop a simple model of fatigue-failure in a demo
rati
 �ber bundlemodel 
ontaining identi
al �bers of strength σc (homogeneous bundle), where the �bershave a �nite noise-indu
ed failure probability. We have derived analyti
ally the failure timefor the bundle as a fun
tion of the applied stress (σ) and the noise (T̃ ). This result for themodel is 
ompared with that obtained for the phenomenologi
al theory of 
ra
k nu
leation at1



�nite temperature. It is also in broad agreement with some re
ent experimental observationson fatigue in disordered solids [4, 7℄. Next, we derive the avalan
he size distribution in this�xed strength model analyti
ally and �nd robust power law de
ay. The above analyti
 resultshave been 
on�rmed through the numeri
al studies on the same model. Finally we 
onsiderrandom �ber bundles with simple, yet nontrivial, distributions of the �ber strengths. Ournumeri
al results show that for all these �ber bundles, the average time to failure τ de
reasesexponentially as the stress level σ approa
hes bundle's strength σ̃c from below and theavalan
he size distributions show similar power law de
ay. We also dis
uss the plausibility ofthis (noise-indu
ed) failure in other similar situations. In parti
ular, we 
onsider the validityof our model in quantum breakdown phenomena [8℄: for example, in diele
tri
 breakdownwhere the mi
ros
opi
 failure of the diele
tri
 grains a
quire a �nite probability at any ele
tri
�eld due to quantum tunneling. The failure time and its variation with the strength of theexternal �eld in su
h a quantum failure 
an give us an estimate of the tunneling frequen
iesinvolved.II. Time for fra
ture in the Gri�th nu
leation modelGri�th in 1920, equating the released elasti
 energy of a growing 
ra
k inside a solid with theenergy of the newly 
reated 
ra
k surfa
es, 
ame to a quantitative estimate of the fra
turestrength of a solid 
ontaining an already existing �xed geometry mi
ro-
ra
k. Assuming thelinear elasti
ity behavior up to the breaking point of a brittle solid, the released elasti
 energybe
omes Eel = (σ2/Y )l30 for a three dimensional elasti
 solid under stress σ, modulus ofelasti
ity Y , 
ontaining a mi
ro-
ra
k of length l0. The 
orresponding surfa
e energy Es = φl20where φ denotes the (
ra
k) surfa
e energy density. Using the 
on
ept of energy balan
e,Gri�th equated the di�erential in
rement in the elasti
 energy dEel with the 
orrespondingsurfa
e energy in
rement dEs as the 
ra
k propagates a further length dl and got
σc =

Ω√
l0

, Ω =
√

Y φ (1)for equilibrium extension of the 
ra
k. Here σc is the amount of stress for and above whi
hthe mi
ro-
ra
k propagates in no time (or in a small time dependent on the sound velo
ity)and 
auses a ma
ros
opi
 failure of the sample.2



This quasi-stati
 pi
ture 
an be extended to fatigue behavior of 
ra
k propagation for
σ < σc. At any stress σ less than σc, the 
ra
ks 
an still nu
leate [6℄ for a further extensionat any �nite temperature T with a probability ∼ exp[−E/kBT ] and 
onsequently the samplefails within a failure time τ given by

τ−1 ∼ exp[−E(l0)/kBT ], (2)where
E(l0) = φl20 −

σ2

Y
l30 (3)is the 
ra
k (of length l0) nu
leation energy. Here kB is the Boltzman fa
tor. One 
antherefore express (2) as

τ ∼ exp[A(1 − σ2

σ2
c

)], (4)where (the dimensionless parameter) A = l30σ
2
c/(Y kBT ) and σc is given by (1). This immedi-ately suggests that the failure time τ grows exponentially for σ < σc and approa
hes in�nityif the stress σ is mu
h less than σc when the temperature T is small, whereas τ be
omesvanishingly small as the stress σ ex
eeds σc.III. Fatigue in a homogeneous �ber bundleFatigue in �ber bundle model was �rst studied by Coleman in 1958 [5℄. Thermally a
tivatedfailures of �ber have re
ently been 
onsidered and approximate fatigue behavior has beenstudied [9℄. We 
onsider here a very simple �ber bundle model with noise-indu
ed a
tivatedfailure, for whi
h the dynami
s 
an be analyti
ally solved.Let us 
onsider a homogeneous bundle of N �bers under load L(= Nσ), ea
h havingidenti
al failure strength σc. Without any noise (T̃ = 0), the model is trivial: the bundledoes not fail (failure time τ is in�nity) for stress σ < σc and it fails immediately (τ = 0) for

σ ≥ σc. We now assume that ea
h su
h �ber has a �nite probability P (σ, T̃ ) of failure atany stress σ indu
ed by a non-zero noise T̃ :
P (σ, T̃ ) =

{
σ
σc

exp
[
− 1

T̃

(
σc

σ
− 1

)]
, 0 ≤ σ ≤ σc

1, σ > σc

}
. (5)As one 
an see, ea
h �ber now has got a non-vanishing probability P (σ, T̃ ) to fail under astress σ < σc at any non-zero noise parameter T̃ . It may be noted that [unlike T in (2) or3



(4)℄ T̃ is a dimensionless noise parameter. P (σ, T̃ ) in
reases as T̃ in
reases and for σ ≥ σc,
P (σ, T̃ ) = 1. Unlike at T̃ = 0, the bundle therefore fails at σ < σc after a �nite time τ . Herewe assume ea
h �ber to have a �xed threshold σc, while their breaking probability at any σ(< σc) is due to noise-a
tivated hopping over the barrier height (σc − σ). This di�ers fromthe earlier model studies [9, 5℄ where the load distribution is noise indu
ed.(a) Failure timeAt T̃ 6= 0 and under any stress σ (< σc), some �bers fail due to noise and the load getsshared among the surviving �bers, whi
h in turn enhan
es their stress value, indu
ing furtherfailure. Denoting the fra
tion of �bers that remain inta
t at time t by Ut, a dis
rete timere
ursion relation (see [3℄) 
an be written as

Ut+1 = Ut

[
1 − P

(
σ

Ut

, T̃
)]

, (6)where σ/Ut = L/(NUt) is the redistributed load per �ber among the NUt surviving �bersat time t. In the 
ontinuum limit, we 
an write the above re
ursion relation in a di�erentialform
− dU

dt
=

σ

σc

exp
[
− 1

T̃

(
σc

σ
U − 1

)]
, (7)giving

τ =
∫ τ

0
dt =

σc

σ
exp

(
− 1

T̃

) ∫ 1

0
exp

[
1

T̃

(
σc

σ

)
U
]
dU (8)or

τ = T̃ exp
(
− 1

T̃

) [
exp

(
σc

σT̃

)
− 1

]
, (9)for σ < σc. For σ ≥ σc, starting from Ut = 1 at t = 0, one gets Ut+1 = 0 from (5) and (6),giving τ = 0.For small T̃ and as σ → σc, τ ≃ T̃ exp

[
(σc/σ − 1) /T̃

]. This failure time τ thereforeapproa
hes in�nity as T̃ → 0. For σ < σc, one gets �nite failure time τ whi
h de
reasesexponentially as σ approa
hes σc or as T̃ in
reases and τ = 0 for σ ≥ σc. This last featureis absent in the earlier formulations [9℄. However, all these features are very desirable andare in qualitative agreement with the re
ent experimental observations [7℄. This is also
omparable with the phenomenologi
al results from Gri�th theory dis
ussed in the earlier4



se
tion, although the 
ra
k size e�e
t in the Gri�th theory di�ers from that in the �berbundle 
ase. Our numeri
al study 
on�rms the above analyti
 results [obtained using the
ontinuum version of the re
ursion relation (6)℄ (see Fig. 1) well.
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Fig. 1. The simulation results showing variation of average failure time τ against (a) stress σ and (b) againstnoise T̃ , for a bundle 
ontaining N = 105 �bers. The theoreti
al results are shown by dotted and dashedlines [from eqn. (9)℄. The insets show the simulation results for the variation of the fra
tion U of unbroken�bers with time t for di�erent T̃ values [1.2 (
ross) and 1.0 (plus)℄ in (a) and σ values [0.15 (
ross) and 0.12(plus)℄ in (b). The dotted and dashed lines represent the theoreti
al results [eqns. (10 & 9)℄.(b) Avalan
he size distributionFrom the re
ursion relations (6) or (7), one 
an see that in ea
h unit time interval a numberof �bers break giving an avalan
he size for the breaking. The avalan
he size therefore isgiven by dU/dt and during the entire failure period τ , di�erent sizes of avalan
hes takepla
e. Solving for U(t) from (7) one gets
U(t) =

σT̃

σc

ln

[
τ − t

T̃ exp(−1/T̃ )
+ 1

]
, (10)employing the expression (9) for τ . One 
an easily 
he
k that U(t) = 1 at t = 0 and U(t) = 0at t = τ (see Fig. 1). Also as t → tc ≡ τ , U(t) de
ays as ln(τ − t) ∼ (τ − t)β with β = 0+from (10). Expressing dU/dt as the avalan
he size m, one gets from (10)

m−1 ∼ τ − t

T̃ exp(−1/T̃ )
+ 1 ∼ τ − t, (11)for T̃ → 0. 5



Here the avalan
he size m 
an also be interpreted as the rate of breaking (dU/dt) and itvaries with time as (τ − t)−γ, γ = 1 as t → tc ≡ τ . Sin
e τ − t 
orresponds to the 
umulativeprobability ∫∞m D(m)dm of avalan
hes beyond t, one gets
D(m) ∼ m−α; α = 2 (12)for the (di�erential) avalan
he size distribution D(m). Also, the exponent of power lawde
ay in eqn. (12) is independent of stress σ and the noise level T̃ whi
h has been 
on�rmedthrough numeri
al simulations (see Fig. 2).
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mFig. 2. The simulation results for the distribution D(m) of avalan
hes in the bundle with N = 105 (averagedover 103 realisations): σ = 0.2, T̃ = 0.8 (triangle), σ = 0.15, T̃ = 0.8 (
ir
le) and σ = 0.15, T̃ = 1.0(square). The dashed line 
orresponds to a de
ay power 2.0.It may be mentioned that su
h avalan
hes manifest in the ultrasoni
 emissions during thepropagation of fra
ture in the solid and the ultrasoni
 amplitudes are also observed to havesimilar power law distribution [1℄.
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IV. Simulation results for fatigue-failure in random �ber bundlesIn order to investigate the fatigue behavior in random �ber bundles we 
onsider three di�erentkinds of �ber strength distributions ρ(σc): (A) Uniform distribution of �ber strength where
ρ(σc) = 1 for 0 < σc ≤ 1 and ρ(σc) = 0 for σc > 1, (B) Linearly in
reasing distributionof �ber strength where ρ(σc) = 2σc for 0 < σc ≤ 1 and ρ(σc) = 0 for σc > 1 and (C)Linearly de
reasing distribution of �ber strength where ρ(σc) = 2(1 − σc) for 0 < σc ≤ 1and ρ(σc) = 0 for σc > 1. It has been already shown analyti
ally [3℄, from the dynami
s offailure in all these three kinds of �ber bundles in the absen
e of any noise (vanishing T or T̃in (5)), the bundle's strength σ̃c = 1/4 for model A, σ̃c =

√
4/27 for model B and σ̃c = 4/27for model C. We now 
onsider the e�e
t of the noise T̃ indu
ing the failure probability

P (σ, T̃ ) = exp
[
− 1

T̃

(
σc

σ
− 1

)] for 0 < σ ≤ σc and 1 for σ > σc, in the (fatigue) dynami
s ofsu
h bundles, where σc is the strength of the individual �bers in the bundle.We have studied these numeri
ally, using Monte Carlo method (for bundles having N =

105 or more �bers). We have 
onsidered bundles having the above three kinds (A, B and C)of ρ(σc) one by one. The noise indu
ed failure mentioned above is realised only in a MonteCarlo way. Taking averages typi
ally over 103 Monte Carlo runs the fra
tion of unbroken�bers U(t) at any time t at a �xed stress level σ(< σ̃c) is noted. At any σ, the average failuretime τ (when U(t) = 0) is extra
ted. The form of the distributions and the variations ofaverage time with noise T̃ and stress σ are shown for the three types of bundles. We �ndthat τ �ts a form
τ = T̃ exp

(
− 1

T̃

)[
exp

(
σ̃c

σT̃
+

1

T̃

)
− 1

] (13)for all types of bundles (indi
ated by dotted lines in Fig. 3). We �nd that this phenomeno-logi
al form (13) is indeed very 
lose to the analyti
 result (9) for the �xed strength �berbundle; it is somewhat approximate for these bundles and �ts better for lower noise (T̃ ) andstress (σ) levels. The avalan
he size distributions in all these three models (A, B and C)have been studied numeri
ally (see Fig. 4) and we �nd them to follow the same power lawde
ay (12) with α ≃ 2.0.
7
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Fig. 3. Typi
al �ber strength distributions ρ(σc) 
onsidered and the simulation results for fatigue behavior:(a) average failure time τ vs. noise T̃ (for three di�erent stress values σ) and (b) τ vs. σ (for three di�erentnoise values T̃ ) are shown for N = 105 �bers. The time variation of fra
tion of surviving �bers are shownin the insets for the three models: (A) with uniform ρ(σc), (B) with linearly in
reasing ρ(σc) and (C) withlinearly de
reasing ρ(σc); all having a 
ut o� at σc = 1. The dotted lines in (a) and (b) 
orresponds to the �twith expression (13) where σ̃c ≃ 0.245 in (A) (exa
t value=1/4 [3℄), σ̃c ≃ 0.370 in (B) (exa
t value=√4/27[3℄), σ̃c ≃ 0.148 in (A) (exa
t value=4/27 [3℄). 8
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mFig. 4. The simulation results for the distributions D(m) of avalan
hes (m) in the three random �ber bundleswith N = 105 (averaged over 4 × 103 realisations): for model (A) with σ = 0.07, T̃ = 0.5 (square), formodel (B) with σ = 0.12, T̃ = 0.4 (
ir
le) and for model (C) with σ = 0.04, T̃ = 0.5 (triangle). Thedashed line 
orresponds to a de
ay power 2.0.V. Summary and dis
ussionsFirst, we have studied analyti
ally the ma
ros
opi
 failure of a homogeneous �ber bundlemodel where ea
h �ber has an unique strength (σc). At zero noise (T̃ = 0) all the �bers ofthe bundle fail simultaneously for σ ≥ σc, while at T̃ 6= 0 ea
h �ber has got a non-vanishingfailure probability [given by eqn. (5)℄ due to the thermal-like a
tivation. The dynami
s offailure of the bundle has been solved using the 
ontinuum version of the re
ursion relation (6)for global load sharing 
ase. The resulting expression (8) for the average failure time (τ) hasqualitative features similar to that (4) obtained from the phenomenologi
al nu
leation ratetheory applied for a Gri�th's 
ra
k. Both the forms have got the desirable features that τde
reases exponentially as σ approa
hes σc from below and τ ≃ 0 for σ ≥ σc. As mentionedalready, although the above features agree qualitatively with the experimental observations,the pre
ise mathemati
al forms we obtained here di�er from the experimentally indi
atedforms [7℄. As time t approa
hes τ , the fra
tion of unbroken �bers de
ay as (τ − t)β , β = 0+and its rate of breaking grows as (τ − t)−γ, with γ = 1. The avalan
he size distribution9



D(m) is also obtained analyti
ally for the dynami
s. It is seen to have a robust power lawgoverned de
ay behavior D(m) ∼ m−α with α = 2. Our numeri
al results also 
on�rm thisbehavior. Next, we have studied numeri
ally the dynami
s and the average breaking time
τ for bundles where the breaking strengths are not �xed and are given by the three simpledistributions ρ(σc). We �nd that for all the three 
ases, the average τ �ts well a form (13),whi
h is very 
lose to the analyti
 form for τ in (9) for �xed failure threshold of the �bers.We have also investigated the avalan
he size distributions in these models and obtained thesame power law behavior, as for the �xed strength �bers.As mentioned already, here the noise parameter (T̃ in (5)) 
an not be identi�ed withtemperature (T in (2)) whi
h s
ales with the (
ra
k) energy. In fa
t, although this failuremodel and its dynami
s are applied here to 
lassi
al breakdown phenomena o

urring in the�ber bundle model or (
lassi
al) per
olating solids [1℄, they seem to be appli
able to quantumbreakdown due to tunneling as well. Failures in quantum per
olating solids beyond theirlinear 
ondu
ting or insulating regime, has not been studied mu
h (see however [8℄). In fa
t,like the fuse (or diele
tri
 breakdown) problems of per
olating (or non-per
olating) systemsof 
ondu
tor-insulator networks, one 
an think of the �eld indu
ed breakdown of a quantumper
olating system where the phase of the system is determined through two energy s
ales:Fermi energy ǫf and the mobility edge ǫc. For ǫf > ǫc the system is in 
ondu
ting phase andit goes to insulating phase for ǫf < ǫc. This metal-insulator transition at ǫf = ǫc (in higherthan two dimensional systems) and the s
aling property of 
ondu
tivity for ǫf > ǫc have beenstudied extensively [10, 11℄. For the insulating phase (ǫf < ǫc), one 
an have ele
tri
 �eldindu
ed (Zener type) breakdown (similar to diele
tri
 breakdown of non-per
olating 
lassi
alnetworks). This Zener breakdown of Anderson insulators or the quantum tunneling indu
edbreakdown of impure (lo
alised) insulators have not been studied mu
h (see however [8, 12℄).Unlike a (
lassi
al) �ber bundle model 
onsidered here, where all the �bers are in parallel,one 
an 
onsider a diele
tri
 
omposed of several elements in series having non-zero failureprobability for ea
h element due to quantum tunneling (like the noise-indu
ed a
tivation
onsidered here). Any mi
ros
opi
 failure of su
h an element would result in in
reased�eld on the surviving elements and this in turn would enhan
e their failure probability. A10



similar diele
tri
 failure time (τ) in su
h quantum or Anderson insulators is thus expe
tedunder ele
tri
 �eld. Here σ and σc would be repla
ed by ǫf and ǫc respe
tively and T̃ would
orrespond to the inverse tunneling length determined by the ele
tri
 �eld (with the Plan
k's
onstant as the proportionality fa
tor, in
orporating the intrinsi
 noise) [8℄.Our study here for fatigue breakdown in the model �ber bundles shows that the aver-age failure time for the bundle at a stress value σ less than the bundle strength σc (forhomogeneous �ber bundle) or σ̃c (for random �ber bundles), above whi
h the bundle failsimmediately, de
reases exponentially as σ approa
hes σc or σ̃c from below. This has alreadybeen observed in several experiments qualitatively. We have demonstrated this fatigue be-havior here both analyti
ally and numeri
ally for a homogeneous �ber bundle (se
tion III)and also numeri
ally for random �ber bundles with nontrivial strength distributions (se
tionIV). We also believe that these observations will be useful in quantum breakdown phenom-ena.Referen
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