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Relaxation dominated by inertia: Solvation dynamics of a small
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Abstract. It is shown from an analytical theory that the solvation dynamics of a small ion
can be controlled largely by the inertial response of the dipolar solvent when the liquid is
in the underdamped limit. It is also shown that this inertial response arises primarily from
the long wavelength (with wavevector k ~ 0) processes which have a collective excitation-like
behaviour. The long time decay is dominated by the processes occurring at molecular
lengthscales. The theoretical results are in good agreement with recent computer simulation
results.
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The dynamics of solvation of polar molecules (ionic, dipolar or quadrupolar) in dipolar
liquids is a sybject of tremendous current interest (Bagchi 1989; Barbara and Jarzeba
1990; Maroncelli et -al 1989; Fleming and Wolynes 1990). Thanks to the intense
experimental and theoretical activity in this field in the last five years or so, an
understanding of this complex phenomenon is beginning to emerge. It has become
clear that the continuum model based theories (Bagchi et al 1984; van der Zwan and
Hynes 1985) are inadequate to describe the complexities of the solvation phenomena.
Computer simulations (Maroncelli and Fleming 1988; Karim et al 1988) have revealed
many molecular aspects of solvation. A large number of microscopic studies (Calef
and Wolynes 1983; Wolynes 1987; Loring and Mukamel 1987; Friedrich and Kivelson
1987; Nichols and Calef 1988; Bagchi and Chandra 1988, 1989; Chandra and Bagchi
1988, 1989, 1990a; Raineri et al 1990; Wei and Patey 1990; Fried and Mukamel 1990)
have been carried out to understand solvation dynamics. Impressive progress has
been made in experimental studies also. The experimental results from different groups
have been reviewed by Barbara and Jarzeba (1988, 1990), Simon (1988) and by
Maroncelli et al (1989). All these studies show that molecular aspects of relaxation
are important and that the solvation dynamics is nonexponential in general. It has
also been pointed out that the translational modes of the solvent can be very important
in solvation dynamics (Chandra and Bagchi 1988, 1989; Bagchi and Chandra 1989).
Chandra and Bagchi (1990b, 1991) have also studied the possible role of the solvent
inertial response. Very recently, Maroncelli (1991) has performed computer simulations
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of solvation dynamics in acetonitrile to find that this inertial response can indeed be
very important in the solvation dynamics of small ions.

Another interesting aspect of the computed relaxation is the existence of a persistent
oscillation with frequency approximately equal to 3-5 x 10*3s™%. This is clearly a
rather large frequency at which the frequency dependence of the friction may be
important.

In this communication we show that these inertial effects can be explained and
understood from our earlier theory with inertial response (Chandra and Bagchi 1990b,
1991a). Several interesting conclusions also emerge from this study. We find a good
agreement with some aspects of the computer simulation results of Maroncelli (1991).
Although our results show oscillations at a frequency very close to the observed one,
the persistent oscillations observed in computer simulations are not observed. We
discuss the possible reasons for this.

As before (Bagchi 1989), the time dependent solvation energy is assumed to be
given by the following expression in the Fourier space (with k as the Fourier variable)

Eso]v(t) = - %(zn)—s J\dk EO(k)PL(k= t)a (1)

where P, (k,t) is the time dependent longitudinal polarization of the solvent. The

Fourier transform of the bare electric field of the ion, E,(k), is given by the following :

expression

47iq sin kr, ,
EO(k)z—lzg_ kr, ’ @

where g is the charge of the ion, r,= a + ¢/2, where a is the radius of the solute ion
and o is the diameter of a solvent molecule. In deriving (2), we have assumed that
the solute ion can be represented by a rigid sphere of radius a with a point charge
q at the centre. It was shown earlier (Chandra 1990; Chandra and Bagchi 1990b;
Bagchi and Chandra 1991) that P, (k,t) can be given by the following equation of
motion when the inertial response of the solvent molecules are included

0
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where the function f, (k) and the other parameters are given by

£ =1-52c(110:k) @
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p'=Dr/2Dgo?, (7)

where C(110;k) is the (110) component of the spherical harmonic expansion of the
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two-particle direct correlation function of the dipolar liquid (Gray and Gubbins 1984).
It is a measure of the intermolecular interaction among the dipolar solvent molecules.
In fact, it is related to the force constant of the longitudinal polarization fluctuations
(Chandra and Bagchi 1991b). m, I, Dy and D, are the mass, the moment of inertia
and the rotational and the translational diffusion coefficients of the solvent molecules,
respectively. p’, defined by (7), is a relative measure of the importance of the
translational modes of the liquid in the solvation dynamics. For the derivation of (3),
we refer to a recent publication (Chandra and Bagchi 1990b).

Equation (3) is essentially a third order differential equation. The parameters A
and B gauge the importance of the inertial effects. For a given solvent, 4 is fixed, but
B can be varied by varying temperature, pressure, viscosity etc. Inertial response is
important when B is small (B < 50). p’ also plays an important role, especially at
intermediate wavevectors (for k > 27/0). We find that in the solvation of small ions,
these modes are very important. In the inertial limit, they can give rise to pronounced
oscillations. As mentioned earlier, such oscillations have already been observed in
the computer simulations of Maroncelli (1991).

Equation (3) can be solved by Laplace transforming it to the frequency domain
(with z as the complex frequency) and performing the complex integrals to recover
the time dependent behaviour.

Py(k,t)=Py(k,t=0)g,(k,2), - (8)
with
3
gk, )= A;(k)e" ™, | ]
N =5}

where z; are the three roots of the algebric equation obtained from (3) by Laplace
transformation and A;(k)’s are the respective weight factors. The steps are straight-
forward and details are available elsewhere (Chandra and Bagchi 1990b, 1991a; Bagchi
and Chandra 1991). It suffices to say here that the roots z;(k) can be complex depending
on the values of k, p’, A and B. When z;(k) is complex with a very small real part, it
is fair to conclude that the longitudinal fluctuation with wavenumber k is a collective
excitation, known as dipolaron (Chandra and Bagchi 1990b).

We next present the numerical results. We consider the same system as simulated
by Marconcelli (1991). The solvent is acetonitrile with the following simulated values.
Static dielectric constant (¢,) = 33, Debye relaxation time (tp) = 4-1ps. The solute—
solvent size ratio is 0:67. We find Dy from 1, by using the linearized theory (Chandra
and Bagchi 1989) which gives the following relation between the two

rD=['2DR{1+4£7%C(111;k=0)}J”1, | (10)

where C(111;k) is the (111)th component in the spherical harmonic expansion of the
two particle direct correlation function. '

We have used the mean spherical approximation (MSA) to evaluate the direct
correlation function component. Equation (10) gives Dy =0-415ps~! which gives
B =29 for the present system. The value of D, poses a problem. If we use the
experimentally measured values of Dy, then we get p’ = 0-0233. However, one should
really calculate D, from computer simulations, which, unfortunately, are not available.
Maroncelli (1991) uses a value p’ = 0-07. Because of the uncertainty, we chose a value
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p’ = 0-05 which should be qualitatively correct. The value of the parameter 4 is 0-06.
The results in solvation dynamics are usually expressed in terms of a solvation
time correlation function, defined by

Esolv(t) - Esolv(t = OO)
(t= O) - Esolv(t = OO)’

=% (1

solv
where E_,,(¢) is the solvation energy at time ¢.

The results of our numerical calculations are shown in figure 1 where C(t) is plotted
against time. It can be seen from this figure that in the present case the inertial
response is very important and the overdamped limit does not provide the correct
description. A large portion of the decay occurs in the inertial regime. There is an
oscillation around t =~ 4 ps which is followed by a smooth, almost exponential decay.
This bimodal nature of C,(t) was also noted by van der Zwan and Hynes (1985).

The short time behaviour of the calculated C(r) is in good.agreement with the
computer simulation results (Maroncelli 1991). However, the persistent, high frequency
oscillations in the long time are absent here. In order to understand the origin of this
high frequency oscillation, we investigated the nature of the roots (z;) of the polarization
modes and the values of the three roots are given in table 1 for two different
wavevectors, ko = 0 and ko = 6. The table shows that the k =0 mode is actually a
short lived collective excitation, but the intermediate wavevector mode is always
damped. The most interesting point here is that the frequency of oscillation of the
k=0 mode is 45x 10'3s™! which is very close to the oscillation frequency
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Figure 1. The decay of the solvation time correlation function, C,(t) [defined by (11)], is
plotted against time for a monatomic ion in the solvent acetonitrile with ¢, = 33, ¢, = 1-0,
p =41 ps, p'= 005, B=290 and A = 0-06. The solute—solvent size ratio is 0-67. The solid
line is the calculated decay with inertia, the dashed line shows the decay in the overdamped
limit and the dotted line shows that continuum limit [with relaxation time (¢,,/¢9)7p].
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Table 1. The real and the imaginary components
of the three roots (z;) of the polynomial for the
decay of the polarization in the complex plane at
two different wavevectors.

Wavevector of Real part Imaginary part
the mode (ko)  (in 10*3s™!) (in 10'3s71)

— 404 00
00 —337 452
337 —452

» —626 00

60 - —132 00

—303 00
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Figure 2. The decomposition of the relaxation behaviour into the long wavelength (ko = 0)
and the intermediate wavelength (ko = 6) contributions. The initial values indicate the relative
initial wights calculated within an interval of 0-05 around the modes.

(approximately 3-5 x 103 s™!) observed in the computer simulations. This has led us
to conclude that the oscillations observed in the computer simulations of Maroncelli
(1991) are the manifestations of the coupling of the ionic field with the solvent collective
excitations. :

Also note that the damped decay of the intermediate wavevector (ko = 6) mode is
responsible for the slow decay at the long time. It is really interesting to find such a
decomposition of the decay behaviour. These very different decay profiles are shown
in figure 2 where the relative E,,,, () from the two modes (ko = 0 and ko = 6) are plotted
for comparison. Numerical calculations also show that the relative contributions of
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the ko =0 and ko =6 modes are approximately 66% and 34%, respectively. This is
in good agreement with the simulation results of 80 and 209, contributions of the
inertial and the damped modes, respectively.

We should note here that the harmonic oscillator model of van der Zwan and
Hynes (1985) can also show a behaviour not too dissimilar from the computer
simulation results, but the vdZH model is a continuum theory based model and hence
considers only the k = 0 mode. Therefore, they can explain the initial inertial response
and also the oscillations, but they fail to recover the slow longtime decay which is
shown here to arise from the intermediate wavevector (or molecular length scale)
processes.

In view of the results presented here, it is fair to conclude that many aspects of the
simulation results of Maroncelli (1991) on the solvation of a small monatomic ion in
acetonitrile can be explained from the existing theory. We shall discuss in a later
publication that the ko =0 collective excitation may exist longer to produce the
observed behaviour if the viscoelastic response of the solvent is included in the
hydrodynamic description.
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