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ABSTRACT

The effect of radiative corrections iIn a general
supersymmetric gauge theory is studied when the gauge
symmetry 1is partially broken at the tree 1level, Certain

no-rencrmalization theorems are proved.
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I. INTRODUCTION

The effect of radiative corrections in supersymmetric
theories has been discussed by many authorsqku. An extensive
discussion ¢f supersymmetric gauge theories where the gauge

symmetry and supersymmetlry are unbroken at the tree level

may be found in Ref.l. The effect of one loop radiative
corrections in a supersymmetric gauge theory where
supersymmetry 1is unbroken, but the gauge symmetry is

completely broken at the tree level, has been discussed by
Ovrut and WeSSB. In all tne cases that have ©been discussed
so far, supersymmetry has been found to be unbroken due to
radiative corrections. In this paper we shall discuss the
effect of radiative corrections in a general supersymmetric
gauge theory, where the original gauge group is spontaneously
broken to one of its subgroups H at the tree level. We shall
show that although the radiative corrections shift the
vacuum expectation values {vev) of varicus fields, the
following no-renormalization theorems hold.
i) Supersymmetry is unbroken even after including the
radiative corrections,
ii) The gauge group H is also left unbroken by the radiative
corrections.
iii} For every zero eigenvalue of the tree level mass
matrix, we have a zero elgenvalue of the renormalized mass
matrix. This issue is important in studying the stability

of the mass hierarchy.



We use the background field formalism for our analysis.
OQur result is wvalid to all orders in perturbation theory,
provided we assume that the effective action 1In the
background field formalism reproduces all the physical
results correctly to all orders in the perturbation theory.
The rest of the paper is organized as follows. In Sec.II we
discuss the structure of the scalar and the vector boson
mass matrix at the tree level. In Sec.III we analyze the
structure of the possible radiatively generated terms in the
theory, and discuss their effect on supersymmetry and gauge
symmetry breaking, as well as on the scalar mass matrix. We
summarize our results in Sec.IV. In appendix A we discuss
the Feynmann rules for supersymmetric gauge theories when
the pgauge symmetry is partially broken at the tree level.

Throughout this paper we use the conventions of Ref.%,



I1. TREE LEVEL PCTENTIAL

Let {¢i} denote the set of all the <c¢chiral superfields

in the theory, and a5 be the physical scalar components of

¢ We assume that the theory is described by a

i .

superpotential W(4) which 1is 1invariant under some gauge

group G. The generators of G are dencted by Ta' If Fi and

Da denote the auxiliary components of the chiral superfield

¢i and the vector superfield Va respectively, the potential

involving the scalar fields is given by,
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[Here we have ch”osen the Wess-Zumino gauge5 for the gauge

fields]. Eliminating F, and D, through their equations of

motion, we get the effective potential at the tree level,

vz gfs(zztmaz) @)

We assume that the potential has a supersymmetric

minimum at Zi=zi(0)’ where,
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The vev of the scalar fields break the gauge group G to



one of its subgroup H. Let Tp, T,»-.. denote the generators

of H, and T T

K denote the broken generators of G.
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Following Ref.6é we shall c¢hoose a basis in which the

scalar fields Z; are divided into three classes of fields,

Z ., z

o and z,. The fields Zx denote the direction parallel

A K

to TKz(O), while z, and z, are orthogonal to this direction.

A

In our convention {Zi} will denote the set of all fields

{Za’ Z,, 2zy}. If we choose a basis in which the vector boson

mass matrix is diagonal,
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fthen we have,
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where the sum over 1 runs gver the set o A, K. The

contribution to the scalar ma532 term from the second term

in Eq.(2.2) is given by,
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On the other hand the contribution to the scalar mass® term

fron the first term in Eq.(2.2) is given by

(MTM)ij(zi~zi(O)TT(Zj—zj{O)), where,
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Using the invariance of W under a gauge transformation

with arbitrary complex parameters3, we may show that,
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Hence the fields zy are eigenvectors of (MTM) Wwith zero
eigenvalue. Fields z, and z, are choosen in such a way that
za’s are the additional eigenvectors of MTM with zero
eigenvalue, whereas z, is an eigenstate of MTM with

eligenvalue MA’ Thus wWwe also have,

— = O( R A P
Myna * qu o vV «, B, (2-11)
whereas MAB is a non-singular matrix. Thus the fields z,
and the imaginary parts of ZK are massliess. The imaginary

parts of ZK are hcowever eaten up by the gauge fields tnrough
higgs mechanism. The real parts cf Zy acquire masses from
(2.8) equal to those of the gauge bosons, and form scalar

parts of complete vector supermultiplet, Hence at the {tree



level we have a set of massless complex scalar fields 2,0 @
set of massive complex scalar fields Zy, with mass MA and a
set of massive real sczlar fields degenerate with the
massive vector fields. For latey cConvenience we take all the
fields 2., 24 and Z, te be the unshifted frelds. This

dees not affect Egs. (2.10) and (2.11) with M;; given by F.(29).



III. RADIATIVE CORRECTIONS

We shall now study the effect of radiative corrections
in this theory using the background gauge formalism. This
methcd has been developed and discussed in detail in Ref.}
for unbroken gauge theories. Some modifications needed to
extend the method te spontaneously broken gauge theories ah€
discussed in appendix A. We split every chiral superfield
¢i and the vector superfield Va into background and quantum

superfields as,
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where the superscripts (b) and (q) denote the background and
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quantum superfields respectively. Let us define the
connections F<b) féb) and field strengths w(b) and w(b) as,
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where Da, D; are the ordinary covariant derivatives. If we

also define,
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and $(b) to be its complex conjugate field, the action is

invariant under the background gauge transformation,
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together with some transformations on the qguantum fields
listed in appendix A. There is another s8et of
transformations on the quantum fields which leaves the action
invariant. We shall call this the quantum gauge
transformation.

The gauge fixing term given in appendix A4 is cholsen in
such a way that it breaks the quantum gauge invariance but
not the background gauge invariance. The structure of
radiatively generated terms in thils thecry may be analyzed
in the same way as in Ref.l, Some details of this analysis
have been given in appendix A. We reach the following
conclusions:

i) The full effective acticn expressed as a function of the
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background filelds V(b), $(b) and Q(b), is invariant under

the background gauge transformation (3.9).
ii) The radiatively generated terms in the effective action

must be of the form,
$die S(g d'x,) £ (P (x,015) (3-10)

where f is some arbitrary function of the superfields ¢i and

their covariant derivatives at different space-time points

X,. but the same fermionic co-ordinate 8.

iii) In two loop order and beyond, there is no explicit
dependence of the effective action on the gauge fields VEbJ
belonging to the unbroken subgroup H, except through the
5(0)  F(p) w(®)

superfields ¢ b , Wéb), Pa(b) and T{P). At one

5
loop order the radiative corrections may have explicit
dependence on Véb). The contribution comes cnly from loops
of chiral superfields belonging to a complex representation
of the gauge group. If the chiral superfields of the thecory
belcong to the real representations of the gauge group H, or
cccur in complex conjugate pairs so that together they again
form a vreal representation of H, then even the one locp
contributicn is free from explicit dependence on V(b),

From ncw on we shall drop the superscript (b) from
various tbackground fields,. Any field withcocut a superscript
will refer to background field, unless otherwise mentioned.

We shall write dewn all pcssible radiatively generated terms

which may shift the vev of varicus fields and break
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supersymmetry. First note that since the effective action
is invariant under the background gauge transformation
(3.9), we may choose the background gauge field V to be in
the Wess~Zumino gauge. The effective potential is then a
function of the auxiliary fields Fi' Da and the scalar
fields z;., In order to saturate the § integral in Eq.(3.10),

all the radiatively generated terms must have at least one

*
power of F. F. or one power of D,. Since the minimum of the

J
tree level potential lies at F1=Da=0 {and so does the
minimum of the full potential, as we shall show), any term

quadratic in the auxiliary fields will not shift the vev of
various fields or ©break supersymmetry. Thus the only
possible radiatively generated terms that may break
supersymmetry is of the form,

") 1)

"e Z ])0_ PCLCZ?)Z

where Pa is some function of the scalar fields. As was
shown in Ref.H4, Pa is free from quadratic divergences, and
is at most logarithmiecally divergent.

First we shall consider the contribution to Pp, One
loop contribution teo Pp from loops of massless chiral
superfields vanish in the dimensional regularization scheme.
On the other hand, singe the generator Tp belongs to the
unbroken subgroup H, all the massive fields o¢of the theory

must be either in the real representation of H, or occur in

pairs of complex conjugate representations, This is true
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for the superfields ¢A which acquire their mass from terms
in the superpotential W(¢), as well as the superfields ¢K
which acquire mass tThrough thelr mixing with the vector
superfields. Combining this result with our previous
discussion we see that to all orders in perturbation theory,

the radiatively generated terms that are linear in Dp depend

on ra’ wa’ 4 and their complex conjugate superfields, but
not explicitly on Vp. The terms containing D, in T, and W,
2

are proportional to 88D and 6D respectively, and cannot
saturate the @ integral in (3.10) unless multiplied by some

other auxiliary field. Hence the only source of terms

linear in D is the exp(V,T,/2) term in ¢ and o¢. The

contribution from such terms to the effective potential may

be written as,
* .
€2 D o= %%%:ﬁcaz’*) (Te), 2, + h-C%

2
+ O (D) (3-12)
Wwhere fi is some function of =z, zT. The above equation tells

us that Pp vanishes at z(o),

and more generally, at any
point which is invariant under the subgroup H.
Let us now analyze the contribution to PK' In studying

this we shall classify the generators TK in irreducible

representations of the group H. Let {TS} denote the set of
generatcers which are singlets under H, i.e. which comnute
with every generator of H, and {TN} denote the set of

generators which transform non-trivially under H, Then PN
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must vanish at a point Z; whieh is invariant under the

subgroup H. PS, on the other hand, is of order M2 where M
is the typical mass scale of the theory.
Adding (3.11) to (2.1}, and eliminating the auxiliary

fields through their equations of motion, we get,

S 25
D.o=-edczT z+P) ~
~o. T © az o (3'”’J
and the full potentisgl 1is,
v = ZIR1P + L 517 3-15)
- A 2 T o
A
We seek a solution where Fi and Da vanish for all
values of 1 and a. We start from the ansatz,
~ .
— (o} - . (s} .
ls’s being the parameters to be determined. Using the

invariance of W under gauge transformation with complex

parameters, we may show that,

i
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Also,
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since Tp commutes with Tg. Thus Pp, Py vanish at Z(O)| and
so do Dp and DN'

We shall now show that there always exist sclutions for
AS which make DS vanish and hence glve us a supersymmetric
minimum of the full potential. The equation determining AS

is given by,

r'TlJ ‘rr[ Hi o) }\ -;'T'., ) 2 —H’T‘ "
T @S 2@ L (@M g gt )= 0

wa+ e
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which may be written as (Wsing Ep.(2-3)),

Z Z(o}'r _E .T,s JTS;} Z(b.) A

s' ;
}\ r'T'u o A.n'Tlu
=-R e Vg0 gutehs )
o ; I 1 ) "l'rl " g ", (0)
= Zr ’f ( e)\s rrls 'Tls & S FT]S - { rpSJ rps'§ AS’ ) (5 <3"ZO)

The left hand side of the equation 1s given by

uszks/e2. We may solve Eq.(3.20) iteratively. In the first
stage of iteration we set lS=0 on the right hand side cf the
equaticn, and solve for Ag. This value of Aig is then
substituted on the right hand side o¢f (3.20}, and a new
value of AS is obtained. Since both Mg and Py receive

contribution from diagrams invelving one or more loops, the

correcticon to the wvalue of AS in successive stages of
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iteration will be of higher and higher powers in the 1loop
expansion. Thus, up to any arbitrary order in perturbation
theory, it is always possible to find a solution for AS
satisfying Eq.{3.19) using the method of iteration,

Next we shall study the effect of radiative corrections
on the scalar mass matrix,. We shall again ignore terms
containing two or more powers of the auxiliary fields, and
keep only the terms given in (3.11). It will be shown later
that these extra terms do not change any of the results that
we shall derive. Let us define new fields z; in terms of
the fields z, as,

B VAR
2/ = (e ™"), g &-21)

for i=K, A or a. Thus at the new minimum of the potential z"

takes the value

AT, A ©)
£
chej - & 5 'y ZcoJ = Z (3‘22)
Since W is invariant under gauge transformation with complex
parameters, it has the same functional dependence on z" as
on z. Thus
Z 2
( 3w ) _ ( 2% (3.23)
~ i L -~ . )

Hence, if we work in the basis {zi"}, the contributicn

tec the mass matrix from the F terms cf the pectential at the
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new minimum involves only the ZK fields, and not the z& or

the z% fields. The part of the D term of the potential
which contributes to the mass matrix may be expressed 1in

terms of the fields zi" as,

T AT 4 o
Z D 2 — Z— { Zn-l- e’\sms 1-|—|K 6)%5 s Z +P‘<(e STg) Z e
K K

W

Unlike in Sec.II, the contribution from this fterm to

the mass matrix involving Za" and ZA" fields does not

vanish, since BDKfaza" or BDK/BZA" are non-zerg in general
at z=z(0), with DK given by Eq.(3.14). The problem may

be avoided by defining a new set of fields zi' such that,

- 44 _ 4 : f ) . / ."2 -
Z" = 2 4B B+ B, E] (3 25)
i / 2
Z," = Z (3-2¢)
i . - ! 3‘27
Z;' - 5;' < J
where B and B are constants that will be determined
ak AK
shortly. Using Egs. (2.10) and (3.23) we may show that,
(Fh)s T (Tl O
. P ) ~ o
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On the other hand,

3D - 2P« 4 B, 2P«  Lon =, A (329)
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where 8/821' denotes differentiation with respect to the
fields z;' keeping all the other zy' flelds fixed, We

choose BuK and BAK in such a way that,

(e_p_K

) B :—(%Z_D_K) For 1= X, A
32! /5. % Lz

e S F e
(3-30)

so that aDK/azi' vanishes at z.=;£0) and the D term does not

1

contribute to the mass matrix involving the zAr and the za'

fields. The solution to (3.30) always exists since
(BDK/SZL">Z=5(O) is a non-singular matrix whose lowest order

contribution is given by Mg - 0Dg/3z;" vanishes at the tree

level for i=a or A, but receives contribution at one {(or
more) loop order. Combining Eqs.(3.24), (3.28), (3.29) and
(3.30) we see that the fields z,' remain massless even after
ineluding 211 the radiative corrections. As in Sec.II, the
real part of z,' acquires a mass from the D terms of the
potential, while its imaginary part gets absorbed by the
gauge bosons through the higgs mechanism. Although the
wave-function renormalization factors for the scalar
fields further renormalize the mass matrix, they cannot
change the zero eigenvalues of the mass matrix, which
represent flat directions in the potential. In other words,
for every eigenstate ¢of the tree level mass matrix with zero
eigenvalue, we have an eigenstate of the renormalized mass
matrix with zerc eigenvalue.

Finally we shall discuss the effect of the terms
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involving two or more powers of the auxiliary filelds. As we
have already mentioned, these terms do not affect the
positions of the new minimum, since they, and their firsg
derivatives with respect to any scalar field, automatically
vanish at ;(0). The only terms which may contribute to the
scalar mass matrix are the ones whose second derivatives
with respect to the scalar fields do not vanish at z=z(0).

These are the terms quadratie in the auxiliary fields. The

most general term of this kind is of the form,

R Fg_* F +(gm F* +h.C) 4 £, D.D, (3-31)

Jd

where h, g and f are functions of the scalar fields. Adding
this to (2.1) and (3.11) and eliminating the auxiliary
fields through thelr equations of motion, we may write the

full potential as,

V = (9_\9!)* H (,a_w) e )“" G (2T ziR) NS
2, W \aZ; IE,

t +
+ (ZT 24P )FE, (2T z+F) (3.32)
where Fab’ Gj, and Hij are functions of the scalar fields
which may be calculated in terms of the functions f h

ab! ij
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and g.5- Using Eqs.(3.21) and (3.25) we may express V as,

Vo= (é_w)* Moy (22)) + (2w )* ! oz
QZ‘I L) ‘923 aZ! Lo

T 24P ) +h e

+ (Z+"T‘G_~£ + P F-‘aib (Z*Tb Z + P-b)

(3-33)
Using Egs. (3.28) and (3.30) we may show that,
2 ‘ 2 ¥V .
37V = D"V = 37V -9 Y =0
Nz ’ i % " N
3232, a2/ ed 3232, dZ ¥z
ek Z = %“”) v i, & (3-3Y)

showing that z,' are massless complex scalar fields.
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IV. CONCLUSION

In this paper we have analyzed the effect of radiative
corrections in a general supersymmetric gauge theory, where
the gauge group G 1is partially broken to one of its
subgroups H at ¢the tree level, but supersymmetry 1is
unbroken. We have done our analysis in the background field
gauge and our results are based on the assumption that the
effective action in the background field gauge correctliy
reproduces all the physical results to all orders in
perturbation theory. With this assumption we have shown
that,
i)Supersymmetry is unbroken to all orders in perturbation
thecry.
ii)Although the radiative corrections may shift the vev of
various scalar fields, the subgroup H is unbroken to all
orders in perturbation theory.

iii) Fer every eigenstate of the tree level scalar mass
matrix with zero eigenvalue, we have an eigenstate of the
full renormalized mass matrix with zero eigenvalue.

One possible 1loophole in our analysis may lie in
ignoring the possible effects of infrared divergences. When
Wwe calculate the effective potential, we Keep only those
terms which give non-vanishing contribution at zero external
momenta., It is, however, possible that the infrared
divergences may give rise to inverse powers of external

momenta from lcop integrals, which cancel some explicit
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powers of the external momenta in the numerator. Hence
graphs, which are naively thought to vanish at zero external
momenta may give rise to non-vanishing contribution to the
effective potential. Usually, however, the power law
infrared divergences are thought to be gauge artifacts, and
are not expected to affect any gauge invariant result. i\
class of non-local gauges, proposed recentlyT, may provide a
solution to this problem.

Another possible loophole lies in the assumption that
the effective action 1in the btackground field formalism
correctly reproduces all the physical results. Although
this 1is generally believed to be true, there is no rigorous
preof te this effect.

If we ignore these two issues, the method used in our

analysis, combined with the analysis of Ref.8, may be used
for studying the stability of mass hierarchy in
supersymmetric gauge theories when supersymmetry 1is

explicitly broken at the tree 1level through soft terms.

Work towards this end. is in progress.
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APPENDIX A
In this appendix we shall give some details of the
Feynman rules for the c¢lass of theories discussed in the
text. We choose the gauge fixing term to be,

"%. Sdﬁx dﬁ@ ti‘}'(u.
where,

(Vz\/cﬂ)m + €
g

Z,3

v, = v&m s ) qvibj’r'&/z, - - F‘:)
A G A I
O, = 0-:w® v -1 i@ w

0D = yiy,73 v TPS

The first term on the right hand side of (A.2)

gauge fixing term used

second term is a generalization of the term used

and

is the

for unbroken gauge theories,

A1)

2 %w) M)y (92 - FY);

+

®2)

(A-3)
(R-4)
(A 5)

GRY,

usual

The

by Ovrut

Wess3. The term containing the product of v'9) and ¢'9)
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in (A.1) cancels a similar term in the original Lagrangian,

coming from the %exp(Véq)Ta); term, except for terms

invelving covariant derivatives of $(b), Q(b) fields,. F a®

as defined in (A.2), 1s covariant under the background gauge

transformation, under which the background fields transform

as in Eq.{3.9), while the quantum fields transform as,

. . b . <
2) L, (AT rq - (AT
V.. T, — & VPm e
(o) :
-V M /2 o LG Ta e
Cf;s(‘“ = & ¢V - e > ¥

— ~ “v(bj ,FA/ ey - A:Lq‘o._
CP(?J = %(?J e o 2.__,, CP(‘(I = e (A?)

where the real superfield Ka(A) is the sclution of the

equation,

; 6) .
L A, T viom.o /2 e_u(&rrrw

e v fe i,

e A-=)

Thus the gauge fixing term (A.1) is invariant under the
background gauge transformation. Then fthe Faddeev-Popov
ghost term in the acticn, derived from (A.1) must alsoc be
invariant under the background gauge transformation. As a
result, all the radiatively generated terms In the effective

action must be background gauge invariant.
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In order to derive the Feynman rules, we must separate
the total tree level action into the 'interacting' part and

the 'free' part, For this we define the shifted fields,

A .
((D) _ B (b} — (D)
th = qb. - 2.
A A A
~ ] .
_ (b) % ( .
qt) — (T ‘ Z%(OJ A 9)
A A
~(») =(p) ~(b)._(0) ‘(b) _(0) ¥
and replace ¢i , 4 by ¢ *z 4 and i z
everywhere in the tree level action. We define the free

part of the effective action to be,

~(2)

5.(2) ('VC?IJ < ¢a] CTLJ{:?}

= L (d'x d'e VY {v 7 -5 (v T el v

26’2
X : - ~ L _‘2 . o) . o~ "71’
t(d'x Lol ¥ - €71 2 Yo (v 37,5
. A .:_-s-— A Ly D
. . N -
P EY (T (V2L §7) 3] +0dx Lo tm, £V ¢
O, <
+ h.C ] + gkos’c terms QQ-IO)
and ¢all the rest of the action S5, . Although S

int. int
contains terms quadratic in the quantum flelds, these terms

are multiplied by explicit factors of r(b} Wéb), ¢§b) or

their complex conjugate fields, and hence they may Dbe

treated as interaction terms.
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The Feynman rules may be written down by <c¢onsidering

the generating functional,

2T, T, 7))

A A

o SN A A

AV dg® d'™ expl 11 sUVI) +37 (g

)

FSd x (Sdle 3V 4 Sdloa B4 (006 T, F)5 ]

(8

where i 3i are background <covariantly chiral and

anti~chiral currents satisfying Vd J=Va3=0, and Ja is a real
current. For simplicity of notation we have ignored the
ghost fields here, they may be treated in the same way as
the chiral superfields ¢i’ $i' The simplest way to derive
the Feynman rules would “be to express all the

background covariant derivatives in terms of the ordinary

covariant derivatives and the fields F;b), féb), W;b) and
Wéb), and express the fields ¢i’ ;i in terms of ¢ 51 and
V;b). We may then use the rules of functional

differentiation in superspace to derive the Feynman rules,
and use the set of manipulations given in Refs.2 and 4 +to
show that all the radiatively generated terms in the
effective action must have the form of Eg.(3.10). However,

the Feynman rules derived in this way have explicit

)
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dependence on V;b) and hence are not useful Iin proving the
proposition (iii) of Sec¢.III.
We use the doubling trick of Ref.4 to prove that the

effective action does not have any explicit dependence on
V;b) except through the connections, field strengths and fhe

5(b) ~{(b)

covariant scalar fields and ¢ . We have used this

result in the text only in analyzing terms linear iIn Dp,
henge we shall prove the result only for such terms. In
doing so we may set all components of the background gauge

field ¢to =zero, except the ones 1lying in the unbroken

subgroup H, The various covariant derivatives V v

o’ are

a
then c¢ovariant only with respect to the background gauge

transformations with group elements lying iIn the subgroup H.

Since Zgo) and Mij are invariant under H, we may replace
- 2 (q)  z(q) ;

in (A.10) is invariant under local gauge transformations

belonging to the subgroup H. Doing some integrations by

parts and using the relations,

Vv

e
N
i
=
_e_
£)
£

we get,
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where Aiﬁ) is a 2x2 matrix for fixed i, Jj. Also wWwe may

express st2)(y(a)y 44,
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W [ g } (A-16)
(52 o 7).
v ),
where,
ange = 5 AV exp (1sHvW)) (A-17)

Bipynar =S4T AFT exp C05PCq” 30 (@)

A and A denote one loop contributions from loops

gauge chiral
of gauge fields and chiral superfields respectively, with
only background gauge fields as external lines.

The Feynman rules for evaluating the J dependent part

on the right hand side of (A.16) are obtained by using the

rules,

&g X0 = 5 80 x 1 TS 001 (@)
£J.(x0)

2 Fox o) = Sy 8Y(x-x) vV 960 (B20)
> T (xs) 0

T x\ o) = 8 &7¢x-x') §"(e-¢") (@21
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Also, in the actual computation we expand (A(V))”1 and
(A(¢))~1 about the point V(b)=0 S0 that
A”1(V(b))~A~1(V(b)=O) term appears as an interaction term
with Dbackground gauge fields as external lines. & further

simplification occurs due to the fact that the fields which

receive their mass from the Mij term do not receive any mass

from mixing with the gauge fields, and vice versa, as was
X . (¢} (D) (V) ,4(b)

shown in Sec.II. Since S, ., Aij (v ) and ALk (v )

)

depend on ng only through the connecticons, field strengths

and the fields ;(b), ;(b), the Feynman rules for evaluating

g ()

the J dependent part of (A.16) alsc depends on only

through these quantities. The same result is true for the

(2

dependent part of A which may be seen by writing

gauge’

as
gauge '

Aguuge = Lexpiifdx de 3 (a7 v - A(:Lm/“’_lo)Jg%}

&HT,

b T AT ) T

(A 23)
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(V) (D)
Asp LV )

Since

()

deoces not have any explicit dependence on

» Lhe Feynman rules for evaluating V(b) are also free

from explicit dependence on V(b).

The same trick cannot be applied for A since ¢

and ¢i have explicit dependence on V(b)

chiral?’

when expressed in
terms of the ordinary c¢hiral and anti~-chiral superfields ¢i

and ¢$,- We must wuse the doubling trick of Ref.4 to bring
this contribution into a <c¢ovariant form. Since the
covariant derivatives Va and ﬁ& are covariantized only with
respect to the subgroup H, the doubling trick may be used
for any real (reducible) representation of H. This includes
all the chiral superfields which get their mass through

their mixing with the gauge fields, since the broken

generators of the gauge group form a real representation of

H. Let us define,
Fr-A 2 : o (u . c+ g .
(), = e (T, 2027 (M) (A 24]
s¢o that,

S‘CZJ( qb.:“) "'_, ) jd“x Mol éfvm %‘5’5?;

L BI) (L F) My B (v 5, e ]
@ 25

Using the doubling trick, we may bring A in the form,

chiral

~ (%) :'\, Lq).l ~ (7 )

‘S CLJﬁf?j €E‘KF,( \g(jj Ck?é} QL C#)J
(A- 26’)

A

choisgal
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where,

A" o

vy ' T 0O, s 0. ty

The Feynman rules for A may now be derived by

chiral

writing (A.26) as

AC*\L’@L = [ é_’xlb{-% S'x d“l@fZ(z-J(\/(P"J'Zcq),}(v“”.-o)§

L)

)

(, , %) (- ¢ _g‘ )§ Q,X_‘D‘E s ‘5’(1‘1_9( C{Z@ (K@’)(V(ﬂo,)

(B-29)

iy

Since A(¢) depends on V(b) only through its dependence
on connections and field strengths, so must be Achiral' Thus
if all the chiral superfields transform according to real

representations of H, terms in the effective action linear

in Dp do not depend explicitly on Véb). In the presence of
chiral superfields transforming accordingte a complex
representation cof H, we could get radiatively generated
terms which depend on V(b) explicitly, These terms come

from one loop <contribution 1inveolving c¢hiral superfields,

with only background gauge fields as external lines.
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However, since H is the unbroken symmetry group of the
theory, a chiral superfield belonging to the complex
representation of H must be massless. Hence contribution
from such one loop graphs linear iIn the background gauge
field involves massless tadpoles, which vanish in the
dimensional regularization scheme. As a result, even in the
presence of chiral superfields in the complex representation
of H, the terms in the effective action linear in the

background gauge field do not have expliclit dependence on
v(p)
p
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