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Dynamics of solvation of an ion in a dense dipolar liquid
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Ahst.ract. A molecular theory of the dynamics of solvation of an ion in a dense dipolar
¥1qu1d is presented. The theory is based on an extended hydrodynamic approach that properly
includes the interparticle correlations that are present at molecular length scales. The effects
of the solvent inertial and viscoelastic responses are also included consistently. Numerical
studies reveal rich relaxation behaviour such as short-time oscillations followed by a slow

19ng~time decay: The results are in semi-quantitative agreement with recent computer
simulation studies.
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1. Introduction

An understanding of the dynamics of solvation of polar solute molecules in dipolar
solvents is essential to understand the dynamic solvent effects on many liquid phase
chemical reactions, such as the electron and the proton transfer reactions. This is a
subject of tremendous current interest (Hynes 1985; Bagchi 1989; Maroncelli et al
1989; Barbara and Jarzeba 1990; Fleming and Wolynes 1990). In recent years, a large
amount of theoretical (Calef and Wolynes 1983; Bagchi et al 1984; van der Zwan
and Hynes 1985; Friedrich and Kivelson 1987; Loring and Mukamel 1987; Wolynes
1987; Bagchi and Chandra 1988, 1989; Chandra and Bagchi 1988, 1989, 1990a; Nichols
and Calef 1988; Rips et al 1988; Fried and Mukamel 1990; Wei and Patey 1990;
Raineri et al 1991) and experimental work (Castner et al 1987; Kahlow et al 1987,
Maroncelli and Fleming 1987; Nagarajan et al 1987; Su and Simon 1987, 1989;
Declemy and Rulliere 1988; Kinoshita and Nishi 1988; Chapman et al 1990) has been
devoted to understanding the dynamics of polar solvation. Several computer
simulation studies (Karim et al 1988; Maroncelli and Fleming 1988; Bader and
Chandler 1989; Carter and Hynes 1991; Maroncelli 1991) have also been carried out
to study the dynamics of solvation and its role in charge transfer reactions in real
liquids like water and acetonitrile. As a result of this great effort, a microscopic
understanding of the process of solvation is beginning to emerge.

It has become clear that the continuum model based theories (Bagchi et al 1984
van der Zwan and Hynes 1985) are inadequate to describe the complexities of the
solvation phenomena. Recent studies have shown that the molecular aspects of
relaxation are important and that solvation dynamics is non-exponential, in general.
It has been pointed out that the translational modes of the solvent molecules can
play an important role in the dynamics of solvation. The effects of the solvent inertial
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response have also been explored (Chandra and Bagchi 1991). It has been shown that
solvent inertial effects can play an important role in the short-time dynamics of
solvation (Chandra and Bagchi 1991). During the initial relaxation in ultra-fast
solvation, not only the inertial but also the solvent viscoelastic effects are expected
to be important. In this paper, we present a theory which includes all these effects
consistently.

The present study of the dynamics of solvation is based on a microscopic expression
of the time-dependent solvation energy. We will consider the solvation of a stationary
solute. In this limit, the dynamics of solvation depends on the time-dependence of
the solvent polarization relaxation. The calculation of the solvent polarization
relaxation is carried out by using a non-Markovian extended hydrodynamic approach
which properly takes into account the intermolecular correlations that are present
at molecular length scales. This approach has been used successfully to study the
dynamics of various relaxation processes in dense liquids (Bagchi and Chandra 1991).
We also find that the dynamics of solvation is in general, non-exponential. The solvent
inertial and viscoelastic effects can give rise to rich dynamical behaviour of the
solvation phenomena. The dynamics of solvation can become oscillatory in time
when the solvent is in the underdamped limit and also when the viscoelastic response
of the solvent is important, which is the case for slow complex liquids like hexanol.
Although this oscillatory behaviour in solvation dynamics has recently been observed
in the computer simulation of ionic solvation in acetonitrile (Maroncelli 1991), the
direct experimental verification of this is yet to be made.

The organisation of the rest of the paper is as follows. In § 2 we discuss the theory.
The numerical results are presented in § 3, in which brief discussion is also included.

2. Theory

The study of the dynamics of solvation is based on the following microscopic
expression of the time-dependgnt solvation energy

B () = ~%Jdr Eo(r)-P(r, 1), | o

where Eo(r) is the bare electric field and P(r,t) is the time-dependent solvent
polarization. It is convenient to work in the wavevector space. We write the solvation
energy as an integration over the wavevector (k) space in the following way

E ()= —3(@2n)3 fdk Eo(k)-P(k,1), _ (2)
where E, (k) and P(k, 1) are the Fourier transforms of Eo(r) and Pfr, t), respectively.
The Fourier transform of the bare field of the solute ion, E,(k), is given by

4miq sin kr, |

EO(k)=T . | (3)

where g is the charge of the solute on,r.=a+06/2,a being the radius of the solute
ion and o the diameter of a solvent molecule and i=./—1. An accurate expression
of the time-dependence of the solvent polarization, Pk,z), including the inertial and
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the viscoelastic effects, can be derived from an extended hydrodynamic theory which
has been discussed elsewhere (Chandra and Bagchi 1991). In the Laplace space, the
frequency (s) dependent polarization, P(k,s), is given by

P(k,s) = P(k,t = 0)(s + B(s)) (s + ABT(s)/2p)
% [s(s + B(s))(s + ABT(s)/2p") + ABK*f (K)(s + B(s))

+2Bf (k)(s + ABT(5)/2p)] ™. , (4)
The different quantities in (4) are defined by the following expressions
flk)=1— i’—" C(10;k),  B=k,T/ID3,
T
A =1I/md?, p'=Dy/2Dp0%,
B(s)=BLx()/la(s=0), T(s)="{r(s)lr(s=0)
Dp =ksT/Tr(s=0),  Dr=kyT/{x(s=0), (5)

where m and I are, respectively, the mass and moment of inertia of a solvent molecule.
r(s) and {;(s) are the frequency-dependent rotational and translational frictions,
respectively. Dy and Dy are the translational and rotational diffusion coefficients
of the liquids. C(110;k) is the (110) component of the two-particle direct correlation
function of the liquid (Hansen and McDonald 1986). The quantity p’ is a measure
of the relative importance of the translational modes of the solvent. The dynamics
of solvation becomes faster with increasing p’. Note that the importance of the inertial
effects is gauged by the parameters 4 and B and the effects of solvent viscoelasticity
are included through the frequency-dependent frictions, {x(s) and {1(s). For the
translational friction, Tr(s), we use the expression given by Zwanzig and Bixon (1970),
and for the rotational friction, the expression derived by Montgomery and Berne
(1977) has been used. Two important ingredients of these expressions are the
frequency-dependent shear and the bulk viscosities, 7,(s) and 7,(s), which are assumed
to be of the simple Maxwell forms,

1(s) = ny(s= 0)/(1 + 57,), |
My(8) = (s = 0)/(1 + 57,.), 6)

where 1, is the viscoelastic relaxation time and 7, is the bulk relaxation time. The
time-dependence of the solvent polarization can now be obtained in a straightiorward
manner by Laplace-inverting (4), and that of the solvation energy can then be obtained
from (2). Next, we discuss the numerical results.

3. Numerical results and discussion

The results of the solvation dynamics are usually expressed in terms of a solvation
time-correlation function, C,(t), defined

Esolv(t) — Eso]v(t = OO)
Esolv(t = 0) - Esolv(t = OO),

C)= (7)
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where E_ (z) is the solvation energy at time ¢. For numerical calculations of C(1)
we require the values of the solvent two-particle direct correlation function. For this

3

we use the mean spherical approximation (MSA) for the dipolar hard spheres (Hansen

and McDonald 1986). The reason for using MSA is that it provides simple analytic
expression of the direct correlation function which is fairly accurate for not too
strongly polar liquids.

Infigure 1 we show the calculated time-dependence of the solvation time correlation
function, C(1), for two different values of the viscoelastic relaxation time, t,. The
value of the inertial parameter, B, is 50. This value of B is small enough for inertial
effects to be important. (The values of the other parameters are given in the caption
to figure 1.) The bimodal character of the relaxation is clear from figure 1. There is
2 fast inertial decay in the short time period which is followed by a slow long-time
decay. In the absence of any viscoelastic effects (r, = 0) the solvation energy decays
smoothly towards its equilibrium valuye, However, a small oscillation in the short
time period is found in presence of viscoelastic responses (z, = 1-0). Such oscillations
in the dynamics of solvation have also been found in recent computer simulation
studies of ionic solvation (Maroncelli 1991). However, direct experimental detectior
of such oscillatory behaviour is yet to be made.

To summarize, we have presented a microscopic study of the dynamics of solvation
in a dense dipolar liquid. The theory properly includes the interparticle correlations
that are present in the solvent. The effects of the solvent inertial and viscoelastic
responses are also included in the theory. It is found that the inertial and the
viscoelastic responses can play an important role in the dynamics of solvation. They
can give rise to an oscillatory decay of the solvation energy. The predictions are in
semi-quantitative agreement with the results of computer simulation. It -may be
worthwhile to carry out experimental investigations to detect these predictions.
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Figure 1. The time dependence of the solvation energy time correlation function, C,(¥).
C(2) is plotted against time for two different values of the viscoelastic relaxation time, Tgn
The bulk relaxation time, Ty, 1S assumed to be equal to z,. The value of both the zero
frequency shear viscosity, #,, and the bulk viscosity, s 18 1 cp. The values of the parameters
B, 4 and p’ are 50-0, 0-05 and 0-05, respectively. The value of the solute~solvent molecular
size ratio, R, is 1-0. The values of the solvent dielectric constant, g4, and the reduced density,
Poo” (o =solvent molecular diameter) are 18-0 and 0-8, respectively.
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