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PyMOOSE: interoperable scripting in Python for MOOSE
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Python is emerging as a common scripting language for simulators. This opens up many 
possibilities for interoperability in the form of analysis, interfaces, and communications 
between simulators. We report the integration of Python scripting with the Multi-scale Object 
Oriented Simulation Environment (MOOSE). MOOSE is a general-purpose simulation system 
for compartmental neuronal models and for models of signaling pathways based on chemical 
kinetics. We show how the Python-scripting version of MOOSE, PyMOOSE, combines the 
power of a compiled simulator with the versatility and ease of use of Python. We illustrate this 
by using Python numerical libraries to analyze MOOSE output online, and by developing a GUI 
in Python/Qt for a MOOSE simulation. Finally, we build and run a composite neuronal/signaling 
model that uses both the NEURON and MOOSE numerical engines, and Python as a bridge 
between the two. Thus PyMOOSE has a high degree of interoperability with analysis routines, 
with graphical toolkits, and with other simulators.
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Beeman, 1998; Carnevale and Hines, 2006; Hines, 1993) included 
optimized custom code that would allow the simulation to be run 
in affordable time and memory. This process of building domain-
specifi c general simulators has continued with several simulators 
devoted to different aspects of computational and systems biology 
(e.g., VCell, Smoldyn, COPASI). This proliferation of simulators 
brings back the problems of model exchange and interoperability, 
albeit at a higher-level than raw Fortran or C code. While these 
simulators now have a common set of shared higher-level concepts 
(e.g., compartments, channels, synapses), they use entirely different 
vocabularies and languages for set up and control.

MOOSE is a new simulator project that supports simulations 
across a wide range of scales in computational biology, includ-
ing computational neuroscience and systems biology. In order to 
improve interoperability, MOOSE uses two existing languages: 
the GENESIS scripting language, and Python. The Neurospaces 
(Cornelis and De Schutter, 2003; http://neurospaces.sourceforge.
net/) project takes a distinct approach to supporting some GENESIS 
capabilities using backward-compatible scripting, and it too can 
utilize Python.

Most established simulators have their own scripting languages. 
For example, NEURON uses hoc along with modl fi les to set up 
simulations. GENESIS has its own custom scripting language. 
MOOSE avoids introducing a new language, and instead inherits 
the GENESIS parser. To increase compatibility, MOOSE has equiva-
lents for most objects in GENESIS, and many old scripts can be 
run on MOOSE with little or no modifi cation. Given these existing 
capabilities, why add Python scripting? Despite its fl exibility, the 
GENESIS scripting language has several limitations:

1. Domain specifi city: It is not used outside GENESIS. This forces 
the user to learn a special-purpose scripting language.

2. Problem with extensibility: While it is easy to write a script to 
defi ne functions that can be included in other scripts, these 

INTRODUCTION
In computational biology there are two approaches to developing 
a simulation. First, write your custom program to do a specifi c 
simulation, and second, write a model and run it in a general-
purpose simulator. While the fi rst approach is very common, it 
requires the scientist to be a good programmer (or have one at 
her/his disposal) and moves the focus towards programming rather 
than science. Furthermore, it is very diffi cult for others to read such 
a program and understand how it relates to the targeted biological 
system. In this context, a model is a well-defi ned set of equations 
and parameters that is meant to represent and predict the behavior 
of a biological system. Ideally, a general-purpose simulator allows 
the model to be separated from the low-level data-structures and 
control. The scientist is no longer concerned with minutiae of soft-
ware engineering and can concentrate on the biological system of 
interest. The model can be shared by other people and understood 
relatively easily using intermediate-level descriptions of the model 
with a more obvious mapping to the real biological system. General 
simulators also lend themselves to declarative, high-level model 
descriptions that have now become important part of scientifi c 
interchange in the computational neuroscience and systems biol-
ogy communities (Beeman and Bower, 2004; Cannon et al., 2007; 
Goddard et al., 2001; Hucka et al., 2002; http://www.morphml.org/; 
http://neuroml.org, http://sbml.org). The goal of this paper is to 
show how the simulator Multi-scale Object Oriented Simulation 
Environment (MOOSE; http://moose.ncbs.res.in/, mirrored at 
http://moose.sourceforge.net/) uses Python to address these issues 
of interoperability with analysis software, graphical interfaces, and 
other simulators.

General-purpose simulators have been in use since the venerable 
circuit simulator SPICE was utilized to solve compartmental mod-
els (Bunow et al., 1985; Segev et al., 1985). While this level of gen-
erality ran into limitations of computing power, more specialized 
neuronal simulators such as GENESIS and NEURON (Bower and 
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interpreted functions are much slower than compiled code. The 
GENESIS scripting language itself provides for some degree of 
extensibility, but this is diffi cult to implement. Adding a sin-
gle command requires implementation in C, as well as defi -
nition of the command in a confi guration fi le that must be 
pre- processed to include into the interpreter. The addition of a 
new class is still more involved.

3. Lack of existing libraries: The GENESIS scripting language is a 
special-purpose language and has no additional features other 
than those written into the language.

4. Syntax: The syntax is complex and inconsistent as a result 
of accretion of features by many developers and users. For 
 example, arrays are implemented in three inconsistent ways in 
the GENESIS scripting language: as arrays of elements, entries 
within tables and extended fi elds.

To harness the capabilities provided by a modern widely used 
scripting language, we chose a Python interface. Among the plethora 
of programming languages, Python has some special advantages:

1. Interactive: We need a scripting language that comes with a 
command line interpreter. Python is suited for this. User 
interaction is as important as running standalone scripts. 
Simulations are built incrementally, and it is important that 
users can try out bits and pieces of code and get quick feedback 
from the system. Moreover, this practice helps in identifying 
errors early in the development process, which saves conside-
rable time and computational resources.

2. It is easy to interface with other programming languages: 
Python itself is written in C. It has a standard developers’ API 
for creating extension libraries. This simplifi es creating Python 
interface for C/C++ code. Moreover, tools like Simplifi ed 
Wrapper and Interface Generator (SWIG), Qt sip, boost-
Python can automate the task of creating a Python interface 
from existing C/C++ code.

3. It is portable: Python runs on Linux, Solaris, Macintosh and 
Windows operating systems and many other platforms (http://
www.python.org/about/).

4. Free: Python is free and open-source.
5. Widely used: Python is widely used in scientifi c community. 

There is a large repertoire of third-party libraries for Python. 
Many of these libraries are free, open source and mature.

In this study we show how PyMOOSE harnesses each of these 
capabilities.

MATERIALS AND METHODS
There are two common approaches to create a Python interface to 
a C/C++ library: (1) statically link it with the Python  interpreter – 
which involves compiling the Python interpreter source-code, 
(2) create a dynamic link library and provide it as a Python mod-
ule. We took the second approach as it provides more fl exibility 
on the choice of the Python interpreter and reduces the burden 
on the maintainer.

MAPPING MOOSE CLASSES INTO PYTHON
MOOSE has a set of built-in classes for representing simulation 
entities. These classes provide a mapping from the concept space 

to the computational space. Physical or chemical properties and 
other relevant parameters are accessible as member fi elds of the 
classes and the time-evolution of these parameters is calculated by 
a special process method of each class. These classes add another 
layer over ordinary C++ classes to provide messaging and sched-
uling as well as customized access to the member fi elds. MOOSE 
provides introspection (Maes, 1987; Smith, 1982), so that full fi eld 
information for each class is accessible to the programmer. This 
class information is statically initialized for each class at startup 
time. We utilized this class information and SWIG (Beazley, 1996; 
http://www.swig.org) to build the Python interface.

SWIG is a mature software with good support for Python and 
C/C++ interfacing as well as many other languages. While it is rather 
simple to create an interface for ordinary C++ class using SWIG, our 
task was complicated because MOOSE classes have another layer 
over ordinary C++ classes. For this reason we created a framework 
for Python interface with additional C++ classes to wrap MOOSE 
classes and a few classes to manage the system.

SIMULATOR CONTROL THROUGH PYTHON
All operations on MOOSE objects are carried out via a special 
class, Shell, of which there is a single instance on each processor 
node that is running MOOSE. In PyMOOSE we implemented 
a singleton context object to communicate with the Shell. The 
context object provides a set of functions that can be called to 
pass appropriate messages to the Shell. The user can call global 
MOOSE functions by calling the corresponding methods of the 
context object. Operations like creation of objects, setting integra-
tion time step, running the simulation are all done through the 
context object.

We created a one-to-one mapping of MOOSE classes to Python 
classes by means of light-weight C++ wrapper classes. All the wrap-
per classes were derived from one common base class. Each MOOSE 
object is identifi ed by an Identifi er (ID) fi eld. The main data content 
of a wrapper class instance is the ID of the corresponding object in 
MOOSE. Additionally, the wrapper classes have a static pointer to 
the single instance of the context object. Wrapper classes provide 
accessor methods that can be used to access the fi elds in the cor-
responding MOOSE object.

These C++ wrapper classes were input to SWIG to create the 
Python module. After translation to Python, the user sees the mem-
ber fi elds in the Python classes in place of the accessor methods in 
the C++ wrapper classes. Behind the scene the Python interpreter 
calls these accessor methods whenever the user script tries to access 
MOOSE object fi elds (Figure 1A).

Manually developing C++ wrapper classes for all MOOSE classes 
was a tedious but repetitive task. We therefore embedded stub code 
in the MOOSE initialization code to generate most of the wrap-
per code programmatically using Run-Time Type Information 
in C++. This auto-generated code was used with a few modifi ca-
tions to generate a Python module using SWIG. SWIG takes an 
interface fi le with SWIG-specifi c directives and generates a single 
C++ fi le for the library and a Python source-code fi le that contains 
support code. We completed the PyMOOSE code generation by 
compiling and linking the SWIG-generated C++ source-code as 
a dynamic library. This dynamic library can be imported in any 
Python program.
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LEGACY MODELS AND PyMOOSE
The PyMOOSE context object keeps a single instance of the 
GenesisParser class in order to run legacy GENESIS scripts. 
Whenever the user asks for executing a GENESIS statement, the 
context object disconnects itself from the Shell and connects the 
GenesisParser object instead. The GENESIS statement string is 
passed to the GenesisParser object, which executes it as if the user 
typed it in at the MOOSE command prompt. After execution of the 
statement (or script) the GenesisParser object is disconnected from 
the Shell and the context object is reconnected (Figure 1B).

While it is valuable to run GENESIS scripts within PyMOOSE, 
this feature is intended only to support legacy code and is better 
avoided in new model development. The use of GENESIS scripting 
language inside Python defeats the whole purpose of moving to 
a general-purpose programming language. It reduces readability 
and the user needs to know both languages in order to understand 
the code.

RESULTS
We used the Python interface of MOOSE to achieve three key tar-
gets: (1) Interfacing with standard libraries in a mature scientifi c 
computing language, (2) giving access to a portable GUI library 
for developing user interface and (3) enabling MOOSE to work 
together with other simulators.

INTERFACING SIMULATIONS WITH PYTHON LIBRARIES
We used Python scientifi c and graphing libraries to analyze and 
display the output of a PyMOOSE simulation. The interface with 
Python gives the user freedom to choose from a wide variety of 
scientifi c and numerical libraries available from third parties. We 
demonstrate the use of two libraries along with PyMOOSE for 
developing simulations with plotting and data analysis within 
Python. The fi rst of these, NumPy, is a library that provides data 
structures and algorithms for fast matrix manipulation (http://
numpy.scipy.org/). Even though Python is interpreted, with attend-
ant slow execution, NumPy library provides access to compiled code 
and hence the functions from the library are as fast as compiled 
code. The second library, matplotlib, provides a rich set of func-
tions for plotting 2D data both in hardcopy formats and interac-
tively (http://matplotlib.sourceforge.net/). It can use NumPy for 

fast matrix operations in Python and several portable GUI toolkits 
(GTK/Qt/Tk/wxWidgets) as graphical back-end.

We implemented a simulation of the squid giant axon using 
Hodgkin–Huxley Na+ and K+ channels and parameters (script 
attached in Appendix). We applied an injection current with 
random amplitude uniformly distributed between 0 and 100 nA. 
We recorded the time-series for the membrane potential during 
the simulation in a MOOSE table object, which can accumulate 
a time-series of simulation output (Figure 2A). The interface 
to Python was done using the MOOSE table class. This class is 
exposed to Python with methods to emulate iterable type (Martelli 
et al., 2005). The array constructor in NumPy accepts an iter-
able object and creates a NumPy array with a copy of the con-
tents of the object. Thus the user is relieved of explicitly iterating 
over the table entries and copying them to a NumPy array. This 
completes the interface from the MOOSE simulation output to 
NumPy (Figure 2B). We used the fast Fourier transform operation 
available in NumPy to compute the discrete Fourier transform of 
the time-series of the simulated membrane potential. We used 
matplotlib to plot the original time-series, as well as the output 
of the FFT (Figure 2C).

Overall, this example simulation illustrates how PyMOOSE 
facilitates interoperability of Python numerical and graphing 
libraries with MOOSE.

PORTABLE GUI THROUGH PYTHON
The use of Python separates the problem of GUI development 
from simulator development. Moreover, it gives one the freedom 
to choose from a number of free GUI toolkits. The major platform 
independent GUI toolkits with Python interfaces are Qt(TM) avail-
able as PyQt, wxWidgets (wxPython), Tk and GTK (http://wiki.
python.org/moin/GuiProgramming; http://www.python.org/doc/
faq/gui/). We used PyQt4 to develop a simple user interface for a 
clone of the GENESIS squid tutorial in MOOSE. We selected Qt4 
as it is a mature and clean toolkit that is freely distributed and runs 
well on all the major operating systems.

The program was divided into three modules – (1) the squid 
axon compartment with Hodgkin–Huxley channels, (2) a model 
object which combined a few tables with the squid compartment to 
record various parameters through the time of the simulation, and 
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FIGURE 1 | PyMOOSE interface. (A) Communication between 
Python and MOOSE. MOOSE represents concepts through objects and 
manipulates them using the singleton Shell object. PyMOOSE provides a 
light-weight mirror representation of each MOOSE object. Operations on 
PyMOOSE objects are communicated to MOOSE via the context and 

the Shell object. (B) Accessing legacy scripts through PyMOOSE. 
The Shell object is usually controlled through the PyMooseContext. When 
loading a GENESIS script, control is temporarily passed to the legacy 
GENESIS script language parser, and then returned to the 
PyMooseContext.
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(3) the GUI to take user inputs and to plot data. We implemented 
the squid axon model as described in the previous section, using 
PyMOOSE to set up and parameterize the model. As before, the 
model was interfaced with table objects to monitor time-series out-
put of the simulation. Finally, we implemented the GUI by loading 
in the PyQt4 libraries, and using Python calls to set up the inter-
face (Figure 3). While there are Qt IDEs available (http://trolltech.
com/products/qt/), we constructed the interface through explicit 
Python calls to create widgets, assign actions, and manage output 
data. Qt uses a signal-slot mechanism for passing event informa-
tion. PyQt allows the use of arbitrary Python methods to be used 
as slots. Hence we could connect the GUI widgets to methods in 
the PyMOOSE model class and thus provided simulation control 
through the GUI in a clean manner. We used PyQwt, a Python 
interface of the Qt-based plotting library Qwt, for creating output 
graphs. Since PyQwt can take NumPy arrays as data, we converted 
the tables in MOOSE to NumPy arrays and used PyQwt plotting 
widgets to display them.

We based the layout of the simulation on the widely used GENESIS 
Squid tutorial program. To confi rm portability of the system, we ran 
the model on Linux as well as the Windows operating system.

This exercise demonstrated the capability of PyMOOSE to draw 
upon existing graphical libraries for its graphical requirements. This 
is an important departure from GENESIS. The GENESIS graphical 
libraries (XODUS) were an integral part of the C code-base and 
XODUS objects were visible as, and manipulated in the same way 
as other GENESIS objects. In contrast, PyMOOSE did not need to 
implement any graphical objects within the MOOSE C++ code, 
but instead reused extant third-party graphical libraries available 
for Python. Furthermore the existing libraries are professionally 
designed and have a much more consistent look-and-feel than did 
the original GENESIS graphical library, XODUS (Bhalla, 1998).

SIMULATOR INTEROPERABILITY
With Python becoming a popular language for developing platform 
independent scripts, several neuronal simulators have implemented 
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FIGURE 2 | Analysis and graphing of a PyMOOSE simulation. (A) Simulation 
input (random input current) and output (membrane potential). (B) Data fl ow. The 
simulation time-series is recorded in the MOOSE table object, which is visible to 

Python as a sequence object. This is accessed as an array in NumPy. The fast 
Fourier transform is applied to this array, and the result plotted in Matplotlib. 
(C) Output of FFT analysis (with the fundamental frequency removed).
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Python interfaces. This raises the possibility of using Python as a 
glue language to run simulations that span different simulators. 
As a fi nal demonstration of interoperability, we used PyMOOSE 
with PyNEURON to build a multi-scale, multi-simulator model 
that incorporates neuronal electrical activity as well as biochemical 
signaling (Figure 4A).

We used NEURON to model a multicompartmental electri-
cal model of a Type A neuron from the CA3b region of the rat 
hippocampus (Migliore et al., 1995; http://senselab.med.yale.
edu/ModelDB/ShowModel.asp?model=3263). This is a morpho-
logically detailed model with experimentally constrained distri-
bution of membrane ion channels. It reproduces experimental 
observations of fi ring behavior and intracellular Ca2+ dynamics. 
We modifi ed the hoc script for the model, to run it for arbitrary 
time intervals. We directed the output data to Vector objects in 
NEURON. The Python wrapper class for this model provided 
a handle for the simulation parameters and functions defi ned 
in the hoc script. As described in the PyNEURON documen-
tation (http://www.neuron.yale.edu/neuron/docs/help/neuron/
neuron/classes/python.html), Python commands were directed 
to the NEURON engine by constructing hoc statement strings 
and executing them through the hoc interpreter instance pro-
vided by the neuron module. Moreover, hoc object references are 
directly available in Python as attributes of the hoc interpreter 
object. Thus accessing hoc objects was quite clean in Python 
(Figure 4A).

We used MOOSE to model calcium-triggered biochemical 
signaling events at the synapse. We used a model of a bistable 
MAPK-PKC-PLA2 feedback loop that was originally implemented 
in GENESIS/Kinetikit (Ajay and Bhalla, 2004; Bhalla and Iyengar, 
1999; Bhalla et al., 2002) and uploaded to the DOQCS database 
(http://doqcs.ncbs.res.in/template.php?&y=accessiondetails&an=
79). The model was defi ned in the GENESIS scripting language. We 
used the legacy scripting mode of PyMOOSE to load the GENESIS/
kinetikit model. The simulation objects thus instantiated were 
standard MOOSE objects, and were accessible using Unix-like path 
strings. The PyMOOSE interface exposed these objects as regular 
Python objects. Thus access to the MOOSE objects, represent-
ing GENESIS data concepts, was also straightforward in Python 
(Figure 4A).

We used the Python interface to accomplish three critical opera-
tions to combine the two simulations: (1) Initialization, (2) run-
time control and synchronization, and (3) variable communication 
and rescaling.

1. To initialize the models, we used PyNEURON command load_
fi le to load the hoc script. Once the script is loaded, variables 
and functions defi ned in the script become available as mem-
bers of the hoc interpreter instance inside Python. In this case 
we defi ned a setup function to initialize the NEURON simula-
tion. This function is called in the constructor (__init__) of the 
Python wrapper class over the NEURON simulation. At this 

FIGURE 3 | Screen shot of PyMOOSE/Qt interface for the Hodgkin–Huxley model. The layout is closely modeled on the Squid demo from GENESIS.
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stage we applied a test pulse of 1 nA for 250 ms to measure the 
fi ring properties of the neuron before potentiation. We then 
ran the NEURON model for 1 s to allow the model to settle. 
Similarly we loaded the GENESIS/Kinetikit model using the 
loadG command, and ran this simulation for 1800 s to settle.

2. In the Python wrapper class for each model, we defi ned a 
run method to advance the simulation in time. That for the 
NEURON model uses a run function we defi ned in the custom 

hoc script. This run function calls NEURON’s fadvance com-
mand to advance the simulation. In the wrapper class for the 
GENESIS/Kinetikit model the run method calls the step com-
mand to advance the simulation (Figure 4B).

3. We used the Python interface to read out somatic calcium 
levels from the NEURON model and insert them into the 
MOOSE model, and to feed back MAPK activity changes from 
the MOOSE model to modulate KCa conductances.
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FIGURE 4 | A combined, multi-scale NEURON and GENESIS model. (A) Setup 
of combined model, using NEURON and GENESIS model defi nition fi les. 
(B) Information fl ow during simulation. The two models were run independently 
for an initial settling period and for the test pulse to the NEURON model. During 
the combined simulation phase, each model was advanced for 1 s and then data 
was transferred via Python to the other model. Finally a second test pulse was 
delivered. (C) Response of NEURON model to fi rst test pulse. (D) Calcium and 

MAPK levels in the signaling model. (E) Voltage responses from the NEURON 
model. (F) Experiment design and input to NEURON model. A test current pulse 
of 0.15 nA was delivered for 0.25 s to the NEURON model in the initialization 
phase. At the start of the combined simulation, a stimulus of 10 nA was 
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(0.15 nA, 0.25 s) was applied. (G) Response of NEURON model to second test 
pulse. The difference is due to modulation of KCa by the elevated MAPK activity.
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We wrote another higher-level function run to advance the 
 coupled simulations using the two wrapper classes (not to be con-
fused with the member method run of these classes). This function 
(1) creates instances of both wrappers, which involves initializing 
the models, (2) runs the NEURON simulation for 1 s, (3) reads 
out the calcium level, performs rescaling and updates the kinetic 
model with this value, (4) advances the kinetic simulation for 1 s 
to catch up with the electrical model, (5) reads out the activity 
level of MAPK from the GENESIS/Kinetikit model and modifi es 
the [Ca2+] dependent K+ channel conductances in the NEURON 
model in inverse proportion to this (Figures 4E,F).

Our simulated experiment is illustrated in Figure 4F. We loaded 
the models and allowed them to settle. We measured baseline 
neuronal responses at this stage using a 250-ms, 0.15 nA current 
pulse. Following this we used the run function for the further time-
 evolution of the system. We applied a strong LTP-inducing stimulus 
to the neuronal model for 7 s, and then allowed the simulation to 
continue for 183 s. Finally we repeated the 250 ms, 0.15 nA test for 
neuronal responses.

The time-evolution of membrane potential, Ca2+ levels, and 
MAPK activity are shown in Figures 4D,E. The initial and fi nal 
burst waveforms of the neuron are shown in Figures 4C,G. We 
observe that the coupled model shows how electrical stimulation 
can lead to signaling events, with feedback effects on the electri-
cal properties of the neuron. We should point out that this simu-
lation is only a demonstration and the relationship between the 
chemical system and the biophysical properties of the neuron is 
over- simplifi ed, although the two component models we used are 
realistic within their respective domains.

This example also illustrates the effi ciency of using Python 
for data transfer when traffi c volumes are small compared to the 
computational times. The neuronal calculations in NEURON took 
about 91% of the simulation run-time, the signaling calculations 
in MOOSE took ∼8.5%, and the data transfer through Python 
accounted for only around 0.5%. As we discuss below, there may 
be other interface contexts where more effi cient, low-level data 
transfer protocols may be needed, and the relatively facile Python 
interface may not be appropriate.

DISCUSSION
We have used PyMOOSE, the Python interface to MOOSE, to 
achieve interoperability at three levels. First, we used standard 
mathematical packages in Python to analyze MOOSE output. 
Second, we used the QT graphical toolkit from within Python to 
build a GUI for a MOOSE simulation. Third, we used Python as a 
glue language to run a cross-simulator model combining an elec-
trophysiological model set up in NEURON with a biochemical 
signaling model set up in GENESIS/Kinetikit.

ISSUES WITH PYTHON INTEROPERABILITY
The strengths of the Python language make it perhaps too easy to 
repeat well-known mistakes in simulation development. We con-
sider two such issues. First, Python is an interpreted language in 
most implementations. In the context of simulations, it is not meant 
for number crunching. Well-designed libraries like NumPy can 
hide some of these limitations from the user, and fast hardware can 
conceal other ineffi ciencies. However, given the same specialized 

algorithms, a compiled language will perform better than an inter-
preted one. Therefore, for large simulations, we need to combine the 
best possible algorithms with optimized and compiled languages. 
MOOSE has as one of its goals the capability of managing the 
low-level, high-traffi c fl ow of data between different numerical 
engines incorporated into MOOSE. We do not consider Python 
appropriate for such operations. Second, many aspects of model 
specifi cation should be done using declarative rather than proce-
dural approaches (Cannon et al., 2007; Crook et al., 2005, 2007). 
However, Python makes procedural model defi nition very easy, and 
may even provide a certain level of interoperability if several simu-
lators provide equivalent calls for model setup. For example, there 
are some impressive recent efforts to develop a standard vocabulary 
for network defi nitions across simulators (http://neuralensemble.
org/trac/PyNN/; this issue). While the presence of Python as a 
common link language may temporarily address the interoper-
ability issues of this approach, we feel that it would be a cleaner 
design to use a separate, declarative defi nition for networks such as 
NeuroML (http://neuroml.org). Nevertheless, we completely agree 
that a standard vocabulary for model defi nitions is an important 
fi rst step toward this goal.

MODEL SPECIFICATION VS. SIMULATOR CONTROL
Model specifi cation and exchange issues have been ably addressed 
by the communities developing model specifi cation languages 
(Le Novère et al., 2005; Qi and Crook, 2004; http://neuroml.org; 
http://sbml.org). The current paper focuses on the second prob-
lem, that of making it easier for researchers to control and set up 
these diverse simulation tools. We have shown how this can be 
done with the simulator MOOSE, using Python as a glue language. 
Run-time communication between simulators has previously been 
achieved using the NEOSIM framework, which uses Java (Goddard 
et al., 2001; Howell et al., 2002). More recently, the MUSIC frame-
work specifi es an API for simulators to use to communicate with 
each other (Ekeberg and Djurfeldt, 2008). Our study is novel in 
two respects. First, we use the built-in Python capabilities of two 
simulators to achieve run-time communication, without the need 
to modify either simulator or to build an additional framework 
for communication. Second, we carry out bidirectional commu-
nications across scales (biophysical to biochemical models) and 
involving continuous data types (channel conductance and calcium 
concentrations) rather than spike events.

The evolution of neuronal simulator technology has seen a grad-
ual separation of different aspects of modeling, with a correspond-
ing improvement in interoperability. The fi rst step was to develop 
higher-level simulation tools (e.g., NEURON and GENESIS) to 
separate the numerical and housekeeping code from the model-
specifi c code. This let people share models, provided they were 
written for the same simulator. The second was the development 
of declarative model specifi cations that were separate from the 
simulator. This initially took the form of semi-declarative cell 
morphology fi les (NEURON ‘.geom’ fi les and GENESIS ‘.p’ fi les), 
which required additional fi les for channel specifi cation. This proc-
ess of separation of model defi nition from simulator control has 
continued. The Neuroconstruct suite refi nes the declarative defi -
nition of models, with NeuroML and ChannelML as declarative 
defi nitions suffi cient for most single-neuron models. Importantly, 
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at this level quite  different simulators can use the same original 
model  defi nition to run simulations. A third stage is the conver-
gence of different simulators to use the same link language, in this 
case Python. This makes it possible to explicitly separate model 
defi nition from simulator control. In the current paper, we have 
illustrated this with a composite signaling-neuronal model drawing 
on NEURON and MOOSE. We have utilized two legacy models, 
one written for NEURON, and one written for GENESIS. Even 
though the legacy models themselves were not entirely set up in a 
declarative manner, we used the original model defi nitions only to 
load in the model specifi cations. We used Python as the procedural 
language to control these operations, and to mediate communica-
tion between the models at run-time.

SUSTAINABILITY OF PYTHON INTEROPERABILITY
Simulator interoperability has long been regarded as important 
(Crook et al., 2005, 2007; Goddard et al., 2001). Such projects have 
been diffi cult to execute, and still harder to maintain, because they 

depend on multiple underlying simulator projects, each with differ-
ent APIs, directions and life-cycles. Python is a potential way out of 
this problem. First, Python itself is a well-established language with 
a strong community and support. Second, the issues of interfacing 
to Python are now being undertaken by individual simulator devel-
opment teams. Interoperability emerges from these independent 
efforts rather than requiring a separate project to achieve coordina-
tion. Third, PyMOOSE itself will be maintained for the long-term, 
since Python will be the default scripting language for MOOSE. 
We suggest that long-term improvements in interoperability will 
be driven both by widespread simulator support for declarative 
model specifi cations, and by a richer ecosystem of simulators fl u-
ent in Python.

APPENDIX
Program listing: ca3_db.hoc provides the functions to load and 
initialize the NEURON CA3 cell model as well as for advancing the 
simulation for a specifi ed interval and for updating parameters.

/******************************************************************************

 * Derived from Hippocampal CA3 pyramidal neuron model from the paper 

 * M. Migliore, E. Cook, D.B. Jaffe, D.A. Turner and D. Johnston, Computer

 * simulations of morphologically reconstructed CA3 hippocampal neurons, J.

 * Neurophysiol. 73, 1157-1168 (1995). 

 * The original model is available in modeldb: accession no: 3263

 * http://senselab.med.yale.edu/ModelDb/ShowModel.asp?model=3263

 *

 * Modifi ed by: Subhasis Ray , 2008 

 ******************************************************************************/

objref cvode, vecCai, vecT, vecV, outFile, stim1, stim2, stim3, fi h

vecV = new Vector()

vecCai = new Vector()

vecT = new Vector()

outFile = new File()

cvode = new CVode(0)

cvode.active(1)

cvode.atol(1e-3)

START = 2

AMP = 1.0

// ************* NEURON A **********

FARADAY=96520

PI=3.14159

secondorder=2

dt=0.025

celsius=30

fl agl=0

xopen("ca3a.geo")

proc conductances() {

    forall {

        insert pas e_pas=-65 g_pas=1/60000 Ra=200

        insert cadifus

        insert cal  gcalbar_cal=0.0025

        insert can  gcanbar_can=0.0025
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        insert cat  gcatbar_cat=0.00025

        insert kahp gkahpbar_kahp=0.0004

        insert cagk gkbar_cagk=0.00055

    }

    soma {

        insert nahh    gnabar_nahh=gna

        insert borgkdr gkdrbar_borgkdr=gkdr

        insert borgka  gkabar_borgka=gka

        insert borgkm  gkmbar_borgkm=gkm

    }

    for i=0,1 dend2[i] {

        insert nahh    gnabar_nahh=gna

        insert borgkdr gkdrbar_borgkdr=gkdr

        insert borgka  gkabar_borgka=gka

        insert borgkm  gkmbar_borgkm=gkm

    }

    for i=0,2 dend3[i] {

        insert nahh    gnabar_nahh=gna   

        insert borgkdr gkdrbar_borgkdr=gkdr

        insert borgka  gkabar_borgka=gka

        insert borgkm  gkmbar_borgkm=gkm

    }

    for i=37,38 dend3[i] {

        insert nahh    gnabar_nahh=gna   

        insert borgkdr gkdrbar_borgkdr=gkdr

        insert borgka  gkabar_borgka=gka

        insert borgkm  gkmbar_borgkm=gkm

    }

}

proc init() {

    t=0

    coord_cadifus()

    forall {

        cao=2

        cai=50.e-6

        ek=-91

        v=-65

        if (ismembrane("nahh")) {ena=50}

    }

    vecV.record(&soma.v(0.5))

    vecCai.record(&soma.cai(0.5))

    vecT.record(&t)

    fi nitialize(v)

    fcurrent()

    forall {

 if (ismembrane("nahh")) {e_pas=v+(ina+ik+ica)/g_pas} else {e_pas=v+(ik+ica)/g_pas}

    }

    cvode.re_init()

}
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proc setup(){

    strength = 1.0 /*namps*/

    tstim = 50

    tstop=500

    gna=0.015

    gkdr=0.03

    gka=0.001

    gkm=0.0001

    conductances()

    /* The schedule of experiment is as follows:

    

10nA

0.15nA 0.15nA

1s 0.25s 7s 183s 0.25s 0.05s

     The 1800 s runs with 1 s intervals interspersed with 1 s of

     kinetic simulation and update of gkbar for all ca dependent k

     channels.

     The genesis model needs over 1 uM [Ca2+] for 10 s.

    */

    soma {

 // fi rst test pulse

 stim1 = new IClamp(0.5)

 stim1.amp = 0.15

 stim1.del = 1000.0

 stim1.dur = 250

 // tetanus pulse

 stim2 = new IClamp(0.5)

 stim2.amp = 1.0

 stim2.del = 2250

 stim2.dur = 7e3

 // fi nal test pulse

 stim3 = new IClamp(0.5)

 stim3.amp = 0.15

 stim3.del = 192.25e3

 stim3.dur = 250

    }

    init()

}

proc update_gkbar(){/* multiply all Ca2+ dependent K+ conductance by $1 */

  forall {

       gkahpbar_kahp = gkahpbar_kahp * $1

   }

   soma {

       print "soma gkdrbar before:", gkdrbar_borgkdr

       gkdrbar_borgkdr = gkdrbar_borgkdr * $1

       gkmbar_borgkm = gkmbar_borgkm * $1

       print "soma gkdrbar after", gkdrbar_borgkdr   

   }

   for i=0,1 dend2[i] {

       gkdrbar_borgkdr = gkdrbar_borgkdr * $1
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       gkmbar_borgkm = gkmbar_borgkm * $1

   }

   for i=0,2 dend3[i] {

       gkdrbar_borgkdr = gkdrbar_borgkdr * $1

       gkmbar_borgkm = gkmbar_borgkm * $1

   }

   for i=37,38 dend3[i] {

       gkdrbar_borgkdr = gkdrbar_borgkdr * $1

       gkmbar_borgkm = gkmbar_borgkm * $1

   }

   fcurrent()

}

access soma

distance()

/* run for interval specifi ed as argument# 1 */

proc run(){ 

    t_start = t

    while (t < (t_start + $1)){ 

//  print "run() - @t=", t

 fadvance() 

    }

//     print "run(): t_start =", t_start, " current time =", t, "run interval =", $1

}

proc do_run(){

    setup()

    print "setup done. running 7.25s"

    run(12250)

    print "t = ", t, "ms. done running. dumping data in test_neuron1.dat"

    outFile.wopen("test_neuron1.dat")

    for ii = 0, vecT.size() - 1 {

 outFile.printf("%g %g %g\n", vecT.x(ii), (vecCai.x(ii) - 50e-6)*2e6, 

vecV.x(ii)) // the original GUI plots this function of cai instead of absolute 

value - unit is nM*2

    }

    outFile.close()

    print "done dumping. running for 5s with 0.5nA"

    run(5000)

    print "t =", t, "ms. soma.Cai = ", soma.cai(0.5), ". now updating gkbar"

    update_gkbar(10.0)

    print "done updating. writing to fi le"

    outFile.wopen("test_neuron2.dat")

    for ii = 0, vecT.size() - 1 {

 outFile.printf("%g %g %g\n", vecT.x(ii), (vecCai.x(ii) - 50e-6)*2e6, 

vecV.x(ii)) // the original GUI plots this function of cai instead of absolute 

value - unit is nM*2

    }

    outFile.close()

    print "done dumping. now running the rest"

    run(1800300)

    print "t = ", t, "ms. done running. writing to fi le"

    outFile.wopen("test_neuron3.dat")

    for ii = 0, vecT.size() - 1 {

 outFile.printf("%g %g %\n", vecT.x(ii), (vecCai.x(ii) - 50e-6)*2e6, 
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vecV.x(ii)) // the original GUI plots this function of cai instead of absolute 

value - unit is nM*2

    }

    outFile.close()

}

Program listing 2: moosenrn.py – this program wraps the GENESIS model and the NEURON model and provides simulation control and data exchange 

between the two simulators.

#!/usr/bin/env python

# Author: Subhasis Ray

import sys

sys.path.append("/home/subha/lib/python2.5/site-packages")

sys.path.append("/home/subha/lib/python2.5/site-packages/neuron")

import pylab

import numpy

import neuron

import moose

class NeuronSim:

    """Wrapper class for the neuron simulation"""

    def __init__(self, fi leName="ca3_db.hoc"):

        """Load the fi le specifi ed by fi leName"""

        self.hoc = neuron.h

        self.hoc.load_fi le(fi leName)

        self.hoc.setup()

    def run(self, interval):

        """Simulate for interval time in second"""

        self.hoc.run(interval * 1e3) # neuron keeps time in milli second

    def cai(self):

        """Returns cai of in nM"""

        return self.hoc.soma(0.5).cai

    def cai_record(self):

        """Returns a tuple containing the array of time points and the array

of cai values at the corresponding points"""

        timeVec = numpy.array(neuron.h.vecT)

        caiVec = numpy.array(neuron.h.vecCai)

        return (timeVec, caiVec)

    def v_record(self):

        """Returns a tuple containing the array of time points and the array

of membrane potential values at the corresponding points"""

        timeVec = numpy.array(neuron.h.vecT)

        vmVec = numpy.array(neuron.h.vecV)

        return (timeVec, vmVec)

    def update_kconductance(self, factor):

        """Modify the k hcannel conductances in inverse proportion of mapk_star_conc"""

        self.hoc.update_gkbar(factor)

        self.hoc.fcurrent()
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    def saveplots(self, suffi x):

        cai = "nrn_cai_" + str(suffi x) + ".plot"

        vm = "nrn_vm_" + str(suffi x) + ".plot"

        t_series, vm_series, = self.v_record()

        t_series, cai_series, = self.cai_record()

        numpy.savetxt(cai, cai_series)

        numpy.savetxt(vm, vm_series)

        numpy.savetxt("nrn_t_" + str(suffi x) + ".plot", t_series)

class MooseSim:

    """Wrapper class for moose simulation"""

    volume_scale = 6e20 * 1.257e-16

    def __init__(self, fi leName="acc79.g"):

        self._settle_time = 1800.0

        self._ctx = moose.PyMooseBase.getContext()

        self._t_table = []

        self._t = 0.0

        self._ctx.loadG(fi leName)

        self.ca_input = moose.Molecule("/kinetics/Ca_input")

        self.mapk_star = moose.Molecule("/kinetics/MAPK*")

        self.pkc_active = moose.Molecule("/kinetics/PKC-active")

        self.pkc_active_table = moose.Table("/graphs/conc2/PKC-active.Co")

        self.pkc_ca_table = moose.Table("/graphs/conc1/PKC-Ca.Co")

        self.mapk_star_table = moose.Table("/moregraphs/conc3/MAPK*.Co")

        self.mapk_star_table.stepMode = 3

        self.mapk_star_table.connect("inputRequest", self.mapk_star, "conc")

        self.mapk_star_table.useClock(2)

        self.ca_input_table = moose.Table("/moregraphs/conc4/Ca_input.Co")

        self.ca_input_table.stepMode = 3

        self.ca_input_table.connect("inputRequest", self.ca_input, "conc")

        self.ca_input_table.useClock(2)

        self._ctx.reset()

        self._ctx.reset()

    def set_ca_input(self, ca_input):

        """Sets the conc. of Ca_input molecule"""

        print "set_ca_input: BEFORE: nInit =", self.ca_input.nInit, ", n =", 

self.ca_input.n, ", setting to: ", ca_input* MooseSim.volume_scale

        self.ca_input.nInit = ca_input * MooseSim.volume_scale

        self.ca_input.n = ca_input * MooseSim.volume_scale

        print "set_ca_input: AFTER: nInit =", self.ca_input.nInit, ", n =", 

self.ca_input.n

    def ca_input(self):

        """Returns scaled value of Ca_input conc."""

        return self.ca_input.conc

    def run(self, interval):

        """Run the simulation for interval time."""

        self._ctx.step(fl oat(interval))

        # Now expand the list of time points to be plotted

        points = len(self.pkc_ca_table) - len(self._t_table)

        delta = interval * 1.0 / points

        for ii in range(points):

            self._t_table.append(self._t)

            self._t += delta
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    def pkc_ca_record(self):

        """Returns the time series for pkc_ca conc."""

        return (self._t_table, self.pkc_ca_table)

    def pkc_active_record(self):

        """Returns time series for pkc_active conc."""

        return (self._t_table, self.pkc_active_table)

    def mapk_star_conc(self):

        """Returns MAPK* conc. in uM"""

        return self.mapk_star.n / MooseSim.volume_scale

    def mapk_star_record(self):

        """Returns time series for [MAPK*]"""

        return (self._t_table, self.mapk_star_table)

    def saveplots(self, suffi x):

        pkc_a = "mus_pkc_act_" + str(suffi x) + ".plot"

        pkc_ca = "mus_pkc_ca_" + str(suffi x) + ".plot"

        mapk_star = "mus_mapk_star_" + str(suffi x) + ".plot"

        ca_input = "mus_ca_input_" + str(suffi x) + ".plot"

        numpy.savetxt("mus_t_" + str(suffi x) + ".plot", self._t_table)

        self.mapk_star_table.dumpFile(mapk_star)

        self.pkc_ca_table.dumpFile(pkc_ca)

        self.pkc_active_table.dumpFile(pkc_a)

        self.ca_input_table.dumpFile(ca_input)

    def test_run(self):

        self.run(500)

        print "After 500 steps of uninited run: [MAPK*] =", self.mapk_star_conc()

        self.ca_input.nInit = 10 * MooseSim.volume_scale

        self.ca_input.n = 10 * MooseSim.volume_scale

        self.run(5)

        print "After another 5 s with 10uM ca input: [MAPK*] =", self.mapk_star_conc()

        self.ca_input.nInit = 0.08 * MooseSim.volume_scale

        self.ca_input.n = 0.08 * MooseSim.volume_scale

        self.run(500)

        print "fi nished run. going to plot" 

        print "After another 500 s with 0.08 uM ca input: [MAPK*] =", 

self.mapk_star_conc()

        pylab.plot(pylab.array(self._t_table),

                   pylab.array(self.pkc_active_table),

                   pylab.array(self._t_table),

                   pylab.array(self.pkc_ca_table))

 pylab.show()

if __name__ == "__main__":

    mus = MooseSim()

    mus.set_ca_input(0.08)

    mus.run(1800.0)

    mus.saveplots("1")

    start_mapk = mus.mapk_star_conc()

    nrn = NeuronSim()

    nrn.run(2.25)

    nrn.saveplots("1")

    fi le_ = open("cai_setings.txt", "w")
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    # Interleaved execution of MOOSE and NEURON model

    # Synchronizing after every 1 s of simulation

    while nrn.hoc.t < 192.25e3

        scaled_cai = scale_nrncai(nrn.cai())

        mus.set_ca_input(scaled_cai)

        print "scaled_cai =",scaled_cai

        fi le_.write(str(nrn.cai()) + " " + str(scaled_cai)+"\n")

        mus.run(1.0)

        gkbar_scale = start_mapk / mus.mapk_star_conc()

        start_mapk = mus.mapk_star_conc()

        print "[mapk*] = ", start_mapk

        nrn.update_kconductance(gkbar_scale)

        nrn.run(1.0)

        print "time is ", nrn.hoc.t * le-3, "s"

    fi le_.close()

    nrn.saveplots("2")

    mus.saveplots("2")

    # fi nal test pulse run

    nrn.run(0.3)

    nrn.saveplots("3")

    t_series, vm_series, = nrn.v_record()

    t_series, cai_series, = nrn.cai_record()

    pylab.subplot(121)

    pylab.plot(t_series, numpy.array(vm_series), t_series, numpy.array(cai_series) 

* 1e6)

    t_series, pkc_act, = mus.pkc_active_record()

    t_series, pkc_ca, = mus.pkc_ca_record()

    t_series, mapk_star, = mus.mapk_star_record()

    pylab.subplot(122)

    pylab.plot(numpy.array(t_series), numpy.array(pkc_act), numpy.array(t_series), numpy.array(pkc_

ca), numpy.array(t_series), numpy.array(mapk_star))

    pylab.show()
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