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Papazyan and Maroncelli [J. Chem. Phys. 95, 9219 (1991)] recently reported computer
simulations of solvation dynamics of an ion in a Brownian dipole lattice solvent. In the present
article we compare these results to predictions of a number of theories of solvation

dynamics in the diffusive limit. The frequency-dependent dielectric response functions needed
as input to many of the theories are derived from further simulations of the lattice

solvent [H. X. Zhou and B. Bagchi, J. Chem. Phys. 97, 3610 (1992)]. When properly applied,
all of the currently popular molecular theories yield reasonable predictions for the time

scale of the solvation response. The dynamical MSA model [P. G. Wolynes, J. Chem. Phys.
86, 5133 (1987)] and the memory function theory of Fried and Mukamel [J. Chem.

Phys. 93, 932 (1990)] both provide nearly quantitative agreement with all aspects of the

solvation dynamics observed in these simulations.

1. INTRODUCTION

Considerable advances in our understanding of the dy-
namics of solvation in dense polar liquids have been made
in recent years. Experiments, computer simulations, and
theoretical studies have all played an important role in this
advancement. Several reviews!™ provide an up-to-date
summary of this and related research. Despite all of the
recent progress, many aspects of solvation dynamics are
still not fully understood. Theoretical treatment of dynam-
ics in dense polar fluids is a formidable task and progress in
this area therefore relies on approximate treatments of ide-
alized model systems. The applicability of the theories de-
veloped in such a situation can only be tested through
comparison to the results of experimental measurements
and computer simulations. For example, both computer
simulations’ and the most recent experiments® have shown
that solvation dynamics in a number of solvents is domi-
nated by ultrafast inertial motions. Prior to the appearance
of these results such underdamped motions had been ne-
glected in theoretical treatments. More complete theories
of solvation dynamics, capable of treating both the inertial
and overdamped solvent motions, are only now being de-
veloped.*!® Due to the importance of the fastest parts of
the solvation response to reaction dynamics, current atten-
tion has largely focused on the inertial aspect of the prob-
lem. However, our understanding of even the diffusive as-
pects of the dynamics has not been completely tested.
Several alternative theories are presently available for pre-
dicting solvation in the overdamped limit. Although they
have been compared to experimental results, intervention
of possible effects due to inertial and translational dynam-
ics make it difficult to use experiments to definitively
choose between these theories.! Computer simulations of
realistic fluids have also been of little help in this regard
due to the prominence of the inertial component in all of
the small-molecule solvents studied to date.
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The objective of this paper is to present a comparison
between computer simulations of solvation dynamics in a
simple model dipolar “liquid” and predictions of current
theories of ionic solvation in the overdamped limit. The
solvent investigated here consists of an array of point di-
poles fixed on the sites of a simple cubic lattice. Each di-
pole undergoes rotational Brownian motion in the force
field of the rest of the lattice. Papazyan and Maroncelli'!
recently employed Brownian dynamics simulations to
study the solvation of ionic solutes in this solvent and were
able to obtain a rather complete characterization of the
static and dynamic aspects of ionic solvation in these sys-
tems. However, comparison to theoretical predictions was
limited by lack of knowledge of the dielectric response
(e(w)) of the solvent, needed as input to many theories.
The results of further simulations by Zhou and Bagchi'?
have provided €(w) for these lattices so that a more de-
tailed comparison with theory can now be undertaken. By
virtue of the simplicity of the present solvent model, com-
parison to theoretical predictions provides a rather exact-
ing test of the merits and deficiencies of currently available
theories of solvation dynamics in the purely diffusive re-
gime.

We include the following theories in the comparison:
(a) The simple continuum (SC) model initially formu-
Jated by Bakshiev and co-workers' and later investigated
by many authors.!* In this model the solvent is assumed to
be a homogeneous dielectric fluid so that the molecular
nature of the solvent is completely neglected. Despite its
obvious limitations, the continuum model has been shown
to provide a good guide to experimentally determined sol-
vation times in many liquids."? (b) The dynamical mean
spherical approximation (DMSA) model introduced by
Wolynf:s15 and further developed by Rips, Klafter, and
Jortner'® and others.!”'® (¢) The Smoluchowski-Vlasov
equation (SVE) theory first used by Calef and Wolynes‘g
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and greatly extended by Chandra and Bagchi.>*?° The lat-
ter authors reformulated the problem in the language of
generalized hydrodynamics and time-dependent density
functional theory. Here we investigate the predictions of
the Markovian version of the Chandra—Bagchi theory as
presented in Ref. 20, and refer to it as “SVE/CB.” (d) The
memory function theory of Fried and Mukamel?! which,
although in many respects is similar to the theory of Chan-
dra and Bagchi, has certain advantages for practical pur-
poses. We shall refer to this theory as “MF/FM.” (e)
Lastly, we consider the perturbative theory of solvation
dynamics in the simple cubic lattice presented by Loring
and Mukamel.?? This theory is an extension of earlier work
of Zwanzig® who developed the perturbation approach for
dielectric relaxation in the Brownian dipolar lattice. Since
it deals with precisely the system simulated, the compari-
son can provide a good test of the validity of the second
order perturbation theory. We designate this theory “PE/
ILM.”

All of the above theories along with their method of
implementation will be discussed in more detail in Sec. III.
For now it is useful to mention that they may be concep-
tually separated into two categories: the “ab initio” theo-
ries of Loring and Mukamel (PE/LM) and Chandra and
Bagchi (SVE/CB) which are self-contained, and the
“semiempirical” theories (SC, DMSA, and MF/FM)
which require the frequency-dependent dielectric function
€(w) as input. In brief, the comparisons described herein
yield the following results. As an ab initio theory, the SVE/
CB theory does a remarkably good job of reproducing most
aspects of the simulated dynamics at all polarities. In con-
trast, the PE/LM theory fares less favorably and is shown
to have predictive value only at very low polarities. All of
the semiempirical theories do a reasonable job of predicting
the observed variation of solvation time scale with solvent
polarity. The SC model predicts solvation times that are
uniformly too fast and response functions that are closer to
exponential than is the actual response. These shortcom-
ings are remedied in the molecular DMSA and MF/FM
theories, which reproduce the observed dynamics almost
exactly.

The organization of the remainder of the paper is as
follows. In the next section we briefly discuss the nature of
the simulations involved. Both the simulations of ionic sol-
vation'! and the calculation of the frequency-dependent
dielectric function'? are discussed in more detail in sepa-
rate publications, so that only the essentials required to
make this article complete are included here. In Sec. III we
collect the working expressions used to evaluate the pre-
dictions of all of the theories and also discuss the approx-
imations that have been made in their implementation. In
Sec. IV we present the comparison between the simulation
results and the theoretical predictions. Finally, Sec. V con-
tains a brief discussion of the conclusions possible from this
study.
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il. SIMULATION METHODS
A. Solvation dynamics

The systems studied by Papazyan and Maroncelli!!
consist of a single point charge (or hole) immersed in a
lattice of point dipoles fixed to the sites of a simple cubic
lattice. The dipoles undergo rotational Brownian motion in
response to Markovian random forces (representing all
nonelectrostatic interactions) and in response to forces due
to electrostatic interactions among the dipoles and between
the solvent dipoles and the solute charge. The time scale
for the simulations is set by the free diffusion time, 7,
defined by the single-particle reorientational time correla-
tion function in the absence of electrostatic interactions,

(u(0)p(2)) =p?* exp(—1t/79), (1)

where p is the dipole moment vector. When electrostatic
interactions are turned on, the rotational dynamics become
more complex than the exponential decay of Eq. (1). In
general, the single particle reorientation becomes slower
(and solvation faster) as the magnitude of the electrostatic
coupling (solvent polarity) is increased. All properties of
the pure lattice solvent are a function of a single dimen-
sionless polarity parameter 1 defined by

. )

T=3%,7d%

In the above definition, k5T is Boltzmann’s constant times
the absolute temperature and a is the lattice constant.

The systems studied by Papazyan and Maroncelli!! in-
volve finite lattices of size N= (2/+ 1)3 =27, 125, 343, 729,
or 1331. A single solute with charge Q replaces the central
dipole of the lattice. Papazyan and Maroncelli examined
solvation as a function of all three variables 7, Q, and N. In
the present work we focus on the dependence of the solva-
tion dynamics on solvent polarity and fix the other param-
eters at 0=0 and N=343. As discussed in Ref. 11 the
solvation time does depend slightly on solute charge, be-
coming faster as Q increases. We chose Q=0 since this
solute produces the least perturbation to the solvent and as
such is the most directly comparable to the theories con-
sidered. The solvation dynamics was shown to have
reached the N— « limit at a size of N <343 so that it is
appropriate to think of the simulated results as applying to
bulk solvation.

The dynamics of interest is the change in solvation
energy resulting from a step-function change in solute
charge, Q,—Q, The time dependence of this process is
conveniently expressed by the normalized response func-
tion,

Py = (F(0))
Sier =150y —(V(w0))’ 3)

where (F(2)) is the average reaction potential (electrical
potential at the solute charge site) at time z. (This response
function can also be thought of as describing the relaxation
of the solute-solvent interaction energy or the free energy
difference between the two charge states.!) Si_p(2) is a
nonequilibrium response function. In computer simula-
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tions, it is often more convenient to calculate the equilib-
rium time correlation function,

(8VEV (1)) 4
CV(‘)=W- (4

In this expression 8V is the fluctuation in reaction poten-
tial, ¥—(¥),, and (x), denotes the average value of x
monitored in a system in equilibrium with a solute of
charge Q,. Under the assumption of a linear solvent re-
sponse, applicable to the AQ— 0 limit, the equilibrium time
correlation function derived from simulations of the two
solute charge states a=1/ or f is identical to the nonequi-
librium response function S;_, f(t). In this case the ampli-
tude of the nonequilibrium response can also be calculated
from (8¥?) at either limit via

(AV)in=[(V(0)) —(F(0))]iey

(V%)
=(Qr—Q) T (5)

Comparisons between Cp(¢) and S;_, f(t) for the dipole
lattice show the linear response assumption to be a good
approximation even up to AQ=0.4e.!' In any event, the
linear response assumption is inherent in all of the theories
we consider. We therefore use Egs. (4) and (5) and time
correlation functions derived from simulations in the pres-
ence of an uncharged solute to make comparison to theory.

B. Dielectric response

The method employed for simulating the frequency-
dependent dielectric function is based on the dielectric the-
ory presented by McConnell.?* We consider a spherical
sample initially in equilibrium with a weak uniform electric
field E that is suddenly switched off at time t=0. Within
the linear response regime, the decay of the total dipole
moment of the spherical sample is related to the field by

M(1)=b(t)E(:=0). (6)

The coefficient b(¢) is called the after-effect function. Its
Fourier transform defines the complex polarizability
through the expression

® db(1)
C((a)):—J-O dte'w'T. N

For a uniformly polarized isotropic sphere, the frequency-
dependent dielectric function €(w) is related to the polar-
izability by the well-known relation

e(w)—1 47w
e(w)+2 3V

where V is the volume of the spherical sample.
Simulation of the dielectric function is accomplished
through the following steps. We start with randomly ori-
ented dipoles fixed at the lattice sites of a spherical sample
of simple cubic lattice. Between 257 and 925 dipoles are
included in the system depending on polarity. The dipoles
are equilibrated to the presence of the uniform electric field
and the other dipoles of the system. After equilibrium is

a(w), (8)
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reached the field is turned off and the subsequent decay of
the total dipole moment in the direction of the external
field recorded. The ratio between the dipole moment and
the external field provides the after-effect function b(¢).
Typically 60 independent starting points were used in gen-
erating averaged b(¢) functions. In addition, a difference
technique similar to the suggestions of Ciccotti ef al.%> and
Evans and Powles?® was used. For each initial configura-
tion, two independent simulations are carried out in which
the strength of the external field is the same but its direc-
tion is reversed. The time dependence of the total dipole
moment is found by subtracting the moment of the first
simulation from that of the second. This difference tech-
nique significantly reduces the noise in the averaged b(¢)
functions. More details of the simulation procedure can be
found in Ref. 12.

At the lowest polarities studied (1 <0.1) the after ef-
fect functions are exponential, which translates into a De-
bye e(w). However, for higher polarities (¢) has a pro-
nounced biexponential character. At all 7 the b(t)
functions yield dielectric response functions that are well

described by a Davidson—Cole form,?’
. 1 €—1 9
e(w)= +m ) 9

to within the uncertainties of the data.® The Davidson-
Cole parameters best representing €(w) as a function of 5
are collected in Table 1. These fitted functions were used as
input to the semiempirical theories in Sec. IV.

ill. THEORETICAL PREDICTIONS

In this section we collect the predictions of the various
theories of solvation dynamics that will be compared to the
simulation results in the following section. Several recent
reviews discuss these theories at length!"* so that we will
only touch on the main points and give the working equa-
tions here. We express the results in terms of the reaction
potential response (¥ (¢)) to switching on a charge of mag-
nitude Q; i.e., we examine the specific process @;=0-Q;
=(Q. In all cases the theories assume the solute to be an
impenetrable sphere of radius », (here identified as half the
lattice spacing, a/2). With the exception of the theory of
Loring and Mukamel all deal with bulk solvation in an
isotropic fluid. We will make some slight modifications
where possible to the theories in order to partially account
for the lattice structure of the simulated system (see be-
low). However, it should be kept in mind that we are
comparing liquid-state theories to simulated results on a
solidlike lattice solvent. It is our contention that the trans-
lational order present in the lattice does not make the dy-
namics qualitatively (or even quantitatively) different
from that which would be observed in a translationally
disordered system. We therefore view these comparisons as
providing appropriate tests for uncovering the strengths
and weaknesses in the liquid-state theories. The validity of
this point of view will be addressed later.
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TABLE I. Dielectric dispersion parameters® of the dipole lattice from computer simulation and predicted by the PE/LM and SVE/CB theories.

Simulation results

Theoretical predictions

Davidson—-Cole fits Debye fits PE/LM" SVE/CB°®
1 € TpC B € D € €o Tp
0.041 1.6 1.2 (1.0)¢ 1.6 1.2 1.6 1.6 1.2
0.083 2.5 1.4 (1.0)¢ 2.5 1.4 2.3 2.4 1.3
0.167 49 2.1 0.98 49 2.0 2.8 4.5 1.7
0.333 12.0 35 0.93 12.0 3.0 e 10.0 2.2
0.500 19.0 4.7 0.89 19.0 37 18.0 2.7

*These parameters are defined in Egs. (9) and (24). Time constants are in units of
*To the order of perturbation theory employed by the PE/LM treatment values of €, are negative for 7> 0.2 and so are not listed here.
°The SVE/CB theory predicts a Debye form dielectric function, with the dielectric constant ¢, given by the MSA and the Debye relaxation time 7, related

to € and 7, through (e,— 1) 7o/4m.

YFor 7=0.041 and 0.083 fits to a Davidson-Cole function were not noticeably better than fits to a Debye function. For these two cases we used the Debye

fits (B=1) in making comparisons to solvation dynamics theories.

A. The simple continuum (SC) model

The most simplistic theory is the dynamical generali-
zation of the venerable Born model of equilibrium solva-
tion energetics.”’ The solvent is viewed as a homogeneous
continuum fluid characterized solely by its dielectric re-
sponse function €(w). The reaction potential response may
be calculated from a boundary value calculation as in the
original static Born model with the result!*'¢

I . A
<V(t)>_<V(°°)>=Q°29—1[; [Xcont(o)_Xcont(p)] s

(10)
where .# ~! denotes an inverse Laplace transform:
~ 1 8+ioo A
2 o=5s [ dpeFip) an
T Jé—ico
and
Y. o PR 12
Xcont(p)—r_u oIk (12)

B. The dynamical mean spherical approximation
(DMSA)

The first molecular theory we will consider is the dy-
namical MSA model initially introduced by Wolynes!® and
further developed by several groups.'®'® The essential idea
in this approach is to assume that the frequency depen-
dence of the solvation response can be obtained by merely
substituting €(w) for €, in the functional relationship be-
tween the equilibrium solvation energy ((¥) here) and ¢,
in any linear solvation theory. Thus in precisely the same
way that the molecular nature of the solvent causes the
equilibrium solvation energy to deviate from the simple
Born relation, (V) « (1—¢g 1), molecular effects also alter
the dynamics. In practice, the only equilibrium solvation
theory commonly employed has been the MSA solution for
the solvation of an ion in a dipolar hard sphere fluid,*® due
to the fact that it yields simple analytical solutions. Using
this model system, Rips and co-workers'® showed that the
solvation response can be written in the same form as in
the simple continuum model,

(F(@))—(V())

1 A Ve
=Q«f_ll; [XDMSA(O)—XDMSA(P)]], (13)

except that the complex admittance,

N 1 1 o
Xpmsa(p) = {1——?(?]{1 +A(P)}

now contains a correction term,

(14)

Ap) %’—’ {108 [€(p) V6 —2} ", (15)
which accounts for solvent molecularity via the solute/
solvent size ratio p=2r,/0 (o is the diameter of the dipolar
hard sphere solvent, here identified with the lattice con-
stant @). As in the simple continuum model, information
about the solvent dynamics comes into the theory through
use of the empirically determined dielectric function €(p
=iw).

The remaining molecular theories to be considered in-
corporate molecular effects into the problem in a different
manner from that used by the DMSA theory. They all
express the solvation response in terms of an integral over
the solute’s electrostatic field times a function of the full
wave vector- and frequency-dependent dielectric function
of the pure solvent, €;(k,»). The solute’s only role in de-
termining how solvation in a molecular solvent differs from
that in a continuum dielectric fluid is that it sets the & scale
over which €;(k,w) is sensed. All of the intermolecular
correlations and dynamics are those of the pure solvent
and all of the effort in these theories rests in approximating
the behavior of the function ¢; (k,w).

C. The Smoluchowski-Vlasov equation theory of
Chandra and Bagchi (SVE/CB)

The Smoluchowski-Vlasov equation approach was
first used in an early treatment of solvation dynamics by
Calef and Wolynes.' It has more recently been employed
by Chandra and Bagchi in an extensive series of stud-
ies.>*20 Reference 3 provides a detailed exposition of this
theory and its predictions. In the simplest version of the
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theory considered here the coupled reorientational and
translational dynamics involved in €;(k,®) are calculated
using a mean-field density functional approach. The theory
is what we will call an ab initio theory in the sense that no
empirical information about €;(k,w) is used as input. The
only solvent parameters required are the diameter, o, and
the rotational diffusion constant Dy arising from the short-
range part of the intermolecular interaction, here assumed
to be equal to (27,) ~'.>! The solvation response is given in
terms of the reduced wave vector g=ko by*

2Q Imax 1
V() —(V(0)y = qll—-g;G—)

Xexp [—t/1.(q)]

sin(gr./o))?
gr/c ]

(16)

In this expression g, is the maximum value of the wave
vector, which can be either 27 or « for reasons to be
discussed later. The function sin{x)/x, which also appears
in all of the remaining theories, comes from writing the
electrical field of an ion in a wave vector representation.
The parameter r, in its argument is a lower cutoff for the
interaction between the solute and solvent, related to the
solute radius by r,.=r,+0/2. We will also discuss the
meaning of this choice of radius shortly. The solvent’s di-
electric response is here represented by the two functions
€,(q) =€, (ko,w=0) and 7;(g), given by

1 1
I—GL(q)=4’lT77[1+W hno(Q)] (17)
and
1
mr(g) ~'=2Dp l—wcno(lﬂ]- (18)

In these expressions A;,,,(¢) and ¢,,,,(¢) are the (11m)
expansion coefficients of the distance and orientation de-
pendent pair (h) and direct (c¢) correlation functions of
the solvent. For these functions, which determine how
translational and orientational correlations affect the dy-
namics, the MSA solutions for a dipolar hard sphere liquid
are used.’? Explicit expressions for these functions can be
found in Ref. 33.

D. The memory function theory of Fried and
Mukamel (MF/FM)

The theory proposed by Fried and Mukamel?! is
closely related to the Smoluchowski—Vlasov theory in
spirit. Fried and Mukamel found that by a particular fac-
torization of the memory function associated with €; (k,w)
they could approximately separate the k and w depen-
dences in a manner similar to the decomposition expressed
by Eq. (16). Their result can be written as™*

sin(gr./o) 12
gr/o l
(19)

where @;(q,p) is the longitudinal polarizability, which is
given in terms of the dielectric function by”!

s 1 W [1=ewo@ € —eol |
aL(""’)‘Am( "eo)ll—cno(O)_eo[é‘(p)—l]
(20

y _‘8Q$_1 1 Qmaxd A
( (t))——a— {;L qar(q,p)

In this expression ¢;,0(g) is again the (110) component of
the two-point direct correlation function and, as in the
SVE/CB theory, this quantity is approximated using the
analytic results of the MSA solution for the dipolar hard
sphere liquid.*>** Although they take different approaches
to the calculation of solvation dynamics, it turns out that
the MF/FM and SVE/CB theories yield identical predic-
tions in cases where the €(w) functions involved are the
same and of the Debye form assumed by the SVE/CB
theory. In some sense, the MF/FM theory can be viewed
as an extension of the SVE/CB theory that allows one to
use any €(w) function determined empirically to predict
the solvation response of a system.

E. The perturbation expansion of Loring and
Mukamel (PE/LM)

All of the previous theories were designed with liquid
solvents in mind. The last theory, due to Loring and Muka-
mel,”? was developed specifically for the cubic lattice sol-
vent studied here (although it was in fact used as a simple
model liquid solvent). Loring and Mukamel extended the
perturbation expansion used by Zwanzig? to derive the
dielectric properties of the Brownian dipole lattice relevant
to the problem of solvation dynamics. Their expression for
the solvation response can be written

8 max -~
(V())= (UTQ) foq dg{1—nT(q) +7°R}~'Z(q,1)
sin(q) 2
. 21
X p (21)

The quantities R, T'(¢g), and Z(q,t) involve complicated
lattice sums that will not be reproduced here. They can be
found in Ref. 22. The theory involves expanding the prop-
erties of the system as a power series in the polarity pa-
rameter 7 about 7=0 and so it is only expected to provide
reasonable results for solvents with sufficiently small po-
larities. The range of applicability of this theory will be
discussed in Sec. IV. We note that to obtain tractable final
equations, Loring and Mukamel replaced some of the dis-
crete sums in these terms by integrals in what they called
an “Onsager liquid” approximation. Some of the informa-
tion about the lattice structure is thereby lost and the the-
ory is therefore not that far removed from the other theo-
ries we consider.

Two aspects of our implementation of the last three
theories to the dipolar lattice solvent require comment.
First, the limit ¢,,,, we have placed on the wave vector
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integrations appearing in these theories differs from the
value normally assumed. As originally formulated, the
wave vector integrals in these theories extend to infinity.
This choice is appropriate for liquids but not for a lattice
system. Since there is no meaning to ¢>27 (or wave-
lengths shorter than the lattice spacing a) for the present
application we limit integrations to g,,,,=2%. In effect we
thereby assume that the interdipolar correlations that de-
fine the lattice response via €;(k,w) are the same as in a
dipolar liquid system except that all response at k> 27/a is
absent. (We are also ignoring the fact that the true ¢, (k,w)
of the lattice has cubic rather than spherical symmetry as
in a liquid.) Because the difference between using the limits
Gmax= o0 and g, =2 is substantial, in the following sec-
tion we will illustrate results obtained with both limits for
one of the theories (MF/FM). We must also note that in
the case of the DMSA theory, which is not written in terms
of a wave vector integration, it is not obvious how to per-
form an equivalent treatment of the high & cutoff. We
therefore leave it in the form initially developed for liquid
systems keeping in mind that in so doing we are comparing
it to the lattice simulation results on a slightly different
footing than the other theories.

The second aspect of our application of the theories
concerns the choice of solute size parameter. All of the
liquid-based theories (and ultimately even the PE/LM the-
ory) apply to a spherical solute of radius r,. Here we as-
sume this radius to be given by 1/2 of the lattice spacing,
r,=a/2. We have previously shown that such a choice
leads to the expected relationship between total solvation
energy and system size in finite lattices.!! Related to the
choice of r, is the interaction cutoff », appearing in the
sin(x)/x functions of the SVE/CB and MF/FM theories.
In the original versions of the SVE/CB theory® and in the
MF/FM theory*! this radius was taken to be simply equal
to the solute radius. In later work Chandra and Bagchi®
proposed the use of r,=r,+0/2 as a more appropriate
alternative. Since the motivation behind this choice was
not explicitly stated in Ref. 3 it is useful to do so here. As
discussed in detail by Raineri et al,* the sin(x)/x function
arises when the solute’s electric field is written in a k-space
representation. Its argument reflects the lower limit of the
spatial region where the solute field and the solvent polar-
ization interact. The simplest choice, r,=r,, takes the in-
teraction to begin at the solute boundary whereas the
choice r.=r,+0/2 recognizes that no solvent dipoles are
closer to the solute than this pair distance. That the latter
choice is more appropriate can be seen from results derived
by Chandra and Bagchi?®® in their discussion of solvation
energetics. In that work they showed that theories of sol-
vation that use €,(k,w) of the bulk solvent as described
above are in essence approximating the solvent-solute ra-
dial distribution function by

1 for r>r,

0 for r<r,’ (22)

8uw(r)=
Since in either the present lattice studies or in the treat-
ment of hard-core liquids, the exact g,,(#) is zero for r<r,
+0/2, choosing r,=r, is not the optimum choice. Whereas

o

WO

<AV> (au)
,CD (@]

©

0 0.2 0.4 0.6

FIG. 1. Amplitudes of the response to a unit electronic charge jump as a
function of solvent polarity 7. The simulated values (large points) were
calculated from measured values of (§¥?) using Eq. (5). Theoretical
predictions are shown as continuous curves but only the points at the
simulated 7 values were determined.

a correct approximate g,, () is built into the DMSA treat-
ment through its use of the MSA description of the solute—~
solvent radial structure, in the theories that focus on
€;(k,w) of the pure solvent the only acknowledgment of
solute-solvent structure comes from 7. The use of r.=r,
+0/2 is an obvious way to incorporate the correct zeroth
order description of g,,(7) into these theories. As with the
gmax Choice, the difference in results obtained using differ-
ent cutoff radii is substantial and we will illustrate the
effect of this choice using the MF/FM theory as an exam-
ple in the following section.

IV. COMPARISON

In comparing the predictions of the above theories to
the simulated solvation dynamics we will consider three
aspects of the response and how these vary with the solvent
polarity 7. They are (i) the amplitude of the response, (ii)
its time scale, and (iii) the functional form of its time
dependence. For the simulated amplitude we make use of
Eq. (5) to determine (AV) corresponding to a 1 a.u.
charge jump from simulated values of (& VZ)Q=0. These
values are compared to the theoretical predictions in Fig.
1. Figure 2 shows a representative C.(¢) time correlation
function observed from an equilibrium simulation and the
corresponding S;_ ((#) response functions predicted for a
lattice solvent with polarity 7=0.33. Since these functions
are clearly nonexponential we characterize the time depen-
dence by providing both the 1/e decay times in Fig. 3 and
the exponent a obtained by fitting these functions to a
stretched exponential form,

Cy(1),S;_.f(t) =exp{— (t/7)%}, (23)

in Fig. 4. The results shown in Figs. 1-4 contain theoretical
predictions determined using the parameters g,,,, =27 and
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TIG. 2. Simulated solvation time-correlation function C,(¢) [solid
curves; Eq. (4)] and predicted response functions S, , /(¢) for the n=0.33
lattice.

r.=r,+0/2. To see how these choices affect the predicted
response we also plot the predictions of the MF/FM the-
ory obtained with two alternative choices of these param-
eters in Fig. 5.

In Figs. 1-4 we have separated the theories into two
categories, the ab initio theories SVE/CB and PE/LM in
the top panels and the semiempirical theories, SC, DMSA,
and MF/FM, in the bottom panels. The two groups differ
in that the latter require the empirically determined e(w)
as input while the former theories compute these directly
from  and 7, We will begin with the ab initio theories. In
this case there are two aspects of the theories to be consid-
ered. The first is how accurately they predict the dielectric
properties of the lattice system. After addressing this ques-
tion we can then ask how well they relate these dielectric
properties to the solvation dynamics. The first aspect of the

OMSA |
MF/FM
sC 1

0.6

FIG. 3. Solvation time constants (1/e times) in units of 7, as a function
of solvent polarity %.
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FIG. 4. Exponents a obtained from stretched exponential fits [Eq. (23)]
to the solvation response functions as a function of solvent polarity 7.

comparison between the ab initio theories and the simula-
tion results is carried out in Table I. Here we compare the
static dielectric constants €, and the Debye relaxation
times of the observed €(w) with predictions of the PE/LM
and the SVE/CB models.

As has been noted previously'! the level of perturba-
tion employed in the PE/LM theory only produces mean-
ingful values of ¢, for very low polarities, 7<0.2. At higher
polarities the order of the perturbation expansion used is
such as to predict unphysical, negative values of ¢, Thus
the PE/LM cannot adequately describe the dielectric prop-
erties of the solvent over the full range of polarities of
interest here. It would therefore not be expected to yield
accurate predictions for either the static or dynamic as-

IR S T t

FIG. 5. Calculated properties (see Figs. 1, 3, and 4) of the solvation
response predicted by the MF/FM theory for different choices of the
parameters 7. and g, (see the text). The curves are labeled according to
(7o Gmax) 88 1=(r,, »), 2=(r,+0/2, ©), 3=(r,+0/2, 27).
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pects of solvation at the higher polarities studied. This ex-
pectation is confirmed by the results shown in Figs. 1-4.
The amplitude of the solvation response is reasonable for
7<0.2. In this region values of (AV) are too high by 15%—
50%. At higher values of 7 the amplitude of the solvation
response decreases with increasing 7, clearly a nonphysical
result. The dynamical predictions of the PE/LM theory
are also in poor agreement with simulation at the higher 7
values. At all 7 the predicted solvation times (7, Fig. 3)
are too small such that by 7=0.33 the prediction differs
from the observed time by as much as a factor of 2. The
theory correctly predicts an increasingly nonexponential
solvent response with increasing 7 but the exponents o
(Fig. 4) are in general too large (i.e., the response is pre-
dicted to be too close to exponential). Essentially the same
observations concerning the PE/LM theory were made in
our earlier treatment work where we used ¢,,,, = « instead
of g,.x=2 in theoretical calculations.

The SVE/CB theory is considerably more successful at
reproducing the dielectric properties of the dipole lattice.
As can be seen from Table I, the dielectric constants are
within 15% of the observed values for all i studied. Since
the SVE/CB theory [as employed here; but see Ref. 9(a)]
is based on a Markovian description of the dielectric fric-
tion acting on solvent molecules it produces a dielectric
response of Debye form,

€y—

G(w)=l+m,

(24)

having a single dielectric relaxation time, 7. Especially at
the higher polarities studied, the true e(w) of the lattice is
best represented by a Davidson—Cole function [Eq. (9)],
which implies the presence of a distribution of dielectric
relaxation times. In order to compare some sort of overall
dielectric time scale in the two cases we also present the
resulis of a Debye fit (both €; and 7 varied) of the sim-
ulated €(w) data in Table I. Comparison of these 75 values
with those predicted by the SVE/CB theory shows that
although it does not correctly describe the nonexponenti-
ality of the dielectric response, th: theory does predict the
correct time scale to within about 25%. Thus this ab initio
theory is able to provide a reasonably good description of
€(w) in these lattices.

Figures 1-3 show that the SVE/CB theory is also able
to do a rather good job of predicting the solvation behavior
in these systems. For example, although the overall scale is
wrong by ~25%, the 17 dependence of the solvation am-
plitudes (Fig. 1) is well reproduced. The solvation time
scale, as measured by the 1/e times in Fig. 3, is predicted
with remarkable accuracy. We note that much poorer
agreement was reported in our past comparison to this
theory'! due to the use of g, = o and 7,=r, (see below).
The main shortcoming of the SVE/CB theory is in predict-
ing the degree of non-exponentiality of the solvation re-
sponse. As seen in Figs. 2 and 4, the predicted response is
much closer to exponential than is the observed response.
The discrepancy can be mainly attributed to the fact that
the theory predicts a single time scale for dielectric relax-
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ation when in fact the true e(w) contains a distribution of
relaxation times.

We now turn to the semiempirical theories, beginning
with the simple continuum model. The SC theory overes-
timates the solvation amplitude by 309%-40% and it tends
to saturate too quickly with increasing 7 compared to the
simulated results. Both of these features are well-known
shortcomings of the continuum (Born) model for solva-
tion energies.>> The solvation response predicted by the SC
model (Fig. 3) is uniformly too rapid, but the 1/e times do
not deviate widely from the simulated values. The fact that
the SC model predicts solvation times that are too fast
faster than the predictions of molecular models (in the
absence of translation) is well known.! Where the SC
model fails most seriously is in predicting the nonexponen-
tiality of the solvation response, which again is underesti-
mated (Fig. 4). This feature of the SC model is also as
expected.!

The two remaining semiempirical theories, the DMSA
and MF/FM theories, perform equally well with respect to
most comparisons to simulation. As with the SVE/CB the-
ory, both of the latter theories underestimate the response
amplitude by ~20%. The 1/e times are close to the sim-
ulated values, in this case being slightly high. In fact, the
MF/FM theory yields times that agree with the simulated
values to within the simulation uncertainties (roughly the
size of the symbols in Fig. 3) except at the highest polarity,
where the prediction is perhaps 20% high. In addition,
these two semiempirical theories correct the error made by
the SC and the SVE/CB theories with respect to the shape
of C(¢). As shown in Fig. 4 the significant nonexponen-
tility observed in the simulated response functions is nicely
reproduced by both of these theories. Thus both the
DMSA and the MF/FM theories provide excellent overall
representations of ionic solvation dynamics in these simple
lattice solvents.

Before concluding this section it is useful to consider
how the choices of g,,,, and r, influence the predicted re-
sults. In Fig. 5 we illustrate their effect on the MF/FM
theory. As can be seen from this figure, alternative choices
for either of these parameters lead to substantially different
predictions. Consider first the difference between r.=r,
and r,=r,+0/2 (curves no. 1 and 2). We argued that the
latter choice is more appropriate, independent of whether
one is dealing with lattices or with real liquid solvents.
Using the solute radius for this cutoff produces values of
the solvation amplitudes [Fig. 5(a)] that are much larger
than observed. The values obtained are even larger than
predicted by the SC model, which also assumes that sol-
vent interactions extend to r,. Molecular theories such as
the MF/FM theory predict enhanced intersolvent correla-
tions near to the solute compared to a continuum fluid.
Such correlations lead to solvation energies that are larger
than the already excessive values of the SC model unless
proper account is also made of the effect of solvent-
excluded volume. The choice of r, also has a marked effect
on the time scale of the dynamics. At a polarity of n=0.5
the solvation 1/e time differs by almost 40% between the
two choices of r, considered. Clearly one must be careful in
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correctly choosing this parameter both in the present con-
text and when comparing these theories to experimental
measurements. Decreasing g,, has a similar effect to in-
creasing r.. For these lattice systems we argued that g,,, is
more appropriately chosen as 27 rather than the value
Gmax = o0, correct for liquids. The use of 27 also reduces
the solvation amplitude and the solvation time constant
compared to the latter choice. Again, the changes are sub-
stantial. For example, 7, changes by ~35% between
cases 2 and 3. The effects produced by changing both g,
and r, are readily understood as resulting from a reduced
weighting of the high wave vector modes in €; (k,0) for the
choices g,,x =2 and r.,=r,+0/2. Since the high & modes
have the slowest response, reducing the contribution of
these modes in the overall response leads to faster dynam-
ics. It is important to point out that making the alternate
choices for either parameter would lead to considerably
poorer agreement between the predictions of the SVE/CB
and MF/FM theories and the simulated results as regards
the solvation time scale. Finally, we note that we have
made no correction to the DMSA theory equivalent to the
27 cutoff of the ¢ integrations in the other molecular the-
ories. Based on the results in Fig. 5 it is reasonable to
suppose that if the DMSA theory could be reformulated so
as to account for the periodicity of the lattice solvent the
solvation times predicted would be slightly shorter and in
even better agreement with the simulated results than is
shown in Fig. 3.

V. CONCLUSIONS

The objective of the work reported here was to exam-
ine how well existing theories predict the dynamics of ion
solvation in a simple model solvent. The solvent studied
consists of a cubic array of point dipoles that undergo
rotational Brownian motion in the force field produced by
other dipoles in the system. Both translational and inertial
motions of solvent molecules are absent in this simple
model. Even so, the system exhibits rich dynamical behav-
ior similar to that observed in more realistic solvents.
Moreover, the simplicity of the present model helps to
clearly expose one of the more fundamental aspects of the
problem: the change in the dynamics as a function of the
strength of intermolecular interactions, i.e., as a function of
solvent polarity. The comparisons presented here allow us
to judge how well current theories reproduce this essential
feature of the solvation response.

The conclusions we draw must be viewed with one
limitation in mind. Our simulated systems consist of a
translationally ordered lattice rather than the isotropic,
disordered liquids for which most molecular theories were
designed. However, it is our belief that the differences
caused by imposition of the lattice structure are modest.
Assuming that the MSA solutions provide an accurate rep-
resentation of the dipolar hard sphere liquid, Table I re-
veals that variation of the static dielectric constant with 7
is very nearly the same in these lattices as it is in the
corresponding liquid. (The SVE/CB values of ¢; in Table
I are the MSA liquid values.) Thus the orientational cor-
relations in our lattice solvents cannot be greatly affected
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by the imposed translational order. We have also tailored
the liquid theories slightly to account for a residual effect
the lattice structure by properly truncating the wave vector
integrations at wave vectors outside of the first Brillouin
zone. The situation here is similar to approximations com-
monly employed in the theory of freezing.*® With this
choice of gp,,, we believe that the comparison between the
simulations and the theoretical predictions should be quan-
titatively meaningful.

Given the above caveat, several general conclusions
can be drawn from the comparisons of the last section. Of
the ab initio theories, the perturbation treatment of dielec-
tric relaxation by Zwanzig?? and its extension to the solva-
tion dynamics problem by Loring and Mukamel? is of
limited utility. Even though this theory directly addresses
the dipole lattice solvent, the perturbation expansion
breaks down and provides poor predictions for e(w) and
the solvation response for polarities beyond 7=0.2 or for
dielectric constants €,>> 5. In contrast, the Smoluchowski-
Vlasov equation approach of Chandra and Bagchi®® does a
remarkably good job of reproducing the solvation behavior
in these systems at all polarities. The only failing of the
SVE/CB theory is that the simple Markovian version of
the theory used here predicts Debye dielectric response
functions when in fact the observed e€(w) are non-Debye.
For the same reason the theory fails to properly reproduce
the nonexponential character observed in the solvation re-
sponse.

Of the semiempirical theories, which require e(w) as
input, it should first be said that all of those studied do a
reasonable job of predicting the correct time scale of the
solvation response. Even the simple continuum model re-
produces the n variation of 7, to better than 20% except
at the highest polarity. As expected, this zeroth-order the-
ory predicts solvation times that are uniformly too short
compared to the observed times. By virtue of the non-
Debye e(w) used as input, the response functions predicted
by the SC theory are nonexponential as are those observed.
However, the simulated response deviates from an expo-
nential decay to a much greater extent than is predicted.
These two shortcomings of the SC theory both result from
its consideration of only the £=0 limit, where the solvent
response is fastest. The fact that the solute and solvent
molecules are of comparable size requires that nonzero k
portions of €; (k,w) must also contribute to the dynamics.
Since the higher & components of €;(k,w) are in general
slower than the k=0 contribution, their inclusion resulis in
a broadened distribution of relaxation times and an overall
slower solvation response.

The two remaining theories, the dynamical MSA the-
ory's’16 and the memory function theory of Fried and
Mukamel,?! account for these finite-k contributions and
thereby correct the deficiencies inherent in the SC model.
Both semiempirical theories do an excellent job of predict-
ing the observed solvation dynamics from a knowledge of
the (k=0) dielectric function €(w). (While the MF/FM
theory provides slightly better overall agreement with the
simulated results the difference may only reflect our ne-
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glect of the gy, correction in the DMSA model. We there-
fore take the view that these two theories provide equally
good representations of the observed dynamics.) It is note-
worthy that the two models behave as similarly as they do
given that the molecular nature of the solvent is introduced
in two very different ways. Whereas the DMSA model
focuses on the effects of the solute-solvent ordering, the
MF/FM theory considers only the solvent—solvent corre-
lations reflected in €7 (k,w) of the pure solvent. Based on
the quantitative agreement with the simulated dynamics it
appears that neglect of solute—solvent correlations does not
seriously impair the accuracy of the MF/FM theory. This
observation serves to validate the approach taken by many
recent theories which assume that a knowledge of €, (k,w)
of the pure solvent is sufficient to predict the dynamics of
solvation of a molecular solute. We can therefore have
some confidence that current efforts to model the effects of
translational motions and inertial dynamics on €; (k,0) of
the pure solvent will be a fruitful way to begin to under-
stand solvation dynamics in more realistic systems.
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