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ABSTRACT 

The effect Of radiative corrections in a general 

supersymmetric gauge theory is studied when the gauge 

symmetry is partially broken at the tree level. Certain 

no-renormalization theorems are proved. 
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I. INTRODUCTION 

The effect of radiative corrections in supersymmetric 

theories has been discussed by many authors 1-4 . An extensive 

discussion Of super-symmetric gauge theories where the gauge 

symmetry and supersymmetry are unbroken at the tree level 

may be found in Fief.4. The effect of one loop radiative 

corrections in a supersymmetric gauge theory where 

supersymmetry is unbroken, but the gauge symmetry is 

completely broken at the tree level, has been discussed by 

Ovrut and Wess3. In all the cases that have been discussed 

so far, supersymmetry has been found to be unbroken due to 

radiative corrections. In this paper we shall discuss the 

effect of radiative corrections in a general supersymmetric 

gauge theory, where the original gauge group is spontaneously 

broken to one of its subgroupsH at the tree level. We shall 

show that although the radiative corrections shift the 

vacuum expectation values (vev) of various fields, the 

following no-renormalization theorems hold. 

i) Supersymmetry is unbroken even after including the 

radiative corrections. 

ii) The gauge group H is also left unbroken by the radiative 

corrections. 

iii) For every zero eigenvalue of the tree level mass 

matrix, we have a zero eigenvalue of the renormalized mass 

matrix. This issue is important in studying the stability 

of the mass hierarchy. 
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We use the background field formalism for our analysis. 

Our result is valid to all orders in perturbation theory, 

provided we assume that the effective action in the 

background field formalism reproduces all the physical 

results correctly to all orders in the perturbation theory. 

The rest of the paper is organized as follows. In Sec.11 we 

discuss the structure of the scalar and the vector boson 

mass matrix at the tree level. In Sec.111 we analyze the 

structure of the possible radiatively generated terms in the 

theory, and discuss their effect on supersymmetry and gauge 

symmetry breaking, as well as on the scalar mass matrix. We 

summarize our results in Sec.IV. In appendix A we discuss 

the Feynmann rules for supersymmetric gauge theories when 

the gauge symmetry is partially broken at the tree level. 

Throughout this paper we use the conventionsof Ref.4. 
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II. TREE LEVEL POTENTIAL 

Let ($iJ denote the set of all the chiral superfields 

in the theory, and zi be the physical scalar components of 

@i. We assume that the theory is described by a 

superpotential W(4) which is invariant under some gauge 

group G. The generators of G are denoted by Ta. If Pi and 

D a denote the auxiliary components of the chit-al superfield 

ei and the vector superfield V, respectively, the potential 

involving the scalar fields is given by, 

V- -L{ F;7h*Fi t(Fiai? 
i 2 zi 

-ch.c.)3 -pi ~‘+D-~. ~~~T~J;j~;5 

W) 

[Here we have chr:osen the Wess-Zumino gauge 5 for the gauge 

fields]. Eliminating Fi and Da through their equations of 

motion, we get the effective potential at the tree level, 

v = qe; I2 + i 2’ 2T (z t+(TJij d (2.2) 
A a L,J 

We assume that the potential has a supersymmetric 

minimum at zi=si (0) , where, 

.a2 = CJ v n j .2+ I-J&Z :-cl vu 
2.2; 

(2.3) 

The vev of the scalar fields break the gauge group G to 
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one of its subgroup H. Let T 
P' To,... denote the generators 

of H, and T K' TL,... denote the broken generators of G. 

Then, 

c (T, ) ij ~~’ = 0 V ,i o.ntL P (2.4) 

Following Ref.6 we shall choose a basis in which the 

scalar fields zi are divided into three classes of fields, 

zu, ZA and zK. The fields ZK denote the direction parallel 

to TKz('), while zcL and ZA are orthogonal to this direction. 

In our convention {zi} will denote the set of all fields 

iz a' 'A' 2,). If we choose a basis in which the vector boson 

mass matrix is diagonal, 

2 
t-4 KL G 6 z:“+ir, , T, &i$ = /YA.’ sKL 

then we have, 

c? jTlc)Li .Z';' = mm& /.A~ sKL 

where the sum over i runs Over the set a, A, K. The 

contribution to the scalar mass 2 term from the second term 

in Eq.(2.2) is given by, 

L l$ /A,” (.@)” 23 

(a.5) 

(2.6) 

GW 
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On the other hand the contribution to the scalar mass 2 term 

from the first term in Eq.CZ.2) is given by 

(M+M)~~(z~-~~(~))‘+(z~-Z~!O)). where, 

Mij = bp) 

Using the invariance of W under a gauge transformation 

3 with arbitrary complex parameters , we may show that, 

M,K = M,, = M,, =o v d, A, L,Y (2.14 

Hence 

eigenvalue 

za’s are t 

eigenvalue, 

eigenvalue 

the fields zK are eigenvectors of (M+M) with zero 

Fields za and zA are choosen in such a way that 

he additional eigenvectors of M+M with zero 

whereas ZA is an eigenstate of MtM with 

MA* Thus we also have, 

M dA = MqP =‘O 
V d,P, A 

whereas MAR is a non-singular matrix. Thus the fields z a 

and the imaginary parts of zK are massless. The imaginary 

parts of zK are however eaten up by the gauge fields through 

higgs mechanism. The real parts of zK acquire masses from 

(2.8) equal to those of the gauge bosons, and form scalar 

parts of complete vector supermultiplet. Hence at the tree 
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level we have a set of massless complex scalar fields za, a 

set of massive complex Scalar fields zA with mass MA and a 

set of massive real scalar fields degenerate with the 

massive vector fields. For latter ronveniencc we t&ke ULL the 

fieLds zK, ZA and Z, to be the unshifted fidds. ‘This 

does not affect ENS, (2.10) and (2.11) ~itC1 Mij grve~ by ‘,.(2-3) 



III. RADIATIVE CORRECTIONS 

We shall now study the effect of radiative corrections 

in this theory using the background gauge formalism. This 

method has been developed and discussed in detail in Ref.4 

for unbroken gauge theories. Some modifications needed to 

extend the method to spontaneously broken gauge theories &e 

discussed in appendix A. We split every chiral superfield 

$i and the vector superfield Va into background and quantum 

superfields as, 

+ _ q(bJ + $(‘6 (3 2) 

= $ibJ + F(af 
(3.3) 

where the superscripts (b) and (q) denote the background and 

quantum superfields respectively. Let us define the 

connections rzb), rib) and field strengths WLb) and E&b1 as, 

(bl r = 2 (e- VE’T,/Z V”’ T, /L? 
9 II& 62 Q 1 Cs.+J 

r ‘b’ 
4 

-2(e- 
Vcb’ Ta /Z Ek e- “2 Tk /Z ) 

~ ,DD &Ta E- &“-) ,vh”‘r,/~ 

(3.7) 
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where D a’ 0 & are the ordinary covariant derivatives. If we 

also define, 

and $(b) to be its complex conjugate field, the action is 

invariant under the background gauge transformation, 

Vw 
4 TlA i xc T, VCb’T 

e e c. -.- 
1 hiT’b 

-+e 

Q, <w + &*cT’. +<bJ 

together with some transformations on the quantum fields 

listed in appendix A. There is another set Of 

transformationson the quantum fields which leaves the action 

invariant. We shall call this the quantum gauge 

transformation. 

The gauge fixing term given in appendix A is cho^_sen in 

such a way that it breaks the quantum gauge invariance but 

not the background gauge invariance. The structure of 

radiatively generated terms in this theory may be analyzed 

in the same way as in Ref.4. Some details of this analysis 

have been given in appendix A. We reach the following 

conclusions: 

i) The full effective action expressed as a function of the 
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background fields V (b) , i(b) and iCb), is invariant under 

the background gauge transformation (3.9). 

ii) The radiatively generated terms in the effective action 

must be of the form, 

~cP@ ~(Tp$ f ({#p,,O)5) (3. IO) 

where f is some arbitrary function of the superfields ei and 

their covariant derivatives at different space-time points 

x r but the same fermionic co-ordinate 8. 

iii) In two loop order and beyond, there is no explicit 

dependence of the effective action on the gauge fields “Lb) 

belonging to the unbroken subgroup H, except through the 

superfields iCb), zCb), WLb), Rib), faCb) and Fib). At one 

loop order the radiative corrections may have explicit 

dependence on Vbb). The contribution comes only from loops 

of chiral superfields belonging to a complex representation 

of the gauge group. If the chiral superfields of the theory 

belong to the real representations of the gauge group H, or 

occur in complex conjugate pairs so that together they again 

form a real representation of H, then even the one loop 

contribution is free from explicit dependence on V (b) 
P - 

From now on we shall drop the superscript (b) from 

various background fields. Any field without a superscript 

will refer to background field, unless otherwise mentioned. 

We shall write down all possible radiatively generated terms 

which may shift the vev of various fields and break 
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supersymmetry. First note that since the effective action 

is invariant under the background gauge transformation 

(3.9), we may choose the background gauge field V to be in 

the Wess-Zumino gauge. The effective potential is then a 

function of the auxiliary fields Fi, Da and the scalar 

fields zi. In order to saturate the 0 integral in Eq.(3.10), 

all the radiatively generated terms must have at least one 

Power of Fi*Fj or one power of Da. Since the minimum of the 

tree level potential lies at Fi=D,=O (and so does the 

minimum of the full potential, as we shall show), any term 

quadratic in the auxiliary fields will not shift the vev of 

various fields or break supersymmetry. Thus the only 

possible radiatively generated terms that may break 

supersymmetry is of the form, 

- e z D, PLCct+) h (3.1 I) 

where P a is some function of the scalar fields. As was 

shown in Ref.4, Pa is free from quadratic divergences, and 

is at most logarithmically divergent. 

First we shall consider the contribution to P 
P' One 

loop contribution to P 
P 

from loops of massless chiral 

superfields vanish in the dimensional regularization scheme. 

On the other hand, since the generator T p belongs to the 

unbroken subgroup H, all the massive fields of the theory 

must be either in the real representation of H, or occur in 

pairs of complex conjugate representations. This is true 
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for the superf ields eA which acquire their mass from terms 

in the superpotential W(e), as well as the superf ields eK 

which acquire mass through their mixing with the vector 

superfields. Combining this result with our previous 

discussion we see that to all orders in perturbation theory, 

the radiatively generated terms that are linear in D p depend 

on r a’ Wa, ii and their complex conjugate superfields, but 

not explicitly on V 
P' 

The terms containing D 
P 

in ru and Wa 

are proport ional to E20D and BD respectively, and cannot 

saturate the 8 integral in (3.10) unless multiplied by some 

other auxiliary field. Hence the only source of terms 
I 

linear in D is 
P 

the exp(VaT,/Z) term in i and 4. The 

contribution from such terms to the effective potential may 

be written as, 

- e 27 n, P? e = ~ D, ~ f; C~,~+)“~T,);j 2; t h.C.5 

+ 0 <n’) (3.12) 

where fi is some function of z, t z . The above equation tells 

us that P 
P 

vanishes at z(O), and more generally, at any 

point which is invariant under the subgroup H. 

Let us now analyze the contribution to PK. in studying 

this we shall classify the generators TK in irreducible 

representations of the group H. Let (Tg) denote the set of 

generators which are singlets under H, i.e. which commute 

with every generator of H, and {TN1 denote the set Of 

generators which transform non-trivially under H. Then PN 
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must vanish at a point zi which is invariant under the 

subgroup H. ps. on the other hand, is of order M 2 where M 

is the typical mass scale of the theory. 

Adding (3.11) to (2.1), and eliminating the auxiliary 

fields through their equations of motion, we get, 

3, = -eCZ+T,z +‘P-) 

and the full potential is, 

tr = riF;f t &zDRz i * 

(3.13) 

(3.14) 

We seek a solution where Fi and Da vanish for all 

values of i and a. We start from the ansatz, 

hg's being the parameters to be determined. Using the 

invariance of W under gauge transformation with complex 

parameters, we may show that, 

( i 
3w = c “Zi &y’ 

CfZqXsT) ji (~~),z,lo, - O (3-17) 

Also, 

(Tp),; 21”’ = (&sTFs ‘I-‘? &; = o Q. 18) 
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since T 
P commutes with TS. Thus P p' 'N vanish at G(O) and 

so do D 
P 

and DN. 

We shall now show that there always exist solutions for 

As which make DS vanish and hence give us a supersymmetric 

minimum of the full potential. The equation determining ?,S 

is given by, 

(0) t 
z e 

A,, I’,? 
rs e 

X,,t-r,u (0) 
t 

+ rs ( ,,&,-&J p, pt &+) ; o 

which may be written as cus zng Ef. (2..9), 

5 if’*‘+ if T, , T&j ;f’-’ )\,t 

=- we As’ Tsl 
z (0) pjt A,‘* ‘FP 

,z lFZ 1 

_ ,& < eV$ Ts eA”“TS’- T, - ITS, Ts,$ )\,I ) if’ (34 

The left hand side of the equation is given by 

2 Us2As/e . We may solve Eq.(3.20) iteratively. In the first 

stage of iteration we set AS=0 on the right hand side of the 

equation, and solve for hS' This value of h.3 is then 

substituted on the right hand side of (3.20), and a new 

value of As is obtained. Since both As and Ps receive 

contribution from diagrams involving one or more loops, the 

correction to the value of As in successive stages of 
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iteration will be of higher and higher powers in the 100p 

expansion. Thus, up to any arbitrary order in perturbation 

theory, it is always possible to find a solution for hs 

satisfying Eq.(3.19) using the method of iteration. 

Next we shall study the effect of radiative corrections 

on the scalar mass matrix. We shall again ignore terms 

containing two or’ more powers of the auxiliary fields, and 

keep only the terms give” in (3.11). It will be shown later 

that these extra terms do not change any of the results that 

we shall derive. Let us define new fields zz in terms of 

the fields zi as, 

if:l = (~-x’l:) i, Zj (3-Z I) 

for i=K, A or ~1. Thus at the new minimum of the potential z” 

takes the value 

z 
O(Q) 

=e 
-&'P, 2~ = p (3.22) 

Since W is invariant under gauge transformation with complex 

parameters, it has the same functional dependence on 2” as 

on z. Thus 

( 2’W 

2 q:” a .qY ) ‘f = ,p = j,.;& ), = z.(o1 (3-z3) 

Hs”Ce, if we work in the basis [zi”], the contribution 

to the mass matrix from the F terms of the potential at the 



16 

new minimum involves only the z; fields, and not the 2;: or 

the 2; fields. The part of the D term of the potential 

which contributes to the mass matrix may be expressed in 

terms of the fields zill as, 

2 = g { z"+ &" T, (++ $+ pK ( &"g, zl<teA 
ST@ _ 

Unlike in Sec.11, the contribution from this term to 

the mass matrix involving z c1 '1 and z A '1 fields does not 

vanish, since 3DK/az n or aDK/azAI1 are non-zero in general 

at z=,(O), with DKO given by Eq.Cj.14). The problem may 

be avoided by defining a new set of fields zit such that, 

- ‘if, ” T z,’ + B,, ~ZAAl + ‘B, K z; 

where B aK and BAK are constants that will be determined 

shortly. Using Eqs. (2.10) and (3.23) we may show that, 

c a-‘w 
1 = ( 

GfW 

2-t,’ J Zj’ 2 = p, a-zi i 
(3.4 

a 55-j 2 ‘Z g-j 

On the other hand, 
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where a/az. 1 1 denotes differentiation with respect to the 

fields Zit keeping all the other zjt fields fixed. We 

choose B crK a”d BAK in such a way that, 

BiL =: - fo9c i= o(> A 
z = -,w 

(3.30) 

SO that aDK/aZil vanishes at z.=,!” 1 1 and the D term does not 

contribute to the mass matrix involving the zA* and the za* 

fields. The solution to (3.30) always exists since 

(aDK/aZLn)z,;(0) is a non-singular matrix whose lowest order 

contribution is given by pKL. aDK/azilt vanishes at the tree 

level for i=a or A, but receives contribution at one (or 

more) loop order. Combining Eqs.(3.2+), (3.28), (3.29) and 

(3.30) we see that the fields z 1 a remain massless even after 

including all the radiative corrections. As in Sec.11, the 

real part of ZK’ acquires a mass from the D terms of the 

potential, while its imaginary part gets absorbed by the 

gauge bosons through the higgs mechanism. Although the 

wave-function renormalization factors for the scalar 

fields further renormalize the mass matrix, they cannot 

change the zero eigenvalues of the mass matrix, which 

represent flat directions in the potential. In other words, 

for every eigenstate of the tree level mass matrix with zero 

eigenvalue, we have an eigenstate of the renormalized mass 

matrix with zero eigenvalue. 

Finally we shall discuss the effect of the terms 
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involving two or more powers of the auxiliary fields. As we 

have already mentioned, these terms do not affect the 

positions of the new minimum, since they, and their first 

derivatives with respect to any scalar field, automatically 

vanish at Z(O)* The only terms which may contribute to the 

scalar mass matrix are the ones whose second derivatives 

with respect to the scalar fields do not vanish at z=z (0) . 

These are the terms quadratic in the auxiliary fields. The 

most general term of this kind is of the form, 

hi; Fix F; (yLL F,+ + h.c.j + f,, D&D, (3.31) 

where h, g and f are functions of the scalar fields. Adding 

this to (2.1) and (3.11) and eliminating the auxiliary 

fields through their equations of motion, we may write the 

full potential as, 

v = (yJ* H;; (22) t{ppJ cc;, ~2tT_z+P,PvY 

+ (~+-r,Z + p,> FLb <z+T,~ + F;) 

where F ab' Gia and Hij are functions of the scalar fields 

which may be calculated in terms of the functions fab, 
"ij 
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=“d gia. Using Eqs.(3.21) and (3.25) we may express V as, 

v = (2 )y fi;; (a?) + {(a& I* G:, (~+Ta Q wTj 

h 

+ (Zt,r_il + CL) FL @T, Z + p,) 

(3.33) 

Using Eqs. (3.28) and (3.30) we may show that, 

aLv = a’v = a’v _ -a’V =o: 
a& a-3; <3’lk” az;” “Z&’ aq = az$9z; 

& z=p; t/ i, f% (5 34) 

showing that zav are massless complex scalar fields. 
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IV. CONCLUSION 

In this paper we have analyzed the effect of radiative 

corrections in a general supersymmetric gauge theory,where 

the gauge group G is partially broken to one Of its 

subgroups H at the tree level, but supersymmetry is 

unbroken. We have done our analysis in the background field 

gauge and our results are based on the assumption that the 

effective action in the background field gauge correctly 

reproduces all the physical results to all orders in 

perturbation theory. With this assumption we have shown 

that, 

i)Supersymmetry is unbroken to all orders in perturbation 

theory. 

ii)Although the radiative corrections may shift the vev of 

various scalar fields, the subgroup H is unbroken to all 

orders in perturbation theory. 

iii) For every eigenstate of the tree level scalar mass 

matrix with zer-o eigenvalue, we have an eigenstate of the 

full renormalized mass matrix with zero eigenvalue. 

One possible loophole in OU17 analysis may lie in 

ignoring the possible effects of infrared divergences. When 

we calculate the effective potential, we keep only those 

terms which give non-vanishing contribution at zero external 

momenta. It is, however, possible that the infrared 

divergences may give rise to inverse powers of external 

momenta from loop integrals, which cancel some explicit 
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powers of the external momenta in the numerator. HenC!e 

graphs, which are naively thought to vanish at zero external 

momenta may give rise to "on-vanishing contribution to the 

effective potential. Usually, however, the power law 

infrared divergences are thought to be gauge artifacts, and 

are not expected to affect any gauge invariant result. A 

class of non-local gauges, proposed rece"tly7, may provide a 

solution to this problem. 

Another possible loophole lies in the assumption that 

the effective action in the background field formalism 

correctly reproduces all the physical results. Although 

this is generally believed to be true, there is no rigorous 

proof to this effect. 

If we ignore these two issues, the method used in our 

analysis, combined with the analysis of Ref.8, may be used 

for studying the stability Of mass hierarchy in 

supersymmetric gauge theories when supersymmetry is 

explicitly broken at the tree level through soft terms. 

Work towards this end is in progress. 
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APPENDIX A 

In this appendix we shall give some details of the 

Feynman rules for the class of theories discussed in the 

text. We choose the gauge fixing term to be, 

- yg- J CL+ x CL’ 8 3& & 

where, 

2 iT$ $iL~b) (_T,I ij (V’ & 
, 

v, = ,&‘i%/~ ,,, ,“?Ch = ,~~ _ i ,y 

77* = e 
V:‘T& 

5; e 

- v: T-/z 

I 5. - i Ti’“’ 
K 

0, ‘_ I-J - i WCb’* O< - 2 2 (-ij%lJy) 

cl= + iVq.,~7@ 1 $ +, iTq 

The first term on the right hand side of (A.21 is the 

(A.1) 

13;(7’); 

(A-3) 

(And 

usual 

gauge fixing term used for unbroken gauge theories. The 

second term is a generalization of the term used by ovrut 

and Wess3. The term containing the product of VCq) and a(q) 
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in (@.I) cancels a similar term in the original Lagrangian, 

coming from the iexp(Viq)Ta)i term, except for terms 

-(b) involving covariant derivatives of @ , i(b) fields. $ a, 

as defined in (A.21, is covariant under the background gauge 

transformation, under which the background fields transform 

as in Eq.(3.9), while the quantum fields transform as, 

+ 
(21 - VCb’T,/z - 

SC.2 c. 9 
(71 -Pe 

7 A,Th 
Q, 

(YJ 

-p, ~ go, e- v’_b’Trp_/2 --+, +(‘I e-63.x 

(A .7) 

where the real superfield Ka(n) is the solution of the 

equation, 

- 
‘L A,‘r, 

e”” 
cbJ 7b_ /z 

e e?- 
i Y&T& 

iv&-r, v Cb) 
=Ci? e a ‘r, /L7 e- 

i A.&T* 

Thus the gauge fixing term (A.1) is invariant under the 

background gauge transformation. Then the Faddeev-Popov 

ghost term in the action, derived from (A.1) must also be 

invariant under the background gauge transformation. As a 

result, all the radiatively generated terms in the effective 

action must be background gauge invariant. 
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In order to derive the Feynman rules, we must separate 

the total tree level action into the ‘interacting’ part and 

the ‘free’ part. For this we define the shifted fields, 

&y = + (bJ _ z(O) 

rL h 

and replace ;!b) ;!b) by ;!b)+Z!O) and =(b)+Z!O)* 
11 1 1 1 @i 1 

everywhere in the tree level action. We define the free 

part of the effective action to be, 

s(2J ( “‘5’1 + sC2’ ( @I, +T’, 

= & I‘ c!L” x. n’s v@’ d {vq pv, -5(V’yy~Qf)t~2~ab Vibp’ 

+ J (i$~ x ci’ @ c p $“I - -c2 { iy+ (T‘J IJ (f 1. $4’ ); J+ 
5 0, 

$ Z;’ (T& ( v2 L 
q A 

y”‘,, j] t [.J& &fl 2 fyi, cp- qp h J 

+ k-e.1 + ,&ost -teXn?S 

and call the rest of the action Sint . Although Sint 

contains terms quadratic in the quantum fields, these terms 

are multiplied by (b) explicit factors of ra , (x W(b) , ;!b) or 1 

their complex conjugate fields, and hence they may be 

treated as interaction terms. 
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The Feynman rules may be written down by considering 

the generating functional, 

.Z < L, J; , 7 I 

= e+ Ii S(,, (-i r; ,-i 2 
ZJ 0.. 

- i & ,j 
q,’ ~ 

S cjcvzl +‘“I d$,“l ex+ [ i 5 s”‘( v”‘) + ,“‘(+,:“, $,‘r’) 
.4 

c JCL’ x (_( ciGs J, vk” +5-g. J-- 6;” +p(fj ;r, -@;i)j] 

where Jis zi are background covariantly chiral and 

anti-chiral currents satisfying ij& J=VaJ=O, and Ja is a real 

current. For simplicity of notation we have ignored the 

ghost fields here, they may be treated in the same way as 

the chiral superfields +iB ii. The simplest way to derive 

the Feynman rules WC uld be to express all the 

background covariant derivatives in terms of the ordinary 

(b) covariant derivatives and the fields rcr , ir , a r(b) W(b) and 

njb) I - 
and 

“Tb) We 

express the fields ei, ii in terms of @i, zi and 

a * may then use the rules of functional 

differentiation in superspace to derive the Feynman rules, 

and use the set of manipulations given in Refs.2 and 4 to 

show that a11 the radiatively generated terms in the 

effective action must have the form of Eq.Cj.10). However, 

the Feynman rules derived in this way have explicit 
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(b) dependence on Va and hence are not useful in proving the 

proposition (iii) of Sec.111. 

We use the doubling trick of Ref.4 to prove that the 

effective action does not have any explicit dependence on 

V(b) 
P 

except through the connections, field strengths and the 

covariant scalar fields s(b) and iCb). We have used this 

result in the text only in analyzing terms linear in D 
P’ 

hence we shall prove the result only for such terms. In 

doing so we may set all components of the background gauge 

field to zero, except the ones lying in the unbroken 

subgroup H. The various covariant derivatives Va, ijL are 

then covariant only with respect to the background gauge 

transformations with group elements lying in the subgroup H. 

Since zi”) and M.. 
1.l are invariant under H, we may replace 

Mij$i$j by Mijiiij in Eq.(A.lO), and SC2)($!‘) 1 , $jq)) given 

in (A.10) is invariant under local gauge transformations 

belonging to the subgroup H. Doing some integrations by 

parts and using the relations, 

si $ = v, ; r C-J 

(A. I2 ) 

(A. 13) 

we get, 



where A!?’ is a 2x2 

express i’2)(V(q)) as, 

matrix for fixed i, j. Also we may 

s”’ ( #Yi) 

=p4x &9 (-2g vyn-wv4- (‘3” “2 

+ (I- 5 ) (v? vz + v2 v”) -b2)& VIb’i) 

z + 3 dQ x d? 0 vk” a(;& vi,” (415,) ’ 

We may now write (A.11) as, 

z”c x, J,, s,) = AGwe~ Ac,,yg,t 

x [ &P&F 3~ i .s,, ( - i 2 - i ;-; ) -1 All ) 

xs,,’ i. &is t; ;r; 
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e+ c - i & (A”‘)-zb J, - i ((V’ $+ J),; , (v’& ?j,) 
0, 

(a'"');; 5 
(A- 16) 

where, 

A Gauy~ = x h/z c+ ( .i .s”‘( v’“)) (A- 17 ) 

%ili.d 
= _i‘ &$T’ d c$;hcy’ pxk ( I ,(y qy’, ip)) c (A 16’) 

A 
gauge and A chiral denote one loop contributionsfrom 1OOPS 

of gauge fields and chiral superfields respectively, with 

only background gauge fields as external lines. 

The Feynman rules for evaluating the J dependent part 

0" the right hand side of (A.16) are obtained by using the 

rules, 

b 
EJ CW,@) 

J-- c x:6’) = 5;;; ZYX- x’l v2 g4’@l -0’) Q.19) 

* 

6 
s S,CX,Sl ;r, ci,s’J = 2;; XCC’(y, x‘) v2 &“‘(m7~~ (pn) 

5; J, cy, 0’) = S&b &(trJ lx- X’J n”“’ ( f+ 0 ) 

ZJ;p+J 
(A-2 I) 
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SL= g< = -&= XT 
isTj 

aF 
ST& 

-~= &J.= ~~J,,O 
A J, ;fF .T, s;;r. 

KY 
t. CTISh 

AlSO, in the actual computation we expand (A (v))-1 and 

(A(6))-l about the point vCb)=o so that 

A-1 CV(b)j-A-lCv(b) =O) term appears as an interaction term 

with background gauge fields as external lines. A further 

simplification occurs due to the fact that the fields which 

receive their mass from the Mij term do not 

from mixing with the gauge fields, and vice 

shown in Sec.11. Since S. 1nt A(?)(VCb 
iJ 

depend on Vib) only through the connections 

receive any mass 

versa, as was 

)) and ALl)(VCb)) 

and the fields iCb), yCb), the Feynman rul 

, field strengths 

es for evaluating 

the J dependent part of (A.16) also depends on ,,(b) only 

through these quantities. The same result is true for the 

V(b) dependent pat-t of A gauge’ which may be seen by writing 

A gauge as* 

n c;cAqe = [ exk { i_i&‘X &‘f2 zr ( A’:, (V’“‘) .- A’:: (i/‘“lO))j$ 
;;‘; ~ 

b 

p+ {-iJ* i n’“‘cv~bl-o,,~, JJ, jl, -o 
‘\ 
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Since Aii)(VCb)) does not have any explicit dependence on 

V(b) the Feynman rules for evaluating V (b) 

from’explicit dependence on VCb). 

are also free 

The same trick cannot be applied for Achiral, since ii 
z 

and ei have explicit dependence on V (b) when expressed in 

terms of the ordinary chiral and anti-chiral superfields ei 

and qi. We must use the doubling trick of Ref.4 to bring 

this contribution into a covariant form. Since the 

covariant derivatives De and t- cL are covariantized only with 

respect to the subgroup H, the doubling trick may be used 

for any real (reducible) representation of H. This includes 

all the chiral superfields which get their mass through 

their mixing with the gauge fields, since the broken 

generators of the gauge group form a real representation of 

H. Let us define, 

@[“jig = cc+ (T,),j z:“’ z;‘+ (r,ie, (A 24) 

so that, 

,.@‘< +,i” 
, 

ip’, g&Y x A\?&) [ q41 &“) 

- +. j;:2J(&z)L;(& $@‘); +i+ M;,; &@‘( i+ $!?‘);Ch.C.$j 
+ 

Using the doubling trick, we may bring Achiral in the form, 

~&A,\~ = .J n_p e + ( + ,J nc‘l x &2s ,;:?’ ‘i CT/ &i’.’ ) 
1.1 

(/AIxj 
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where, 

(A. 27) 

The Feynma” rules for Achiral may now be derived by 

writing (A.261 as 

4wd = [ ,3+-Q _J&x cPc;lf~yy (“‘h’)_~~~j(“WG)~ LJ 

(- z ?$ (- +j ea+f - g. f& CL’0 (gw%),‘I i. IL h J 

Since ice) depends on VCb) only through its dependence 

on COnneCtiOnS and field strengths, so must be A 
chiral’ Thus 

if all the chiral super-fields transform according to real 

representations of H, terms in the effective action linear 

in D 
P do not depend explicitly on VLb). In the presence of 

chiral superfields transforming according to a complex 

representation of H, we could get radiatively generated 

terms which depend on ,/(b) explicitly. These terms come 

from one loop contribution involving chiral super-fields, 

with only background gauge fields as external lines. 
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However, since H is the unbroken symmetry group Of the 

theory, a chiral superf ield belonging to the complex 

representation of H must be massless. Hence contribution 

from such one loop graphs linear in the background gauge 

field involves massless tadpoles, which vanish in the 

dimensional regularization scheme. As a result, even in the 

presence of chiral superfields in the complex representation 

of H, the terms in the effective action linear in the 

background gauge field do not have explicit dependence on 

V(b) 
P . 
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