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Papazyan and Maroncelli [J. Chem. Phys. 95, 9219 ( 1991)] recently reported computer 
simulations of solvation dynamics of an ion in a Brownian dipole lattice solvent. In the present 
article we compare these results to predictions of a number of theories of solvation 
dynamics in the diffusive limit. The frequency-dependent dielectric response functions needed 
as input to many of the theories are derived from further simulations of the lattice 
solvent [H. X. Zhou and B. Bagchi, J. Chem. Phys. 97, 3610 (1992)]. When properly applied, 
all of the currently popular molecular theories yield reasonable predictions for the time 
scale of the solvation response. The dynamical MSA model [P. G. Wolynes, J. Chem. Phys. 
86, 5133 (1987)] and the memory function theory of Fried and Mukamel [J. Chem. 
Phys. 93, 932 (1990)] both provide nearly quantitative agreement with all aspects of the 
solvation dynamics observed in these simulations. 

1. INTRODUCTION 

Considerable advances in our understanding of the dy- 
namics of solvation in dense polar liquids have been made 
in recent years. Experiments, computer simulations, and 
theoretical studies have all played an important role in this 
advancement. Several reviews14 provide an up-to-date 
summary of this and related research. Despite all of the 
recent progress, many aspects of solvation dynamics are 
still not fully understood. Theoretical treatment of dynam- 
ics in dense polar fluids is a formidable task and progress in 
this area therefore relies on approximate treatments of ide- 
alized model systems. The applicability of the theories de- 
veloped in such a situation can only be tested through 
comparison to the results of experimental measurements 
and computer simulations. For example, both computer 
simulations7 and the most recent experiments’ have shown 
that solvation dynamics in a number of solvents is domi- 
nated by ultrafast inertial motions. Prior to the appearance 
of these results such underdamped motions had been ne- 
glected in theoretical treatments. More complete theories 
of solvation dynamics, capable of treating both the inertial 
and overdamped solvent motions, are only now being de- 
veloped.‘*” Due to the importance of the fastest parts of 
the solvation response to reaction dynamics, current atten- 
tion has largely focused on the inertial aspect of the prob- 
lem. However, our understanding of even the diffusive as- 
pects of the dynamics has not been completely tested. 
Several alternative theories are presently available for pre- 
dicting solvation in the overdamped limit. Although they 
have been compared to experimental results, intervention 
of possible effects due to inertial and translational dynam- 
ics make it difficult to use experiments to definitively 
choose between these theories.’ Computer simulations of 
realistic fluids have also been of little help in this regard 
due to the prominence of the inertial component in all of 
the small-molecule solvents studied to date. 

The objective of this paper is to present a comparison 
between computer simulations of solvation dynamics in a 
simple model dipolar “liquid” and predictions of current 
theories of ionic solvation in the overdamped limit. The 
solvent investigated here consists of an array of point di- 
poles fixed on the sites of a simple cubic lattice. Each di- 
pole undergoes rotational Brownian motion in the force 
field of the rest of the lattice. Papazyan and Maroncelli” 
recently employed Brownian dynamics simulations’ to 
study the solvation of ionic solutes in this solvent and were 
able to obtain a rather complete characterization of the 
static and dynamic aspects of ionic solvation in these sys- 
tems. However, comparison to theoretical predictions was 
limited by lack of knowledge of the dielectric response 
(E(W) ) of the solvent, needed as input to many theories. 
The results of further simulations by Zhou and Bagchi’* 
have provided E(O) for these lattices so that a more de- 
tailed comparison with theory can now be undertaken. By 
virtue of the simplicity of the present solvent model, com- 
parison to theoretical predictions provides a rather exact- 
ing test of the merits and deficiencies of currently available 
theories of solvation dynamics in the purely diffusive re- 
gime. 

We include the following theories in the comparison: 
(a) The simple continuum (SC) model initially formu- 
lated by Bakshiev and co-workers13 and later investigated 
by many authors.14 In this model the solvent is assumed to 
be a homogeneous dielectric fluid so that the molecular 
nature of the solvent is completely neglected. Despite its 
obvious limitations, the continuum model has been shown 
to provide a good guide to experimentally determined sol- 
vation times in many liquids.“* (b) The dynamical mean 
spherical approximation (DMSA) model introduced by 
Wolynes15 and further developed by Rips, Klafter, and 
Jortner16 and others.‘7p’8 (c) The Smoluchowski-Vlasov 
equation (SVE) theory first used by Calef and Wolynes” 
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and greatly extended by Chandra and Bagchi.3’9’20 The lat- 
ter authors reformulated the problem in the language of 
generalized hydrodynamics and time-dependent density 
functional theory. Here we investigate the predictions of 
the Markovian version of the Chandra-Bagchi theory as 
presented in Ref. 20, and refer to it as “SVEKB.” (d) The 
memory function theory of Fried and Mukame12’ which, 
although in many respects is similar to the theory of Chan- 
dra and Bagchi, has certain advantages for practical pur- 
poses. We shall refer to this theory as “MF/FM.” (e) 
Lastly, we consider the perturbative theory of solvation 
dynamics in the simple cubic lattice presented by Loring 
and Mukamel.** This theory is an extension of earlier work 
of Zwanzig23 who developed the perturbation approach for 
dielectric relaxation in the Brownian dipolar lattice. Since 
it deals with precisely the system simulated, the compari- 
son can provide a good test of the validity of the second 
order perturbation theory. We designate this theory “PE/ 
LM.” 

All of the above theories along with their method of 
implementation will be discussed in more detail in Sec. III. 
For now it is useful to mention that they may be concep- 
tually separated into two categories: the “ab initio” theo- 
ries of Loring and Mukamel (PE/LM) and Chandra and 
Bagchi (SVEKB) which are self-contained, and the 
“semiempirical” theories (SC, DMSA, and MF/FM) 
which require the frequency-dependent dielectric function 
E(W) as input. In brief, the comparisons described herein 
yield the following results. As an ab initio theory, the SVE/ 
CB theory does a remarkably good job of reproducing most 
aspects of the simulated dynamics at all polarities. In con- 
trast, the PE/LM theory fares less favorably and is shown 
to have predictive value only at very low polarities. All of 
the semiempirical theories do a reasonable job of predicting 
the observed variation of solvation time scale with solvent 
polarity. The SC model predicts solvation times that are 
uniformly too fast and response functions that are closer to 
exponential than is the actual response. These shortcom- 
ings are remedied in the molecular DMSA and MF/FM 
theories, which reproduce the observed dynamics almost 
exactly. 

The organization of the remainder of the paper is as 
follows. In the next section we briefly discuss the nature of 
the simulations involved. Both the simulations of ionic sol- 
vation” and the calculation of the frequency-dependent 
dielectric function’* are discussed in more detail in sepa- 
rate publications, so that only the essentials required to 
make this article complete are included here. In Sec. III we 
collect the working expressions used to evaluate the pre- 
dictions of all of the theories and also discuss the approx- 
imations that have been made in their implementation. In 
Sec. IV we present the comparison between the simulation 
results and the theoretical predictions. Finally, Sec. V con- 
tains a brief discussion of the conclusions possible from this 
study. 

II. SIMULATION METHODS 

A. Solvation dynamics 

The systems studied by Papazyan and Maroncelli” 
consist of a single point charge (or hole) immersed in a 
lattice of point dipoles fixed to the sites of a simple cubic 
lattice. The dipoles undergo rotational Brownian motion in 
response to Markovian random forces (representing all 
nonelectrostatic interactions) and in response to forces due 
to electrostatic interactions among the dipoles and between 
the solvent dipoles and the solute charge. The time scale 
for the simulations is set by the free diffusion time, ro, 
defined by the single-particle reorientational time correla- 
tion function in the absence of electrostatic interactions, 

(z.0h.W) =p* exp( -t/70), (1) 

where ,X is the dipole moment vector. When electrostatic 
interactions are turned on, the rotational dynamics become 
more complex than the exponential decay of Eq. ( 1). In 
general, the single particle reorientation becomes slower 
(and solvation faster) as the magnitude of the electrostatic 
coupling (solvent polarity) is increased. All properties of 
the pure lattice solvent are a function of a single dimen- 
sionless polarity parameter 7 defined by 

P2 
‘= 3kBTa3 ’ (2) 

In the above definition, k,T is Boltzmann’s constant times 
the absolute temperature and a is the lattice constant. 

The systems studied by Papazyan and Maroncelli” in- 
volve finite lattices of size N= (2Z+ 1)3=27, 125, 343, 729, 
or 1331. A single solute with charge Q replaces the central 
dipole of the lattice. Papazyan and Maroncelli examined 
solvation as a function of all three variables 7, Q, and N. In 
the present work we focus on the dependence of the solva- 
tion dynamics on solvent polarity and fix the other param- 
eters at Q=O and N= 343. As discussed in Ref. 11 the 
solvation time does depend slightly on solute charge, be- 
coming faster as Q increases. We chose Q=O since this 
solute produces the least perturbation to the solvent and as 
such is the most directly comparable to the theories con- 
sidered. The solvation dynamics was shown to have 
reached the N- CYJ limit at a size of N < 343 so that it is 
appropriate to think of the simulated results as applying to 
bulk solvation. 

The dynamics of interest is the change in solvation 
energy resulting from a step-function change in solute 
charge, Qi-Qf. The time dependence of this process is 
conveniently expressed by the normalized response func- 
tion, 

where ( V(t) ) is the average reaction potential (electrical 
potential at the solute charge site) at time t. (This response 
function can also be thought of as describing the relaxation 
of the solute-solvent interaction energy or the free energy 
difference between the two charge states.‘) si,f(t) is a 
nonequilibrium response function. In computer simula- 
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tions, it is often more convenient to calculate the equilib- 
rium time correlation function, 

In this expression 6V is the fluctuation in reaction poten- 
tial, Y-(V),, and (x), denotes the average value of x 
monitored in a system in equilibrium with a solute of 
charge Q,. Under the assumption of a linear solvent re- 
sponse, applicable to the AQ-+O limit, the equilibrium time 
correlation function derived from simulations of the two 
solute charge states a = i or f is identical to the nonequi- 
librium response function Si-f( t). In this case the ampli- 
tude of the nonequilibrium response can also be calculated 
from (SV2) at either limit via 

(4) 

At the lowest polarities studied (7 < 0.1) the after ef- 
fect functions are exponential, which translates into a De- 

(5) bye E(W). However, for higher polarities b(t) has a pro- 
nounced biexponential character. At all 77 the b(t) 
functions yield dielectric response functions that are well 
described by a Davidson-Cole form,27 

Comparisons between C,(t) and S,,,(t) for the dipole 
lattice show the linear response assumption to be a good 
approximation even up to AQ=0.4e.” In any event, the 
linear response assumption is inherent in all of the theories 
we consider. We therefore use Eqs. (4) and (5) and time 
correlation functions derived from simulations in the pres- 
ence of an uncharged solute to make comparison to theory. 

B. Dielectric response 

The method employed for simulating the frequency- 
dependent dielectric function is based on the dielectric the- 
ory presented by McConnell.24 We consider a spherical 
sample initially in equilibrium with a weak uniform electric 
field E that is suddenly switched off at time t=O. Within 
the linear response regime, the decay of the total dipole 
moment of the spherical sample is related to the field by 

to within the uncertainties of the data.28 The Davidson- 
Cole parameters best representing E(W) as a function of 7 
are collected in Table I. These fitted functions were used as 
input to the semiempirical theories in Sec. IV. 

III. THEORETICAL PREDICTIONS 

M(t) =b(t)E(t=O). (6) 

The coefficient b(r) is called the after-effect function. Its 
Fourier transform defines the complex polarizability 
through the expression 

a(w) = - s db(t) 
co dt eiwr 7 . 

0 

For a uniformly polarized isotropic sphere, the frequency- 
dependent dielectric function E(O) is related to the polar- 
izability by the well-known relation 

where I’ is the volume of the spherical sample. 

In this section we collect the predictions of the various 
theories of solvation dynamics that will be compared to the 
simulation results in the following section. Several recent 
reviews discuss these theories at length”2’4 so that we will 
only touch on the main points and give the working equa- 
tions here. We express the results in terms of the reaction 
potential response ( V(t) ) to switching on a charge of mag- 
nitude Q ; i.e., we examine the specific process Qj=O-+Q, 
=Q. In all cases the theories assume the solute to be an 
impenetrable sphere of radius r,, (here identified as half the 
lattice spacing, a/2). With the exception of the theory of 
Loring and Mukamel all deal with bulk solvation in an 
isotropic fluid. We will make some slight modifications 
where possible to the theories in order to partially account 
for the lattice structure of the simulated system (see be- 

(8) low). However, it should be kept in mind that we are 
comparing liquid-state theories to simulated results on a 
solidlike lattice solvent. It is our contention that the trans- 
lational order present in the lattice does not make the dy- 
namics qualitatively (or even quantitatively) different 
from that which would be observed in a translationally 
disordered system. We therefore view these comparisons as 
providing appropriate tests for uncovering the strengths 
and weaknesses in the liquid-state theories. The validity of 
this point of view will be addressed later. 

Simulation of the dielectric function is accomplished 
through the following steps. We start with randomly ori- 
ented dipoles fixed at the lattice sites of a spherical sample 
of simple cubic lattice. Retween 257 and 925 dipoles are 
included in the system depending on polarity. The dipoles 
are equilibrated to the presence of the uniform electric field 
and the other dipoles of the system. After equilibrium is 

reached the field is turned off and the subsequent decay of 
the total dipole moment in the direction of the external 
field recorded. The ratio between the dipole moment and 
the external field provides the after-effect function b(t). 
Typically 60 independent starting points were used in gen- 
erating averaged b(r) functions. In addition, a difference 
technique similar to the suggestions of Ciccotti et al.*’ and 
Evans and Powles26 was used. For each initial configura- 
tion, two independent simulations are carried out in which 
the strength of the external field is the same but its direc- 
tion is reversed. The time dependence of the total dipole 
moment is found by subtracting the moment of the first 
simulation from that of the second. This difference tech- 
nique significantly reduces the noise in the averaged b(t) 
functions. More details of the simulation procedure can be 
found in Ref. 12. 

60-l 
E(W)=1+(1+if3rpC)B’ 
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TABLE I. Dielectric dispersion parameters’ of the dipole lattice from computer simulation and predicted by the PE/LM and SVE/CB theories. 

Simulation results Theoretical predictions 

Davidson-Cole fits Debye fits PE/LMb SVE/CBC 
17 EO rDC s CO TD EO EO TD 

0.041 1.6 1.2 (l.O)d 1.6 1.2 1.6 1.6 1.2 
0.083 2.5 1.4 (l.O)d 2.5 1.4 2.3 2.4 1.3 
0.167 4.9 2.1 0.98 4.9 2.0 2.8 4.5 1.7 
0.333 12.0 3.5 0.93 12.0 3.0 . . . 10.0 2.2 
0.500 19.0 4.7 0.89 19.0 3.7 . . . 18.0 2.7 

“These parameters are defined in Eqs. (9) and (24). Time constants are in units of T* 
90 the order of perturbation theory employed by the PWLM treatment values of co are negative for 7 > 0.2 and so are not listed here. 
‘The SVEKB theory predicts a Debye form dielectric function, with the dielectric constant co given by the MSA and the Debye relaxation time T,, related 
to e. and 7,, through ( eo- 1 )~d4~. 

dFor ~=0.041 and 0.083 fits to a Davidson-Cole function were not noticeably better than fits to a Debye function. For these two cases we used the Debye 
fits (B= 1) in making comparisons to salvation dynamics theories. 

A. The simple continuum (SC) model 

The most simplistic theory is the dynamical generali- 
zation of the venerable Born model of equilibrium solva- 
tion energetics.29 The solvent is viewed as a homogeneous 
continuum fluid characterized solely by its dielectric re- 
sponse function E( w ). The reaction potential response may 
be calculated from a boundary value calculation as in the 
original static Born model with the result’47’6 

(10) 
where 2-l denotes an inverse Laplace transform: 

A?-‘{j?p)}=& Jar: dp &p) 
and 

(11) 

/iLt(P) =; l-E;) . 
1 -I 

(12) 

B. The dynamical mean spherical approximation 
(DMSA) 

The first molecular theory we will consider is the dy- 
namical MSA model initially introduced by Wolynes” and 
further developed by several groups.‘“‘* The essential idea 
in this approach is to assume that the frequency depen- 
dence of the solvation response can be obtained by merely 
substituting E(W) for e. in the functional relationship be- 
tween the equilibrium solvation energy ((V) here) and r. 
in any linear solvation theory. Thus in precisely the same 
way that the molecular nature of the solvent causes the 
equilibrium solvation energy to deviate from the simple 
Born relation, ( V) cc ( 1 --E;’ ), molecular effects also alter 
the dynamics. In practice, the only equilibrium solvation 
theory commonly employed has been the MSA solution for 
the solvation of an ion in a dipolar hard sphere fluid,30 due 
to the fact that it yields simple analytical solutions. Using 
this model system, Rips and co-workers’6 showed that the 
solvation response can be written in the same form as in 
the simple continuum model, 

=Qy-’ $ ~.IsA(O)-&~~P)~ , 
1 I 

except that the complex admittance, 

GmdP) =; 1-& ( -JIl+GPw 

now contains a correction term, 

(13) 

(14) 

which accounts for solvent molecularity via the solute/ 
solvent size ratio p = 2r,/a ((+ is the diameter of the dipolar 
hard sphere solvent, here identified with the lattice con- 
stant a). As in the simple continuum model, information 
about the solvent dynamics comes into the theory through 
use of the empirically determined dielectric function z(p 
=io). 

The remaining molecular theories to be considered in- 
corporate molecular effects into the problem in a different 
manner from that used by the DMSA theory. They all 
express the solvation response in terms of an integral over 
the solute’s electrostatic field times a function of the full 
wave vector- and frequency-dependent dielectric function 
of the pure solvent, eL( k,w). The solute’s only role in de- 
termining how solvation in a molecular solvent differs from 
that in a continuum dielectric fluid is that it sets the k scale 
over which eL( k,w) is sensed. All of the intermolecular 
correlations and dynamics are those of the pure solvent 
and all of the effort in these theories rests in approximating 
the behavior of the function E~( k,w). 

C. The Smoluchowski-Vlasov equation theory of 
Chandra and Bagchi (SVEKB) 

The Smoluchowski-Vlasov equation approach was 
first used in an early treatment of solvation dynamics by 
Calef and Wolynes.” It has more recently been employed 
by Chandra and Bagchi in an extensive series of stud- 
ies.3’9’20 Reference 3 provides a detailed exposition of this 
theory and its predictions. In the simplest version of the 
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theory considered here the coupled reorientational and 
translational dynamics involved in eL( k,o) are calculated 
using a mean-field density functional approach. The theory 
is what we will call an ab initio theory in the sense that no 
empirical information about eL(k,w) is used as input. The 
only solvent parameters required are the diameter, (T, and 
the rotational diffusion constant DR arising from the short- 
range part of the intermolecular interaction, here assumed 
to be equal to (2r0)-*.3* The solvation response is given in 
terms of the reduced wave vector q= ko by” 

wwHv(d~=~ J;““dq[ l-h] 

Xexp [-t/~L(q)]~~~Jf))2. 

(16) 

In this expression qmax is the maximum value of the wave 
vector, which can be either 2n or CO for reasons to be 
discussed later. The function sin(x)/x, which also appears 
in all of the remaining theories, comes from writing the 
electrical field of an ion in a wave vector representation. 
The parameter r, in its argument is a lower cutoff for the 
interaction between the solute and solvent, related to the 
solute radius by r,=r,+ a/2. We will also discuss the 
meaning of this choice of radius shortly. The solvent’s di- 
electric response is here represented by the two functions 
EL(q) =eL(ku,ti=O) and TL(q), given by2’ 

In this expression c,,,(q) is again the ( 110) component of 
the two-point direct correlation function and, as in the 
SVEKB theory, this quantity is approximated using the 
analytic results of the MSA solution for the dipolar hard 
sphere liquid.32P33 Although they take different approaches 
to the calculation of solvation dynamics, it turns out that 
the MF/FM and SVE/CB theories yield identical predic- 
tions in cases where the E(W) functions involved are the 
same and of the Debye form assumed by the SVEKB 
theory. In some sense, the MF/FM theory can be viewed 
as an extension of the SVE/CB theory that allows one to 
use any E(W) function determined empirically to predict 
the solvation response of a system. 

E. The perturbation expansion of Loring and 
Mukamel (PE/LM) 

1 
l--z 

EL(q) 
45-v 

I 
I+& h,,,(q) 

I 

and 

I 1 
dq)-‘=2DR l-- CllO(4) * 1 

All of the previous theories were designed with liquid 
solvents in mind. The last theory, due to Loring and Muka- 
me1,22 was developed specifically for the cubic lattice sol- 
vent studied here (although it was in fact used as a simple 

(17) model liquid solvent). Loring and Mukamel extended the 
perturbation expansion used by Zwanzig23 to derive the 
dielectric properties of the Brownian dipole lattice relevant 
to the problem of solvation dynamics. Their expression for 
the solvation response can be written 
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(19) 

where CL(q,p) is the longitudinal polarizability, which is 
given in terms of the dielectric function by21 

1 a^l(q,p) =& l-- ( )I 
l--cl,O(4) m--Et)] -’ 

A 
Eo 1 --cllo(o) -E&(p) - 11 I * 

(20) 

87lQ 
(V(t))= y- ( u 4max 

&Cl --rlUq) +r12w1~(q,t) 
0 

In these expressions h,,,(q) and cl,,(q) are the (1 lm) 
expansion coefficients of the distance and orientation de- 
pendent pair (h) and direct (c) correlation functions of 
the solvent. For these functions, which determine how 
translational and orientational correlations affect the dy- 
namics, the MSA solutions for a dipolar hard sphere liquid 
are used.32 Explicit expressions for these functions can be 
found in Ref. 33. 

(21) 

D. The memory function theory of Fried and 
Mukamel (MF/FM) 

The theory proposed by Fried and Mukame121 is 
closely related to the Smoluchowski-Vlasov theory in 
spirit. Fried and Mukamel found that by a particular fac- 
torization of the memory function associated with eL( k,w) 
they could approximately separate the k and o depen- 
dences in a manner similar to the decomposition expressed 
by Eq. ( 16). Their result can be written as34 

The quantities R, 7’(q), and .?(q,t) involve complicated 
lattice sums that will not be reproduced here. They can be 
found in Ref. 22. The theory involves expanding the prop- 
erties of the system as a power series in the polarity pa- 
rameter ?I about r]=O and so it is only expected to provide 
reasonable results for solvents with sufficiently small po- 
larities. The range of applicability of this theory will be 
discussed in Sec. IV. We note that to obtain tractable final 
equations, Loring and Mukamel replaced some of the dis- 
crete sums in these terms by integrals in what they called 
an “Onsager liquid” approximation. Some of the informa- 
tion about the lattice structure is thereby lost and the the- 
ory is therefore not that far removed from the other theo- 
ries we consider. 

Two aspects of our implementation of the last three 
theories to the dipolar lattice solvent require comment. 
First, the limit qmax we have placed on the wave vector 
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integrations appearing in these theories differs from the 
value normally assumed. As originally formulated, the 
wave vector integrals in these theories extend to infinity. 
This choice is appropriate for liquids but not for a lattice 
system. Since there is no meaning to q> 27~ (or wave- 
lengths shorter than the lattice spacing a) for the present 
application we limit integrations to qmax=2r. In effect we 
thereby assume that the interdipolar correlations that de- 
fine the lattice response via eL( k,o) are the same as in a 
dipolar liquid system except that all response at k > 2r/a is 
absent. (We are also ignoring the fact that the true eL( k,w) 
of the lattice has cubic rather than spherical symmetry as 
in a liquid.) Because the difference between using the limits 
4 max = 00 and qmax =2rr is substantial, in the following sec- 
tion we will illustrate results obtained with both limits for 
one of the theories (MF/FM). We must also note that in 
the case of the DMSA theory, which is not written in terms 
of a wave vector integration, it is not obvious how to per- 
form an equivalent treatment of the high k cutoff. We 
therefore leave it in the form initially developed for liquid 
systems keeping in mind that in so doing we are comparing 
it to the lattice simulation results on a slightly different 
footing than the other theories. 

The second aspect of our application of the theories 
concerns the choice of solute size parameter. All of the 
liquid-based theories (and ultimately even the PE/LM the- 
ory) apply to a spherical solute of radius r,. Here we as- 
sume this radius to be given by l/2 of the lattice spacing, 
r,=a/2. We have previously shown that such a choice 
leads to the expected relationship between total solvation 
energy and system size in finite lattices.” Related to the 
choice of r, is the interaction cutoff r, appearing in the 
sin(x)/x functions of the SVE/CB and MF/FM theories. 
In the original versions of the SVE/CB theory2’ and in the 
MF/FM theory21 this radius was taken to be simply equal 
to the solute radius. In later work Chandra and Bagchi3 
proposed the use of r,=r,+a/2 as a more appropriate 
alternative. Since the motivation behind this choice was 
not explicitly stated in Ref. 3 it is useful to do so here. As 
discussed in detail by Raineri et aZ.,4 the sin(x)/x function 
arises when the solute’s electric field is written in a k-space 
representation. Its argument reflects the lower limit of the 
spatial region where the solute field and the solvent polar- 
ization interact. The simplest choice, r,=r,, takes the in- 
teraction to begin at the solute boundary whereas the 
choice r,=r,+a/2 recognizes that no solvent dipoles are 
closer to the solute than this pair distance. That the latter 
choice is more appropriate can be seen from results derived 
by Chandra and Bagchi20cc) in their discussion of solvation 
energetics. In that work they showed that theories of sol- 
vation that use eL(k,co) of the bulk solvent as described 
above are in essence approximating the solvent-solute ra- 
dial distribution function by 

1 1 for r>rr 
g,,(r) = 0 for r<rc’ (22) 

Since in either the present lattice studies or in the treat- 
ment of hard-core liquids, the exact g,,(r) is zero for r<ru 
+u/2, choosing r,=r, is not the optimum choice. Whereas 

0 

___________. ----.-.- 
_________. SC 

/’ 
l 

,/ l 
,f. a -----Y.r.r.~.~~.Z ;$& 

/.” . 
--rr.~~‘.~...‘““‘.‘.. 

n<.<:.T..-” 
if 

I 

0.6 

FIG. 1. Amplitudes of the response to a unit electronic charge jump as a 
function of solvent polarity 7. The simulated values (large points) were 
calculated from measured values of (SV*) using Eq. (5). Theoretical 
predictions are shown as continuous curves but only the points at the 
simulated 17 values were determined. 

a correct approximate g,,(r) is built into the DMSA treat- 
ment through its use of the MSA description of the solute- 
solvent radial structure, in the theories that focus on 
eL( k,o) of the pure solvent the only acknowledgment of 
solute-solvent structure comes from r,. The use of r,=r, 
+0/2 is an obvious way to incorporate the correct zeroth 
order description of g,,( r) into these theories. As with the 
qmax choice, the difference in results obtained using differ- 
ent cutoff radii is substantial and we will illustrate the 
effect of this choice using the MF/FM theory as an exam- 
ple in the following section. 

IV. COMPARISON 

In comparing the predictions of the above theories to 
the simulated solvation dynamics we will consider three 
aspects of the response and how these vary with the solvent 
polarity q. They are (i) the amplitude of the response, (ii) 
its time scale, and (iii) the functional form of its time 
dependence. For the simulated amplitude we make use of 
Eq. (5) to determine (AV) corresponding to a 1 a.u. 
charge jump from simulated values of (SV2),=,. These 
values are compared to the theoretical predictions in Fig. 
1. Figure 2 shows a representative C,(t) time correlation 
function observed from an equilibrium simulation and the 
corresponding Si-~( t) response functions predicted for a 
lattice solvent with polarity ~=0.33. Since these functions 
are clearly nonexponential we characterize the time depen- 
dence by providing both the l/e decay times in Fig. 3 and 
the exponent a obtained by fitting these functions to a 
stretched exponential form, 

Cd t>,Si,f( t) =exp{ - (t/T)“), (23) 
in Fig. 4. The results shown in Figs. l-4 contain theoretical 
predictions determined using the parameters qmax = 2a and 
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=IG. 2. Simulated salvation time-correlation function C,(t) [solid 
curves; Eq. (4) J and predicted response functions S,,,-(t) for the ~=0.33 
lattice. 

rc=ru+a/2. To see how these choices affect the predicted 
response we also plot the predictions of the MF/FM the- 
ory obtained with two alternative choices of these param- 
eters in Fig. 5. 

In Figs. 14 we have separated the theories into two 
categories, the ab initio theories SVE/CB and PE/LM in 
the top panels and the semiempirical theories, SC, DMSA, 
and MF/FM, in the bottom panels. The two groups differ 
in that the latter require the empirically determined E(W) 
as input while the former theories compute these directly 
from 7 and ro. We will begin with the ab initio theories. In 
this case there are two aspects of the theories to be consid- 
ered. The first is how accurately they predict the dielectric 
properties of the lattice system. After addressing this ques- 
tion we can then ask how well they relate these dielectric 
properties to the solvation dynamics. The first aspect of the 
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FIG. 3. Salvation time constants (l/e times) in units of r,, as a function 
of solvent polarity 7. 
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FIG. 4. Exponents a obtained from stretched exponential fits [Eq. (23)] 
to the solvation response functions as a function of solvent polarity 7. 

comparison between the ab initio theories and the simula- 
tion results is carried out in Table I. Here we compare the 
static dielectric constants e. and the Debye relaxation 
times of the observed E(O) with predictions of the PE/LM 
and the SVE/CB models. 

As has been noted previously*’ the level of perturba- 
tion employed in the PE/LM theory only produces mean- 
ingful values of e. for very low polarities, 77~0.2. At higher 
polarities the order of the perturbation expansion used is 
such as to predict unphysical, negative values of ec. Thus 
the PE/LM cannot adequately describe the dielectric prop- 
erties of the solvent over the full range of polarities of 
interest here. It would therefore not be expected to yield 
accurate predictions for either the static or dynamic as- 
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FIG. 5. Calculated properties (see Figs. 1, 3, and 4) of the salvation 
response predicted by the MF/FM theory for different choices of the 
parameters r, and qrnar (see the text). The curves are labeled according to 
(r, qmax) as I=(r,, CO), 2=(r,+o/2, CO), 3=(r,+o/2, 2~). 
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pects of solvation at the higher polarities studied. This ex- 
pectation is confirmed by the results shown in Figs. l-4. 
The amplitude of the solvation response is reasonable for 
77~0.2. In this region values of (A v> are too high by 15%- 
50%. At higher values of q the amplitude of the solvation 
response decreases with increasing v, clearly a nonphysical 
result. The dynamical predictions of the PE/LM theory 
are also in poor agreement with simulation at the higher 71 
values. At all 7 the predicted solvation times (rl,@ Fig. 3) 
are too small such that by 7=0.33 the prediction differs 
from the observed time by as much as a factor of 2. The 
theory correctly predicts an increasingly nonexponential 
solvent response with increasing 7 but the exponents (r 
(Fig. 4) are in general too large (i.e., the response is pre- 
dicted to be too close to exponential). Essentially the same 
observations concerning the PE/LM theory were made in 
our earlier treatment work where we used qm= 03 instead 
of Qmax - - 2~ in theoretical calculations. 

The SVEKB theory is considerably more successful at 
reproducing the dielectric properties of the dipole lattice. 
As can be seen from Table I, the dielectric constants are 
within 15% of the observed values for all 7 studied. Since 
the SVEKB theory [as employed here; but see Ref. 9(a)] 
is based on a Markovian description of the dielectric fric- 
tion acting on solvent molecules it produces a dielectric 
response of Debye form, 

ee-1 
E(O) = l+- 1 +iwTD’ (24) 

having a single dielectric relaxation time, rr,. Especially at 
the higher polarities studied, the true E(O) of the lattice is 
best represented by a Davidson-Cole function [Eq. (9)], 
which implies the presence of a distribution of dielectric 
relaxation times. In order to compare some sort of overall 
dielectric time scale in the two cases we also present the 
results of a Debye fit (both l o and rD varied) of the sim- 
ulated E(W) data in Table I. Comparison of these rn values 
with those predicted by the SVEKB theory shows that 
although it does not correctly describe the nonexponenti- 
ality of the dielectric response, th> theory does predict the 
correct time scale to within about 25%. Thus this ab initio 
theory is able to provide a reasonably good description of 
E(O) in these lattices. 

Figures l-3 show that the SVEKB theory is also able 
to do a rather good job of predicting the solvation behavior 
in these systems. For example, although the overall scale is 
wrong by -25%, the 7 dependence of the solvation am- 
plitudes (Fig. 1) is well reproduced. The solvation time 
scale, as measured by the l/e times in Fig. 3, is predicted 
with remarkable accuracy. We note that much poorer 
agreement was reported in our past comparison to this 
theory” due to the use of qmax= 00 and r,=r, (see below). 
The main shortcoming of the SVE/CB theory is in predict- 
ing the degree of non-exponentiality of the solvation re- 
sponse. As seen in Figs. 2 and 4, the predicted response is 
much closer to exponential than is the observed response. 
The discrepancy can be mainly attributed to the fact that 
the theory predicts a single time scale for dielectric relax- 

ation when in fact the true E(W) contains a distribution of 
relaxation times. 

We now turn to the semiempirical theories, beginning 
with the simple continuum model. The SC theory overes- 
timates the solvation amplitude by 30%-40% and it tends 
to saturate too quickly with increasing 77 compared to the 
simulated results. Both of these features are well-known 
shortcomings of the continuum (Born) model for solva- 
tion energies. 35 The solvation response predicted by the SC 
model (Fig. 3) is uniformly too rapid, but the l/e times do 
not deviate widely from the simulated values. The fact that 
the SC model predicts solvation times that are too fast 
faster than the predictions of molecular models (in the 
absence of translation) is well known.’ Where the SC 
model fails most seriously is in predicting the nonexponen- 
tiality of the solvation response, which again is underesti- 
mated (Fig. 4). This feature of the SC model is also as 
expected.’ 

The two remaining semiempirical theories, the DMSA 
and MF/FM theories, perform equally well with respect to 
most comparisons to simulation. As with the SVE/CB the- 
ory, both of the latter theories underestimate the response 
amplitude by -20%. The l/e times are close to the sim- 
ulated values, in this case being slightly high. In fact, the 
MF/FM theory yields times that agree with the simulated 
values to within the simulation uncertainties (roughly the 
size of the symbols in Fig. 3) except at the highest polarity, 
where the prediction is perhaps 20% high. In addition, 
these two semiempirical theories correct the error made by 
the SC and the SVEKB theories with respect to the shape 
of C,(t). As shown in Fig. 4 the significant nonexponen- 
tility observed in the simulated response functions is nicely 
reproduced by both of these theories. Thus both the 
DMSA and the MF/FM theories provide excellent overall 
representations of ionic solvation dynamics in these simple 
lattice solvents. 

Before concluding this section it is useful to consider 
how the choices of qmax and r, influence the predicted re- 
sults. In Fig. 5 we illustrate their effect on the MF/FM 
theory. As can be seen from this figure, alternative choices 
for either of these parameters lead to substantially different 
predictions. Consider first the difference between r,=r, 
and r,= r,,+o/2 (curves no. 1 and 2). We argued that the 
latter choice is more appropriate, independent of whether 
one is dealing with lattices or with real liquid solvents. 
Using the solute radius for this cutoff produces values of 
the solvation amplitudes [Fig. 5(a)] that are much larger 
than observed. The values obtained are even larger than 
predicted by the SC model, which also assumes that sol- 
vent interactions extend to r,. Molecular theories such as 
the MF/FM theory predict enhanced intersolvent correla- 
tions near to the solute compared to a continuum fluid. 
Such correlations lead to solvation energies that are larger 
than the already excessive values of the SC model unless 
proper account is also made of the effect of solvent- 
excluded volume. The choice of r, also has a marked effect 
on the time scale of the dynamics. At a polarity of ~=0.5 
the solvation l/e time differs by almost 40% between the 
two choices of r, considered. Clearly one must be careful in 
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correctly choosing this parameter both in the present con- 
text and when comparing these theories to experimental 
measurements. Decreasing qmax has a similar effect to in- 
creasing rc. For these lattice systems we argued that qmax is 
more appropriately chosen as 2rr rather than the value 
qmax - - 03, correct for liquids. The use of 27r also reduces 
the solvation amplitude and the solvation time constant 
compared to the latter choice. Again, the changes are sub- 
stantial. For example, T,,= changes by -35% between 
cases 2 and 3. The effects produced by changing both qmax 
and r, are readily understood as resulting from a reduced 
weighting of the high wave vector modes in E~(~,w) for the 
choices qmax = 2a and r,= r,+u/2. Since the high k modes 
have the slowest response, reducing the contribution of 
these modes in the overall response leads to faster dynam- 
ics. It is important to point out that making the alternate 
choices for either parameter would lead to considerably 
poorer agreement between the predictions of the SVE/CB 
and MF/FM theories and the simulated results as regards 
the solvation time scale. Finally, we note that we have 
made no correction to the DMSA theory equivalent to the 
2rr cutoff of the q integrations in the other molecular the- 
ories. Based on the results in Fig. 5 it is reasonable to 
suppose that if the DMSA theory could be reformulated so 
as to account for the periodicity of the lattice solvent the 
solvation times predicted would be slightly shorter and in 
even better agreement with the simulated results than is 
shown in Fig. 3. 

V. CONCLUSIONS 

The objective of the work reported here was to exam- 
ine how well existing theories predict the dynamics of ion 
solvation in a simple model solvent. The solvent studied 
consists of a cubic array of point dipoles that undergo 
rotational Brownian motion in the force field produced by 
other dipoles in the system. Both translational and inertial 
motions of solvent molecules are absent in this simple 
model. Even so, the system exhibits rich dynamical behav- 
ior similar to that observed in more realistic solvents. 
Moreover, the simplicity of the present model helps to 
clearly expose one of the more fundamental aspects of the 
problem: the change in the dynamics as a function of the 
strength of intermolecular interactions, i.e., as a function of 
solvent polarity. The comparisons presented here allow us 
to judge how well current theories reproduce this essential 
feature of the solvation response. 

The conclusions we draw must be viewed with one 
limitation in mind. Our simulated systems consist of a 
translationally ordered lattice rather than the isotropic, 
disordered liquids for which most molecular theories were 
designed. However, it is our belief that the differences 
caused by imposition of the lattice structure are modest. 
Assuming that the MSA solutions provide an accurate rep- 
resentation of the dipolar hard sphere liquid, Table I re- 
veals that variation of the static dielectric constant with r] 
is very nearly the same in these lattices as it is in the 
corresponding liquid. (The SVEKB values of l o in Table 
I are the MSA liquid values.) Thus the orientational cor- 
relations in our lattice solvents cannot be greatly affected 

by the imposed translational order. We have also tailored 
the liquid theories slightly to account for a residual effect 
the lattice structure by properly truncating the wave vector 
integrations at wave vectors outside of the first Brillouin 
zone. The situation here is similar to approximations com- 
monly employed in the theory of freezing.36 With this 
choice of qmax we believe that the comparison between the 
simulations and the theoretical predictions should be quan- 
titatively meaningful. 

Given the above caveat, several general conclusions 
can be drawn from the comparisons of the last section. Of 
the ab initio theories, the perturbation treatment of dielec- 
tric relaxation by Zwanzig23 and its extension to the solva- 
tion dynamics problem by Loring and Mukame122 is of 
limited utility. Even though this theory directly addresses 
the dipole lattice solvent, the perturbation expansion 
breaks down and provides poor predictions for E(O) and 
the solvation response for polarities beyond 77=0.2 or for 
dielectric constants e. > 5. In contrast, the Smoluchowski- 
Vlasov equation approach of Chandra and Bagchi” does a 
remarkably good job of reproducing the solvation behavior 
in these systems at all polarities. The only failing of the 
SVE/CB theory is that the simple Markovian version of 
the theory used here predicts Debye dielectric response 
functions when in fact the observed E(O) are non-Debye. 
For the same reason the theory fails to properly reproduce 
the nonexponential character observed in the solvation re- 
sponse. 

Of the semiempirical theories, which require E(W) as 
input, it should first be said that all of those studied do a 
reasonable job of predicting the correct time scale of the 
solvation response. Even the simple continuum model re- 
produces the 71 variation of rile to better than 20% except 
at the highest polarity. As expected, this zeroth-order the- 
ory predicts solvation times that are uniformly too short 
compared to the observed times. By virtue of the non- 
Debye E(W) used as input, the response functions predicted 
by the SC theory are nonexponential as are those observed. 
However, the simulated response deviates from an expo- 
nential decay to a much greater extent than is predicted. 
These two shortcomings of the SC theory both result from 
its consideration of only the k=O limit, where the solvent 
response is fastest. The fact that the solute and solvent 
molecules are of comparable size requires that nonzero k 
portions of E~(~,w) must also contribute to the dynamics. 
Since the higher k components of eL(k,w) are in general 
slower than the k=O contribution, their inclusion results in 
a broadened distribution of relaxation times and an overall 
slower solvation response. 

The two remaining theories, the dynamical MSA the- 
ory i5,16 and the memory function theory of Fried and 
Mukamel,21 account for these finite-k contributions and 
thereby correct the deficiencies inherent in the SC model. 
Both semiempirical theories do an excellent job of predict- 
ing the observed solvation dynamics from a knowledge of 
the (k=O) dielectric function E(W). (While the MF/FM 
theory provides slightly better overall agreement with the 
simulated results the difference may only reflect our ne- 
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glect of the qmax correction in the DMSA model. We there- 
fore take the view that these two theories provide equally 
good representations of the observed dynamics.) It is note- 
worthy that the two models behave as similarly as they do 
given that the molecular nature of the solvent is introduced 
in two very different ways. Whereas the DMSA model 
focuses on the effects of the solute-solvent ordering, the 
MF/FM theory considers only the solvent-solvent corre- 
lations reflected in E~(~,w) of the pure solvent. Based on 
the quantitative agreement with the simulated dynamics it 
appears that neglect of solute-solvent correlations does not 
seriously impair the accuracy of the MF/FM theory. This 
observation serves to validate the approach taken by many 
recent theories which assume that a knowledge of eL( k,w ) 
of the pure solvent is sufficient to predict the dynamics of 
solvation of a molecular solute. We can therefore have 
some confidence that current efforts to model the effects of 
translational motions and inertial dynamics on eL (k,w ) of 
the pure solvent will be a fruitful way to begin to under- 
stand solvation dynamics in more realistic systems. 
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