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ABSTRACT 

In this paper, generalizing a technique used to 

calculate the asymptotic behavior of the Sudakov form 

factor, we find a systematic way of calculating the 

asymptotic behavior of the wide angle on-shell quark-quark 

(or quark-antiquark) scattering amplitude in non-Abelian 

gauge theories in the limit of very large center of mass 

energy Js. Such processes (qq+qq or qq+qi) are expected to 

be important in evaluating the contribution to the wide 

angle hadron-hadron scattering amplitudes from the Landshoff 

diagrams. We sum the perturbation series to all powers of 

the coupling constant and all powers of logs of the center 

of mass energy, but ignore terms which are suppressed by a 

power of the c.m. energy, order by order in perturbation 

theory. Thus we include leading as well as all the 

non-leading logarithms, but ignore the non-leading powers of 

S. We find a general form for the amplitude and show that 

this form goes as exp(-olns In Ins) in the s-+m limit (CL is a 

constant). The method used in this paper is also applicable 

to the analysis of any amplitude with more than four 

external on-shell quarks, in the limit pi=m2, pi*pj+", 

Pi'Pj/Pi"Pj I + constantv i,j,i',j' such that i#j,i'#j'. We 

also show that the phase of the amplitude is free from 

infrared divergences, and hence is a perturbatively 

calculable function. Thus the phase may provide important 

tests of QCD. 
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I. INTRODUCTION 

In a previous paper1 we showed how to systematically 

sum up all the logs that appear in the calculation of the 

asymptotic behavior of the Sudakov form factor in 

perturbation theory. In this paper, we generalize the 

approach to calculate the asymptotic behavior of the elastic 

quark-quark scattering amplitude in the S+-, s/t fixed 

limits. This method can also be applied to calculate the 

asymptotic behavior of a process with more than four 

external quarks, in the limit pi'pj+m for all external 

momenta PitPj (except for i=j), p:=m' and the ratio 

pi*pj/pi,'pj, fixed. In these calculations, we include all 

powers of the coupling constant g and all powers of logs of 

the external energy variable Q, but neglect terms, which are 

suppressed by a power of Q, order by order in perturbation 

theory. 

The asymptotic behavior of the m+m (and q?qq) 

amplitudes has been of interest in the recent past. They 

appear as subdiagrams in hadron hadron elastic scattering 

amplitude in the Landshoff diagrams. 2 Order by order in 

perturbation theory, Landshoff diagrams give contribution 

which are asymptotically larger by some power of s than the 

quark counting result of Brodsky et al.3 It was, however, 

argued4 that such contributions involve near on-shell qq+qq 

and qi+qs scattering amplitudes as subdiagrams and these are 

suppressed due to the exponentiation of the Sudakov double 
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logarithms5 in the form exp(-A ln2s), A being a constant and 

St the square of the total center of mass energy of the qq 

or the qs pair. Mueller et a1.,6 on the other hand, has 

argued that the actual hadronic elastic scattering amplitude 

is neither fully determined by the quark counting rule, nor 

the power law given by the Landshoff pinch singular point, 

but by some function intermediate between the two. In order 

to find out the correct asymptotic behavior, we must sum up 

the Sudakov double logs in a systematic fashion. 

Calculation of the asymptotic behavior of the qq+qq or the 

q&q{ amplitude may be considered as a first step towards 

this process. In fact the result of this paper supports 

Mueller's conjecture about the asymptotic form of the wide 

angle hadron-hadron elastic scattering amplitudes. 

Recently, it has also been pointed out by Pire and Ralston' 

that the oscillation of the experimental value of the 

elastic hadron-hadron scattering cross-sections about the 

quark counting rule prediction, as observed by Brodsky and 

Lepage', may be due to the s dependence of the phase of the 

q&qi and qq+qq amplitudes. In this paper, we also find out 

the s dependence of the phase in ~-+a limit. We show that 

that the phase is free from infra-red divergences. Hence 

they are perturbatively calculable and may provide important 

tests of QCD. 

The asymptotic behavior of the scattering amplitudes, 

in the limit considered in this paper, were calculated by 

Cornwall and Tiktopoulos, 9 up to a few orders in 



FEBMILAB-Pub-82/66-THY 

perturbation theory. On the basis of these calculations, 

they conjectured that in the leading logarithmic order, the 

amplitude for such a process goes as. 

exp -92 (1 Cv) ln2 (s/m21 
32x2 v 1 

where Cv is the value of the quadratic Casimir operator to 

which the v-th external particle belongs. Note that the 

amplitude goes rapidly to zero as s+m. 

The amplitude under consideration is infrared 

divergent. In actual hadron-hadron scattering amplitude, 

the color singletness and the finite size of the hadron 

provides the necessary infrared cut-off. In our 

calculation, we must, somehow, simulate this cut-off. In 

the case of Abelian gauge theories, we can regulate the 

infrared divergence by giving the gluon a finite mass, since 

this is a gauge invariant regularization procedure. This 

does not work in non-Abelian gauge theories, since the 

theory with massive gluons is not gauge invariant. Another 

way of regulating the infrared divergence is by keeping the 

external fermions off-shell by a fixed amount, this 

procedure, however, is not gauge invariant either in Abelian 

or in non-Abelian gauge theories. 

There exists, however, a gauge invariant way of 

regulating the infrared divergences in non-Abelian gauge 

theories, e.g. by dimensional regularization. We keep the 
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external particles on-shell and work in 4+s dimensions. The 

reader may wonder whether the result in 4+s dimensions has 

any physical relevance. It will become clear later that our 

result (6.5) for the scattering amplitude is not sensitive 

to in what way we regulate the infrared divergences in our 

theory, provided this is a gauge invariant regularization 

procedure, and we keep the external particles on-shell. 

Thus, had there existed another gauge invariant 

regularization procedure for non-Abelian gauge theories, we 

would have gotten the same final form (6.51, where the 

regulator R now stands for the new regulator (the infrared 

divergent functions f2, C and Ai will now have different 

form, but these functions are independent of s. The 

functions yl, fl and X, which depend on s, but are free from 

infrared divergence, will have the same functional form). 

For hadron-hadron scattering there exists an infrared 

regulator, which is the off-shellness of the quarks inside 

the hadron. This is roughly determined by the inverse of 

the transverse size of the hadron. It was, however, found 

by Mueller6 by explicit one loop calculation, that when we 

add all the relevant diagrams, the relevant regions of 

integration which contribute to the amplitude is Ia21 sxs, 

where X is an integration variable which runs from m2/s to 

1, and R is the momentum of the internal gluon. Thus in one 

loop order, the effective regularization may be obtained by 

giving the gluons a mass /as (or by cutting off the gluon 

momentum at a2 SXS) and setting the external particles 
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on-shell. This is precisely the type of regularization for 

which we expect our result to be valid. We expect that when 

we consider all the higher order diagrams in the 

hadron-hadron scattering amplitude, this general feature 

will remain valid, i.e. in the first approximation the full 

hadron hadron scattering amplitude may be expressed in terms 

of four quark amplitudes, where the infrared divergences in 

these amplitudes are regulated by cutting off the internal 

gluon momenta at Q2.rXs in some complicated way, so as 

to preserve the gauge invariance of the amplitude. The 

result (6.5) may then be used to analyze the contribution 

from this part. There will, of course, be non-trivial 

corrections to this result, and we hope, with the method 

developed in this paper, we shall be able to systematically 

compute those corrections in the future. 

In this paper we shall show that the suppression of the 

amplitude in the S+- s/t fixed limit, due to the 

exponentiation of the double logs, persists even when we 

include the effect of all the non-leading logs, but the lnLs 

term in the exponential is replaced by a term proportional 

to lnslnlns, due to the asymptotic freedom effect. We also 

give an algorithm to make systematic corrections to the 

above result. The paper is organized as follows. In 

Sec. II, we describe the kinematics of the problem. We work 

in the c.m. frame and in the axial gauge. In Sec. III, we 

analyze the amplitude using a power counting method 

developed by Sterman" and express it as a sum of four 
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independent amplitudes, each of which is a convolution of 

the eight quark Green's function anb a hard core@ith four 

external quarks), all of the internal lines of the core being 

constrained to carry momenta of order Q. In Sec. IV, we 

show that each of these amplitudes may be expressed as a 

product of wave-function renormaization constants on 

external lines and an amplitude ri, which is free from 

collinear divergences. Each of these Fi's, may be expressed 

as a convolution of a regularized eight quark Green's 

function and a hard core with four external quarks. In 

Sec. V we derive a set of differential equations involving 

ri's, and show that the co-efficients of these equations may 

be analyzed by using renormaization group equations. The 

differential equations for the fi 's may then be solved and 

the solution gives us the asymptotic behavior of ri. In 

Sec. VI, we find the asymptotic behavior of the 

wave-function renormalization constants, using the method of 

Ref. 1. Combining this with the asymptotic behavior of the 

ri*s, we find the asymptotic behavior of the full amplitude. 

We summarize our result and its possible applications in 

Sec. VII. 

For skeptic readers, who may object to the use of axial 

gauge in the analysis of the problem, because of the extra 

singularities in the axial gauge propagator, we mention here 

that the analysis may also be carried out in the Coulomb 

gauge in a similar way. 
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II. KINEMATICS, GAUGE, RENORMALIZATION 

In order to find the asymptotic behavior of the w+qq 

amplitude in s++m t+m, s/t fixed limit, we choose a frame in 

which the incoming quark momenta pa, pb and the outgoing 

quark momenta p,, pd are given by 

pa = 7 ( Q +m , 0, 0, Q) 

Pb = (&?, 0, 0, -Q) 

PC = F ( Q +m , 0, Qsin6, Qcos6) 

Pd = (m, 0, -Qsin6, -QcosO) 

(2.1) 

We denote the color indices and helicities carried by 

the external particles by a,b,c,d and sa, S,,, SC, S,.j 

respectively. We define, 

s = (pa+ pb)2 = 4(Q2+m2) (2.2) 

t = (Pa- PC)2 = -2Q2 (l-~0.~0) (2.3) 

Thus we can take the s-+~, t/s fixed limit by taking the 

Q+m limit at fixed 8. We shall be interested in the 

dependence of the amplitude on Q. 

We work in the axial gauge, where the gluon propagator 

takes the form, 
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-i NIi(k)/(k2+is) = 6c8{-i/(k2+ie)}{gU"-(k"nv+k"n')P(l/n*k) 

+ n2kUk"P(l/n*k)2} (2.4) 

where, 

P(l/nSk)r = lim [l/(n.k+is)r + l/(n*k-ie)rl/2. (2.5) 
E-+0 

Here V, v are the Lorentz indices and u, 8 are the color 

indices in the adjoint representation. n is any space like 

vector. For reasons which will become clear later, we shall 

keep n in the plane of pa, pb, p, and pd. 

We regularize our theory by dimensional regularization. 

We use the physical mass of the quark as the renormalized 

mass parameter. For other counterterms, we use the minimal 

subtraction scheme. If G(P,, pb, PC, pd) be the sum of all 

Feynman diagrams, contributing to the amplitude,includinq 

the self-energy insertions on the external lines, the 

amplitude is given by, 

;(P,) (tic-m) [Z2(pc)l =l-/2G(pd) ($,-m) [Z2(pd) 14’2G(g tPb,t?,tPd) 

[Z2(Pa) 1 -1'2($a-m)u(pa) [Z2(pb)l-1'2($b-m)u(pb) (2.6) 

where Z's 2 are the external wave-function renormalization 

factors. In Eq. (2.6), we have left out all the Dirac 
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indices. In axial gauge, Z2(P) may have non-trivial 

dependence on p through the combination nap. In fact we 

shall see that the double logarithmic contribution comes 

solely from the Z;s in the axial gauge. 

As mentioned in the introduction, we regulate the 

infra-red divergence in some gauge invariant way, e.g. by 

dimensional regularization. We shall denote the infra-red 

regulator by R. R+O limit will correspond to the infra-red 

divergent limit. 

The diagrams, which contribute to the process 

considered, may be divided into two classes, one, in which 

the line carrying momentum p, is the continuation of the 

line carrying momentum pa and the line carrying momentum pd 

is the continuation of the line carrying momentum 'bI and 

the other, where the situation is reversed. The sum of all 

diagrams in each class is separately gauge and Lorentz 

invariant, thus we may analyze each of them separately. For 

definiteness, we shall carry out the analysis for the sum of 

diagrams belonging to the first class. The second class of 

diagrams may be analyzed in an exactly similar way. 

III. A CONVOLUTION FORM FOR THE AMPLITUDE 

In this section we shall analyze the important regions 

of integration in the loop momentum space which contribute 

to the amplitude in the leading power of s and express the 

amplitude as a convolution of a central hard core with an 
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eight quark Green's function. To do this, we make use of a 

power counting method, developed by Sterman. 10 If p be any 

of the momenta pa, pb, p, or pd, we call a momentum k to be 

parallel or collinear to p if, 

ko^. 0 p , p'k - k2 - IQ2 (3.11 

where A is a scaling parameter which scales to zero. For 

example, we call k to be parallel to pa, if, 

k” - ’ k” - k3 - AQ P, I k1 , k2 - X1'2Q . (3.2) 

We shall call a momentum to be soft if all its components 

are small compared to Q, whereas, a momentum k is said to be 

hard if all its components are of order Q. 

It can be seen from the power counting argument of 

Sterman," that the regions in loop momentum space, which 

contribute to the amplitude in the leading power in Q, must 

have the structure shown in Fig. 1. Here Ja, Jb, Jc and Jd 

are blobs containing lines parallel to pa, pb, p, and pd 
respectively. The blob marked H contains hard lines only, 

whereas the blob, marked S contains soft lines only. All 

the gluon lines, connecting the blob S to the jets are also 

soft. These soft gluon lines may attach to the jet lines 

through elementary or composite three point vertices only. 

Here, by a composite three point vertex, we mean a 

subdiagram with three external lines, all of whose internal 

lines are hard. The soft blob S contains connected as well 
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as disconnected diagrams. 

With the knowledge that we gain from Fig. 1, we shall 

make a topological decomposition of a general graph, 

contributing to the amplitude. First, we shall give a few 

definitions. If any graph, a subgraph, with four external 

quarks, and satisfying the property that the graph may be 

topologically decomposed in the form of Fig. 1, with this 

subgraph as its central hard core, is called a four quark 

subdiagram. We also define a gluon subdiagram to be a 

connected subdiagram, with only gluons as external lines, 

the external gluons being attached directly to the quark 

lines ac or bd. Fig. 2 shows examples of four quark 

subdiagrams and gluon subdiagrams. If there are n such 

gluon subdiagrams in a given Feynman diagram, we denote by 

kl...kn the momenta transferred from the ac quark line to 

the bd quark line by these n subdiagrams. These momenta 

must satisfy the constraint, 

ill ki = Pa - Pc. (3.3) 

Let f be the integrand of the Feynman integral 

corresponding to the graph. We may multiply it by 

(C ki)2/t(zl) without changing the value of the integral and 

write the integral as, 
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2 
i=l 

j-(k;,'t) f + 2 x 
i<j 

I(ki.kj/t) f . (3.4) 

In the integral (ki/t)f, J- the contribution from the 

region of integration, where the momentum ki is soft, is 

suppressed by a power of Q, due to the presence of the extra 

factor ki/t"kf/Q2. Hence ki must be hard. Then, in order to 

get an integration region, consistent with the picture shown 

in Fig. 1, all the internal lines of the minimal four quark 

subdiagram, containing the i-th gluon subdiagram, must also 

carry hard momenta. Similarly, in the integral 

21(ki.kj/t)f, all the internal lines of the minimal four 

quark subdiagram, containing the i-th and the j-th gluon 

subdiagram, must carry hard momenta. Let us denote by I$ the 

sum of all such possible four quark subdiagrams, all of 

whose internal lines are constrained to be hard due to the 

presence of the extra factors of kt/t or kikj/t in the 

internal lines.Typical contributions to I$ have been shown in 

Fig. 3. We may represent @ as $~:~:~:~: (Pa+Rl, pb+fi2, 

pc+t3) where a', b', c', d'; CL', 8' I Y' t 6' and ~,+a~, 

P,,+ll2, pcCk3 and pd+Ll+R2-R3 are respectively the color and 

Dirac indices and momenta carried by the quark lines 

external to $. In later discussions, we shall often drop the 

color and the Dirac indices from 6. 
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Let F denote the Green's function shown in Fig. 4. In 

F, we sum all the diagrams, connected and disconnected, and 

self energy insertions on external lines and then multiply 

the sum by IZ2(P,ll -l(Ida-rn) u(p,), tZ2(pb)l-1($b-m1u(pb), 

C(p,) (h,-ml [Z2(~,)l-' and U(P,) (pld-ml [Z2(~d11-1 for the 

external lines carrying momenta !?,r Pb' PC and Pd 

respectively, thus truncating the propagators corresponding 

to these lines. The total contribution to the amplitude 

under consideration is then given by, 

[z2 (pa) z2 (P,) z2 (PC) ‘2 (pd) I 1'2 ; d4R; 
j=l (2n14 

where a',B',y',G', and a',b',c',d' are respectively the 

Dirac and the color indices of the external quark lines of 

F, as shown in Fig. 4. For convenience of notation, we have 

dropped the dependence of F on the color, helicities and 

momenta of the external on-shell quarks in the above 

equation. If we take the convolution of a particular 

diagram contributing to F with a particular diagram 

contributing to @ according to (3.51, the R integral may 

have some spurious ultraviolet divergences, due to the 

presence of the extra factors k:/Q2 or ki*kj/Q2 in the 

internal lines of $, but these divergences must cancel when 

we sum over all the diagrams in F and 41. 
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The integral of (3.5) is diagrammatically represented 

as in Fig. 5. We write it in a shorthand notation as, 

F4J (3.6) 

We shall stick to the convention that whenever we draw 

a graph contributing to F, we shall draw the external 

on-shell quark lines, carrying momenta pa, pb, p, and pd to 

the left, and the off-shell quark Qines, carrying momenta 

pa+Ql, pb+Q2, pc+Q3 and pd+Ql+Q2-Q3 to the right. Thus as 

we move from the left to the right in a graph contributing 

to F, we move towards the core $ in the corresponding 

amplitude shown in Fig. 5. Let us consider a subgraph of 

any graph, contributing to F, with eight external quark 

lines, which are continuations of the eight external quark 

lines of F into the graph. Such a subgraph is called four 

particle irreducible (4PI), if it is not possible to divide 

the subgraph into two parts by drawing a vertical line 

through it, which cut only four fermion lines. Examples of 

such 4PI subgraphs of F have been shown in Fig. 6 by 

enclosing them in square boxes. Let K(a) be the sum of all 

eight quark graphs satisfying the following properties. In 

any graph contributing to Kta), one and only one of its 4PI 

subgraphs has non-trivial interaction with the a line and 

this 4PI subdiagram lies unambiguously to the left of all 

other 4PI subgraphs of that graph. Typical contributions to 

K(a) have been shown in Fig. 7. Note that a diagram of the 

type shown in Fig. 8 is not included in K (a) ' since the 
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gluon line marked 2 may be taken to lie to the right or to 

the left of the gluon line marked 1. We also define F 
(bed) 

to be the total contribution to F from those diagrams where 

the line a does not take part in any interaction. Typical 

contributions to F 
(bed) have been shown in Fig. 9. If in 

K(a) * we include the propagators of the external quark lines 

to the right, but truncate the propagators of the external 

quark lines to the left, F satisfies the equation 

(3.7a) 

in the shorthand notation used in writing (3.6). 

In an exactly similar way we may define K(b)' K(~)' 

K(d) ’ F(acd) I F(abd) and F(abc). Equations, analogous to 

(3.7a) are, 

(3.7b) 

(3.7c) 

(3.7d) 

We shall find it more convenient to redefine F by 

dividing it by a factor of Q2 and redefine I$ by multiplying 

it by a factor of Q2. As a result, the dependence of F on Q 

due to the presence of the factors /p$ /pi, Jpz and /pi 

from the external spinors, goes away. On the other hand, 

multiplication by Q2 makes e dimensionless, thus ensuring 
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that +(pa+Q1, pb+Q2, pc+Q3) is independent of Q at the tree 

level, in the limit \Q~I/Q+O, i=1,2,3. These redefinitions 

leave (3.5) unchanged. If we redefine F (bed)' F(acd) ' 

F(abd) and F(abc) by dividing each of them by Q2, then these 

redefinitions also leave Eqs. (3.7) unchanged. 

With the help of Eqs. (3.71, we shall bring (3.5) to a 

different form. Let us first analyze the tensor structure 

of t~i';'zf,,,, (pa+Ql, pb+Q2, pc+Q3). In color space, it can 

have two independent tensor structures, which may be taken 

as 6a,c, 6b,d, and 6a,d, 'b'c' respectively. In Dirac 

space, it may have many different tensor structures in 

general, but we shall be interested in only those tensors, 

which contribute to the integral of (3.5) from the region 

19'; 1 c<Qr in leading power in Q. To identify such tensors, 

let us note that in the Qi+O limit, the numerators of the 

propagators of the four quark lines, entering and leaving $I, 

may be replaced by P;Y, pb'y, p;y and pd'y respectively. 

In the Q+m limit, 

(Pi * Y) aB oc 
si tJt1,2 ,"Z ,('i) 'fi, (pi) (3.8) 

i 

Si’ refering to the helicity. For the subset of diagrams 

considered here, sa,=sc, I Sb"S d' in leading power in Q, 

since there are odd number of y matrices on the a'c' and the 

b'd' lines. Using reflection symmetry in the plane of pa, 

Pb' PC and Pd (n does not change under this reflection), we 

conclude that there are only two independent Dirac 
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structures of $I, corresponding to the amplitudes s a,=1/2 

'b' =1/2 + s .,=1/2 sd,=1/2 and s,,=1/2, sb,=-l/2 + s,,=1/2, 

Sd,=- l/2. Thus in the Dirac and the color space there are 

altogether four different tensor structures of @ that 

contribute to (3.5) from the IQ~I<<Q region, in leading 

power in Q. Let us choose a basis of linearly independent 

tensors (Ai)~:~:~:~: such that if we substitute Al, h2, A3, 

or h4 in place of 4 in (3.5), we receive a non-suppressed 

contribution to the integral from the lQy(<<p region, 

whereas if we substitute any of the other Ai's in place of $ 

in (3.5), the contribution from the region I~.~!<<Q is 

suppressed by a power of Q. Let ei be the component of $ 

along the direction of the tensor Ai. We may write C$ as, 

@ = 1 4i Ai z ,I, +i Ai Q4/iQ4+(Lf)2+(Q;)2+(Q;l? +$,, . 
i 

integral in (3.5) 

right hand side of 

In the region IQ~~<<Q, j=l,2,3, the contribution to the 

comes entirely from the i' i=l"' term on the 

(3.9), thus the contribution from the 

is region is suppressed. The contribution 

. . . term on the right hand side of (3.9) 

+ res. term in th 

to IF@ from the E 
i=l 

is given by, 

(3.9) 
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: 
3 d4Q. 

In ' 
i=l j=l (2n)4 

~~(p,+Ql,pb+Q2,P,+Q3) $i(pa+Ql'pb+Q2'Pc+Q3) 

Q4/(Q4 + (Q;,2 + (a,? 2+ (Q3)2}2 (3.l0) 

where, 

F, = Fa’8’Y’G’ 
I. a’b’c’dt (Ai);:;:;:;: (3.11) 

The purpose of the term Q4/(Q4+(Qf)2+(Q.$)2+(Qi)2) is to 

avoid ultraviolet divergences in the integral of (3.10) from 

the Q integrals in graphs like Fig. 10(a). This also avoids 

spurious ultraviolet divergences in the Q integrals in 

graphs like Fig. 10(b), due to the presence of the extra 

factors of kf/t or ki'kj/t in the internal lines of 4. All 

such divergences are dumped into the integral IF e,,,. 

To analyze the integral IF $res , we break up ares as 

+ = 
res. @Zes. + +:es. + +Zes. (3.12 

where, 
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ces. = m;)2/ j $I21 @res* 
j=l 

ees. = I(a:)2/j~l wy1 4res 

ces. = [ wy/ j q21 eres. 
j=l 

(3.13a) 

(3.13b) 

(3.13c) 

As we have already seen, when we substitute I$ res. in 

place of $J in (3.5), the integral receives non-suppressed 

contribution only from the region where at least one of IIl, 

a2 and 113 is hard, thus (k;)2+(!+2+($2 must be of order 

Q4 or more. The contribution from the $Fes term is then 

suppressed unless &f is of order Q2 or-more. Similarly 

4b res. and sEes terms will give non-suppressed contribution 

to the integral in (3.5) only from the llli[kQ and lk!$zQ 

regions respectively. If in the integral IF 41~ res. ' we 

substitute the right hand side of Eq. (3.7a), the Ffbcd) 

term does not contribute since it has a 6(E1) term. The 

contribution from the FK (a) term is, 
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d4Q. d4Q'. 
I i -& --+ F(P,+Q~,P~+Q~,P,+Q~) 

j=l (2n) 

'Zes .(P,rPbtP,tQitQirQ;) (3.14) 

where we have dropped all the color and Dirac indices of F, 

K(a) and @zes for convenience of writing, $Fes is now . 
separately a function of pa,pb,pc,Ql,Q2 and Q3 instead of 

being a function of p,+Ql, pb+Q2 and pc+Q3, because of the 

extra factors of Q4/(Q4+ f (Q?)2) and Q2/ 
j=l 1 1 2 (Q2) 2 

j=l j 
in (3.9) and (3.13a) respectively. In the integral in 

(3.14), '1; is constrained to be hard. In order to get a 

momentum fow consistent with Fig. 1, all the internal lines 

of K (a) must also carry hard momenta. Similar analysis may 

be done for the IF $Fes and IF ezes terms, by substituting . 
for F the right hand sides of Eqs. (3.7b) and (3.7~) 

respectively. The sum of all these terms may be written as, 

3 d4Q. 
J- 71 I4 F~;(~;:::;,(P,+Q~,P~+Q~,P,+Q~) 

j=l (2~) 

e(1) .‘6’y’6’ 
a'b'c'd' (P,vP~,P,~QI,Q~,Q~) (3.15) 

where 
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$,(l) = K 
(a)'Fes. + K(b) 'Rs. + K(c) 'Fes. (3.16) 

$(l) is calculated from diagrams, all of whose internal 

lines carry hard momenta. The integral (3.15) has the same 

structure as the integral of (3.5) and hence may be analyzed 

in the same way, to give a sum of the term, 

4 (1) 1 I F;(pa+Ql,Pb+Q2'pc+Q3) @i 
i=l 

(Pa~Pb'PcrQ1'Q~'Q3) 

Q4/{Q4+(Q;, 2+ (Q;) 2+ (Q;) 2} (3.17) 

and the integral IF $izL.. This may be analyzed in the same 

way as IF @res . . Continuing this process indefinitely, we 

may write IF $ as, 

~ ri 
i=l 

where, 

3 d4k. 
Qi(ParPb,PcrPl'L*J3) r--J-- 

j=l (2n)4 

(3.18) 

(3.19) 
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@i(ParPb,PcrQl*Q2*Q3) = Q4 

Q4+(k;)2+(Q;)2+(Q;)2 
[$i(Pa+Ql,pb+Q2'pc+Q3) 

f $!l) 
1 (Pa,Pb*Pcr Q1,Q2,Q3) + . ..I (3.20) 

The right hand side of Eq. (3.19) may be graphically 

represented as in Fig. 11. Note that, in (3.191, the 11. 
7 

integrals do not have any ultraviolet divergence due to the 

presence of the Q4/{Q4+ t (Qi)2] factor in 0.. The spurious 
j =i 1 

ultraviolet divergences which appear due to the presence of 

the terms kt/t or ki-kj/t in Oi are all included in the 

internal loop momentum integrations in Qi and hence must 

cancel internally. The only ultraviolet divergences left 

are then due to the vertex and self-energy corrections which 

are cancelled separately inside Q i and Fi by the usual 

counterterms. Hence, each of the terms, 

[~2~pa~~~(pb)z2(Pc)z2(pd)11’2 ri (3.21) 

is separately ultraviolet finite when expressed in terms of 

the renormalized parameters. If we work with the 

renormalized fields, Z's are finite, hence f;s 2 are finite. 

Instead of working with the renormalized fields, we could 

also work with the bare fields, and instead of (3.21), get a 

term where E2(Pi)'S and Ti’S are replaced by their 

unrenormalized values Zi(pi) and l'ils. Each of the '~(Pi)ls 
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may be written as a product of an infinite wave-function 
0 renormalization factor Z2, which is independent of pi, and 

the finite wave-function renormalization factor Z2(pi). Thus 

fp is related to fi as, 

r i = (zij2 rp (3.22) 

The renormalization group equations for ri’S may be 

obtained by using (3.22) and the fact that rp, when 

expressed as a function of the bare parameters of the 

theory, is independent of the renormalization mass p. 

IV. FACTORIZATION OF THE COLLINEAR DIVERGENCES 

In this section we shall show that the contribution to 

the amplitudes fi, defined in Sec. III, may be brought into 

a form, which receives contribution only from those regions 

of integration in momentum space, where none of the internal 

loop momenta is parallel to any of the external momenta Par 

pb' pc Or pd. We shall use this result in the next section 

to derive a differential equation involving the amplitudes. 

We shall use a method developed by Collins and Soper,ll 

rather than the method used in Ref. 1, to show the 

factorization of the collinear divergences. We shall 

explain the method briefly below: 
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For a set of gluons of momenta ql,..qN, polarizations 

Ul,...!JN and color CY 1 . ..cY N, attached to a quark line moving 

parallel to one of the external momenta pi(i=a,b,c,d), as 

shown in Fig. 12, we define the soft approximation as, 

Y 
J=O 

UIjl[i/(K+dl+ . ..+dJ-m+is)] UN J I (4.1) 

where, 

-1 
uJ 

i "1 
= (q1+ 

-__- 
. ..+qJ)*vi+is (-ig vi tcrl) (q2+.+qJ)*vitie 

(-ig vy2t i 
a2)"'qJ*vi*is (-ig vI"t,J) (4.2) 

and, 

'N,J = (ig vFJ+ltuJ+l) q i J+lvi* ic (ig vyJ+2toJ+2) 

i 
(qJ+l+qJ:2)*vi+iE'.(qJ+l+...qN)*vi+is (4.3) 

where to's are the representations of the group generators 

in the fermion representation, k and k + iIl qi are the 

momenta of the external fermion lines and, 

vi = @g Pi/P; (4.4) 

if the soft approximation is made for the momentum k being 
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parallel to pi(i=a,b,c,d). In (4.2) and (4.3), the - sign in 

front of the is appears when k is parallel to pa or pb, the 

+ sign appears when k is parallel to p, or pd. This is to 

make sure that the poles in the q*vi plane from the 

denominators of (4.2) and (4.3) are on the same side of the 

real axis as the poles from the original Feynman 

denominators of the graph. (4.1) may be graphicaly 

represented by Fig. 13. The rules for the special vertices 

used in Fig. 13 are given in Fig. 14. Expression (4.1) 

approximates the graph shown in Fig. 12 in the region of 

integration where ql,... qN are soft lines and k is collinear 

to the momentum pi. Similar soft approximations may also be 

made for soft gluons attached to collinear gluons. Now, 

consider a Green's function with a set A of external gluons 

and fermions, and a set B of gluons attached to it through 

the soft approximation given in (4.1). It was shown in 

Ref. 11 that if we sum over all insertions of the gluons of 

set B to the Green's function, using soft approximation 

every time, the final result is the sum of all possible 

graphs, where the gluons of set B are attached to the outer 

ends of the external fermions and the gluons in set A 

through the eikonal vertices given in Fig. 14 (as in 

Fig. 13). The graphs, where the external gluons of set B 

are attached to the ends of the internal lines of the 

Green's functions, cancel among themselves. 
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We now give some definitions. Let us consider any 4PI 

subgraph G, of F. We may regard this as a subgraph of the 

amplitude ri, after we plug F into Fig. 11. We call a 

subgraph T of G a tulip, if the graph contributing to the 

amplitude Pi, of which&is a subgraph, may be broken into 

subgraphs, having the topological structure of Fig. 1, with 

T as a part of the central subgraph S, and all the lines in 

G-T belonging to various jets Ja, Jb, Jc and Jd. The graph 

G-T must be 1PI in the external gluon legs. A garden is a 

nested set of tulips ITl,...T,} such that Tj C Tj+l for 

j=l ,...n-1. Examples of tulips and gardens are shown in 

Fig. 15. In this figure, Tl, T2, T3 are examples of tulips, 

the sets {Tl}, (T2}, {T3}, [Tl,T3} and {T2, T3} are examples 

of gardens. 

For a given 4PI subgraph G, we define a regularized 

version G R of G by, 

GR =G+ 1 (-l)"S(Tl)...S(Tn)G (4.5) 
inequivalent 

gardens 

We shall first explain the meaning of the symbol 

S (Tl) . . .S (T,) G. We start with the largest tulip Tnr 
belonging to a particular garden. We pretend that the 

gluons, coming out of the tulip, are soft gluons, attached 

to collinear lines in G-T,, and replace these insertions by 

their soft approximation given in (4.1) or its analog for 

collinear gluons. This defines S(T,)G. We now take the gluon 
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lines coming out of Tn-1. If some of these gluons are 

identical to some of the gluons coming out of Tn, we leave 

them as they are. For the other gluons, we again pretend 

that they are soft gluons, attached to the collinear lines 

in G-T,-1 and replace these insertions by their soft 

approximation. We proceed in this manner to calculate 

S (T1) . . .S (T,) G. Two gardens are said to be equivalent if 

S(T1)... S(T,)G for the two gardens are the same, this 

happens if the two gardens have identical sets of 

boundaries. 

It was shown in Ref. 11 that, GR, defined by Eq. (4.51, 

receives non-suppressed contribution only from the 

integration region, where all its internal momenta are hard. 

Then according to Fig. 1, the subgraph of F, which lies 

unambiguously to the right of GR, must also carry hard 

momenta. 

We shall now show that the collinear divergences 

factorize into wave-function renormalization constants on 

external lines. We start with a given graph, contributing 

to the amplitude Ti and number its 4PI graphs from outside 

to inside as G1, G2,...Gn. For graphs of the type shown in 

Fig. 8, it is not possible to say which 4PI graph is outside 

(or to the left side of) the other; let us, for the time 

being ignore such ambiguities. We can then write the 

contribution to the amplitude Pi from the above graph as, 

G1G2.. .GnhiQi (4.6) 



-3o- FERMILAB-Pub-82/66-THY 

We decompose Gi as, 

Gi = GiS + GiR (4.7) 

where G. IR is the residue defined in (4.5) and GiS is the 

term containing soft approximations. We write (4.6) as, 

(GlRG2...Gn + G1SG2RG3...Gn + G1sG2SG3RG4...Gn i..... 

GIS. - .GnslSGnR + GIS.. .GnS) hiQi (4.8) 

In the first term, all the internal lines of the graph 

must carry hard momentum, since GIR carries hard momentum 

and G2,.. .G, are surrounded by GIR. In the second term, G2R 

carries hard momenta. This constrains G 3' . ..G. to carry 

hard momenta. And so on. 

Let us now turn towards the case where we have the 

ordering ambiguity as shown in Fig. 8. The most general 

ambiguous subdiagram in F has the form shown in Fig. 16, 

except for possible permutations of the lines a,b,c,d. Here 

Gi,Gi,...G~I,Gi,Gi...G~,, are two particle irreducible 

subdiagrams. The product of Gi...GAtGi-..G:qu is decomposed 

as, 
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x(GiRG;...G;,,+G” G” G”...G~,,+...+G;s...G~,,~lsG~,,R+G~s...G~,,s) 1s 2R 3 

(4.9) 

If we pick the R part from any of the Gi, all the G! 's 
3 

for jzi and the part of F, which lies to the right of the 

subgraph of Fig. 16 in the full diagram, is constrained to 

carry hard momenta. Similarly, if we pick the R term from 

any of the G?'s, all the G;'s for j'i are constrained to 

carry hard momenta, so is the part of F, lying to the right 

of the subgraph of Fig. 16 (remember that the right side of 

F refers to the part closer to the core AiQi in Fig. 11). 

For the term GiS...GA,s G"ls...G;Ws, we break up the part of 

F, lying to the right of the subdiagram of Fig. 16, into a 

product of 4PI parts and decompose them into R and S parts 

in the same way as we did in (4.8). 

At the end of the decomposition procedure, we shall get 

a central hard core, which carries only hard momenta due to 

the presence of a GR in its outermost shell, surrounded by 

shells of 4PI subdiagrams, each of which is replaced by its 

soft approximation 

Gs = - 1 
inequivalent 

(-l)"S(Tl)...S(Tn)G. 

gardens 

Let us call this central core to be Q'. (1) ' the subscript (i) 
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is to remind us that we started with the amplitude ri. The 

contribution GS from a given 4PI subdiagram may be written 

by grouping together the sum over all gardens with the same 

largest tulip T. Thus, we may write, 

C-1) n-1S (T1 ) . . .S (Tnsl )I s(T )G 
inesuivalent 

garden with T,=T 
(4.10) 

Let, 

T R 
=T+ I: (- 

inequivalent 
gardens with T,=T 

1) "-lS(T )...S(T,-1)~ (4.1 1) 

The right hand side of (4.10) may then be interpreted 

as the insertion of TR into G-T using soft approximation for 

the lines coming out of TR. fi is then the sum of diagrams 

of the form shown in Fig. 17. Here MR is the collection of 

disconnected regularized tulips TR. The lines coming out of 

MR are inserted into the blobs Ja, Jb, Jc and Jd using soft 

approximation. The sum of all such insertions is given by 

Fig. 18. Let us now compare it with the graph shown in 

Fig. 19. Here X(i) is an unspecified hard core, we shall 

try to choose it in such a way that the graph of Fig. 18 

becomes identical to the one in Fig. 19, except for the self 

energy insertion on the external lines. To do this, let us 

note that the part of Fig. 19, involving MR, may again be 

divided into 4PI subgraphs, which are nothing but 
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regularized tulips TR, attached to the quark lines. Let G 

be such a 4PI subgraph. We divide it into the soft part GS, 

where the insertions of the gluon lines, coming out of TR, 

on the quark lines in "G are replaced by their soft 
- -- 

approximations, and GREG-G s, having the property that all 

its internal lines must be hard if 5 is replaced by GR in 

the full graph. We then decompose the 4PI subgraphs of 

Fig. 19 using Eqs. similar to (4.8) and (4.9), with G 

replaced by 6. The result is a central hard core xii)' 
surrounded by 4PI subgrahs TR, inserted on the quark lines 

through soft approximation. The sum of all the soft 

insertions is the graph shown in Fig. 20. xii) is obtained 

by adding to x(~), the convolution of a subtracted eight 

quark Green's function $1 and x(~) (like the convolution of 

F and Q in Eq. (3.5)). Yl is the sum of diagrams containing 

an arbitrary number of regularized 4PI subdiagram G,the left 

most one of which is replaced by its R part, thus ensuring 

that all the lines in I$ x are hard. 1 (1) We may then write, 

'{i) = (1 + JI,) x(i) (4.12) 

If we choose x(~) in such a way that xii) equals "ii), 

then the graphs of Fig. 20 and Fig. 18 are identical, except 

for the self energy insertion on external lines. The 

corresponding x(~) is given by, 
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'(i) 
= (I+$$-~ "ii, 2 3 = (I-$~+$~-$~+. . . ) Q ii, (4.13) 

In the definition of F, we have IZ2(pi)l-l($i-m) factor 

for each external fermion, this removes the external self 

energies from Fig. 18. ri is then calculated by contracting 

Fig. 20, or equivalently Fig. 19, with the external spinors 

U(Pi) and u(pi) (i=a,b,c,d). Figure 19 satisfies the 

property that none of the internal gluon lines in MR, nor 

the gluon lines entering or leaving MR, can be collinear. 

This is because, if there is any such collinear gluon, there 

will also be soft gluons attached to it, separating it from 

lines collinear to the other momenta. But the soft 

subtraction terms in MR forces the contribution from any 

such region to be suppressed by a power of Q. Thus the 

internal lines of MR may either be hard or be soft. We 

express this contribution as, 

3 d4Q. 
.I- I 

j:l (21r)~ 
F'(p,+Ql,pb+Q2,~,+Q3) X(i) (ParPb*PcrQl*Q2'Q3) 

(4.14) 

where F' is the contribution from the part involving MR. F' 

has similar structure as F, defined in Sec. III, and we may 

write the equations: 
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F' = F@(bcd) ' F' K{a) 

F' = F;acd) + F' K{b) 

F’ = F’ 
(abd) ' F' Kit) 

F' 
= Fiabc) ’ F’ Kid) 

(4.15a) 

(4.15b) 

(4.15c) 

(4.15d) 

xti) has a perturbation expansion, which may be obtained 

from Eq. (4.13). F' may be calculated using the subtraction 

scheme described in this section. r i may then be calculated 

using (4.14), an expression which is free from collinear 

divergences. 

V. ANALYSIS OF ri 

In this section we shall derive a set of differential 

equations involving the fits and show how the solutions of 

these equations give us the asymptotic behavior of the fits. 

The asymptotic behavior of the functions '2(Pi) " 

(i=a,b,c,d) will be derived in the next section. Combining 

these two results, we may find the asymptotic behavior of 

the full amplitude. 

The color and the Dirac structure of may 

be analyzed in an exactly similar way as we did for $I. We 

express x(i) as, 
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= I: X(i) i'l~,'~h,P~ ,Q, ,et,R3) C"~,~ 
Ci'R'y'G 

i' a'b'c'd' 

7 
- if=, '(i)i' (P,,Pb 'PC ,O,OIO) ("x1 CX'B'y'6' 

a'b'c'd' 

(5.1) 

where the last line of the above equation defines x(i) res' 
This definition is slightly different from the definition of 

$ res. given in Eq. (3.9). In the limit lQy)<<Q (j=l,2,3), 

'(i) becomes independent of these momenta, since all the 

internal lines of x(i) are constrained to carry hard 

momenta. Hence we may set 111, Q2, Q3 to be zero in x(~) in 

this region. The contribution to the integral of (4.14) 

from the 

i,il x(i) 

region IQyl<cQ then comes solely from the 

i'lQ =o Ai, term, the x,,,- term contributes when 
at least one of the Q j's is of order Q. Equation (4.14) may 

then be analyzed in a similar way as (3.5) and brought into 

a form analogous to (3.18): 
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d4Q. 
3 

it=1 ; (2n) 
4 

~~,~Pa+Q,,Pb+Q~~Pc~Q~~~~~i~~~~Pe~pb~pC~o~o~o~ 

+ X&’ (ParPb,PcrO,O,O)+.. .I 

(5.2) 

where, 

r 
3 d4Qj 

i,= = 
j=l (2nJ4 

Fit (p,+Ql 'Pb+ll2 rP,+Q3) (5.3) 

T.. 
11' = [x(i)i' + XI& +...lQ,=o (5.4) 

J 

Thus ~~~~ 's are calculated from Feynman graphs, all of 

whose internal lines carry hard momenta. We shall now try 

to evaluate ar ,/ainQ, keeping the angle 0 defined in 

Eq. (2.1), fixed. Thus the differentiation is a 

differentiation with respect to In/s, keeping the ratio s/t 

fixed. Taking the derivative operator inside the integral 

in (4.14), we may write, 
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ari 3 d4Q. 
alnQ= =--% 

aF' (Pa+Ql,pb+Q2rPc+Q3) 

j=l (2x) alnQ xti) (P,~P~,P,~Q~,Q~,Q~) 

+ F'(pa+Ql,pb+Q2'pc+Q3) ax(i) (p,rPb~P, ,Ql.'Q2'Q3) 
ainQ (5.5) 

F' may be written as a Feynman integral over its 

internal loop momenta. We may choose the independent loop 

momenta of F' in such a way that the only dependence of the 

integrand On Par pbI PC Or pd comes from the propagators of 

the four fermion lines running through the graph. aF'/alnQ 

may then be evaluated by acting the derivative operation on 

each of these lines. A typical contribution to F' and the 

corresponding contribution to aF*/alnQ have been shown in 

Fig. 21. The cross on a fermion line denotes the operation 

of a/alnQ on that line. (Although we represent F' by a 

Feynman diagram, it should be understood that in these 

diagrams, the 4PI subgraphs have internal soft subtractions. 

Such subtraction terms do not affect our discussion). 

Let us consider a quark propagator in a graph, 

contributing to F', which is a part of the continuation of 

the external quark line, carrying momentum pa, through the 

graph. The momentum carried by this line may be written as 

p,+k, where k is some linear combination of the internal 

loop momenta of F' 
and the "j Is' 

The contribution to the 

Feynman integrand from this line is given by, 
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(p,+k) *y/{(pa+k)2-m2+is] (5.6) 

If we consider the region of integration where k is 

soft, we may approximate the numerator by p;y and the 

denominator by (2pa*k+ie). In the Q+- limit, (5.6) goes as, 

va'y/(2va*k+ie) (5.7) 

V a being defined as in Eq. (4.4). Equations (5.7) is 

independent of Q, hence the a/alnQ operator, acting on it, 

gives zero. So, in order to give a non-suppressed 

contribution to ar,/alnQ, a crossed line in a diagram must 

carry hard momentum (remember that there is no collinear 

loop momentum in F'). (This result is valid only for 

on-shell regularization. For off-shell regularization, the 

denominator is given by (2p,. k+Mz+ie) in the k soft region, 

M.z being the off-shellness of the line a. a/ahQ operator, 

acting on this term, will receive a contribution from the 

ksMz/Q region, besides the hard region.) Then, in order to 

get a momentum flow, consistent with the result of Fig. 1, 

the part of the graph which lies unambiguously to the right 

of the crossed line, or which cannot be separated from the 

crossed line by drawing a vertical line through the diagram, 

cutting four normal (not crossed) quark lines, must also 

carry hard momenta. Similar analysis may be carried out for 

crosses on the other fermion lines. In Fig. 21, in each 
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graph, the part lying to the right of the broken line is 

constrained to be hard. As a result, the first term on the 

right hand side of (5.5) may be expressed as a convolution 

of F' with a central hard core p (1) - Typical contributions 

to 
'(i) have been shown in Fig. 22. Then (5.5) may be 

written as. 

3 d4Q. 
3 

J"=l (2x)4 
F'(pa+Ql,pb+Q2,pc+Q3) fPtij (pa~pb~pc~Ql~Q2~Q3) 

aXCij (ParPb,PcrQl,Q2,Q3) 
+---- alnQ -3 (5.8) 

The above expression has the same structure as (4.14), 

with Xfij replaced by the hard core p (1) + axtiJ/ainc2. Thus 

it may be analyzed in the same way and brought into a form 

analogous to (5.2), 

ari 
m = (5.9) 

where u is calculated from Feynman diagrams all of whose 

internal momenta carry hard momenta. ri is given by (5.2). 

Treating r and r as four dimensional vectors and o and T as 

4x4 matrices, we may eliminate r between (5.2) and (5.9) and 

write, 

ari/ainq = f ‘ii’ riv iI=1 (5.10) 

where 
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(1) ii, = (13 -r-')ii' (5.11) 

fi, as defined in (5.3), suffers from ultra violet 

divergences, since the Q. 
3 

integrals diverge in (5.3). 

Consequently, u and r must also have ultraviolet 

divergences, so that the produce ar and rr are free from 

ultraviolet divergences. In Eq. (5.10), however, both ri,*s 

and aI',/alnQ's are free from ultraviolet divergences. If we 

regard these as a set of linear equations in hii,'s, we get 

16 such independent equations (4 i's and 4 different color 

and helicity structures of the external on shell particles, 

on which the PiIs depend). By solving these, Xii,'s may be 

expressed in terms of ri*s and al',/alnQ's. This shows that 

the Xii, 's are free from ultraviolet divergences. A is also 

free from infrared divergences and independent of the quark 

mass m in the Q+= limit, since it is calculated from Feynman 

diagrams, all of whose internal lines are hard. Thus X may 

be expressed as a function of Q/u and the coupling constant 

g (u=renormalization mass). 

If we multiply both sides of Eq. (5 10) by (2°)2, . 2 then I 

using Eq. (3.22), we get, 

ary?aino = 1 Xii, rf, 
i' 
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Solving these equations, we may express Xii,'s in terms 

of rO,ls and arp/ahqls. NO”, fits and SO also ar~/alnQ's are 

independent of u, when expressed in terms of the bare 

parameters of the theory. Hence 1.. 's must also be 
11’ 

independent of u if expressed in terms of the bare 

parameters of the theory. This leads to the renormalization 

group equation for the A's, 

(B(g) k + P h ) Xii, (Qhts) = 0 . 

The solution of (5.13) is, 

Aii' (Qh 4) = Xii, (l,;(Q) 1 

(5.13) 

(5.14) 

g being the running coupling consant. Thus the solution of 

(5.10) is, 

ii, Ai,(m,u,R,g) 

(5.15) 

where P is the path ordering, which orders the terms in the 

expansion of the exponential, from right to left, in the 

order of increasing Q'. Ai,'s are constants, independent of 

Q- 

X has a perturbation expansion starting at g2. Thus, 
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A.. (1 g(Q')) = X!?' 11' ' 11, (i(Q1H2 + O(fi(Q1)4) (5.16) 

In non-Abelian gauge theories, 

q2(Q1) = 16a2/(B0 In Q12/h2) (5.17) 

in the Q'+" limit. Here B, is a constant related to the 

group structure. Thus, 

ri = exp e f3 
aa21 to) 

o (In In g - In ln {I] ii, Ai,(m,u,R,g) 

(5.18) 

Systematic corrections to (5.18) may be made by 

including higher order terms in X in Eq. (5.15) and higher 

order corrections in the expression for y2(Q). For SU(3) 

group, 

BO=(ll-2nf/3) (5. 19) 

where nf is the number of flavors. 

VI. ASYMPTOTIC BEHAVIOR OF THE FULL AMPLITUDE 

In Sec. V, we found the asymptotic behavior of the 

rils. In this section, we shall show how to find out the 

asymptotic behavior of theZZ's, using the results of Ref. 1. 

Combining these two results, we may find the asymptotic 

behavior of the full amplitude. 
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In Ref. 1, we showed that for an on-shell quark, moving 

along the fZ direction with large momentum p, we have, 

0 
[Z,(P) 1 1’2 = B(m,u,R,g) exp[ .f 2p 

!J 

Y,(<(Y)) + fl((l(x)) + f2(m,urR,g)jl. (‘5.1) 

In writing down the above equation we have taken the 

gauge fixing vector n to be a fixed vector and hence omitted 

the dependence of the functions B, yl, fl and f2 on n. The 

above equation is not in a Lorentz covariant form, it is 

valid only for particles moving along the +Z direction. In 

order to find Z2(p') for any large on-shell momentum p', we 

note that it may be expressed as a function of m,u,R,g and 

In*p'l, due to Lorentz covariance and the invariance of the 

theory under the transformation n+-n. If p be an on-shell 

momentum lying along the +ve Z axis, and satisfying the 

condition, 

InspI = In*p’I (6.2) 

then Z,(p') wi 11 be identica .l to Z2(P). Let us define, 

n = 2p"/ln*pl = 211 no-n3 I- (6.3) 
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Then. 

[z2(p')11'2 = rz2(p)11'2 = B (m,u ,R,g) 

exp I I nln*p’l 
Ff- j: F yl(i(y))+ fl(i (x)) + f2(m,u,R,g).i 3 !J 

(6.4) 

Equation (6.4) gives the asymptotic expression for 

Z,(P') for a general p'. Note that, if we choose n'=O, 

z1/2 
2 (pa)=Zi'2(pb), as was the case in Ref. 1 and 

z1/2 2 (pc)=Zi'2(pd). The full asymptotic expression may be 

obtained by combining the Eqs. (5.15) and (6.4): 

C(m,~,R,g)~ 
j=a,E,c,d 

exp [S 
lJ 

-J; ~++y))+fl(&x)) 

+f2(m,ilrR,g)jjj i ii=, [P exp (.fQ A(l,!(Q') re)dlnQ')]ii, 
, !J 

(6.5) 

In the above equation, we have explicitly shown the 

dependence on all the external variables, except n. The 

functions yl, fl, and f2 may be calculated using the 

prescription of Ref.1. The 4X4 matrix X may be calculated 

using the prescription of Sec.V. C and Ai:s are unknown 

constants, independent of s. In the Q+" limit, the y 1 term 
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is the most dominant term in the exponential. If the O(i2) 

term in the expansion of -2 yl is Clg , the term gives a 

contribution, 

exp [- 4 C 1 I;? I;G2(Y,I (6.6) 

From Ref. 1 we know that Cl is CF/4T2, CF being the 

eigenvalue of the quadratic Casimir operator in the fermion 

representation. Using the expression (5.17) for s2(Q), we 

can write (6.6) as, 

exp I- In In : - In $ In In i - In ij ] (6.7) 

Systematic corrections to (6.7) may be made by using 

the full Eq. (6.5) and including higher order corrections in 

the expression for s2(Q). The functions yl, fl and A have 

perturbation expressions in <, which can be calculated up to 

any order. The functions C, f2 and Ai's are infra-red 

divergent and hence cannot be calculated in perturbation 

theory. These functions are, however, independent of Q. We 

may take them as unknown constants in calculating the Q 

dependence of the amplitude from Eq. (6.7). 

At the tree level, the amplitude for m+m is 

proportional to g2. When we take asymptotic freedom into 

account, we may expect this factor of g2 to be replaced by 

j2(Q) and produce an explicit factor of l/an (Q/A) 
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multiplying the full amplitude. The reader may wonder what 

has happened to this factor in our expression (6.5). In our 

formalism, this factor is included in the matrix X. If we 

look at expression (5.18), we see that an additive factor of 

-1 in the matrix S~2~(o)/Bo will produce a multiplicative 

factor of l/Qn(Q/A) in the amplitude. This is how the 

effect of the i2(Q) term is hidden in X. 

The phase of the amplitude comes solely from the f ri 
i=l 

term. The S2(p) factors cannot have any imaginary part, 

since they involve a single on-shell incoming and outgoing 

quark line, which cannot give rise to any intermediate state 

with on-shell particles. From (5.18), we see that the 

leading contribution to ri comes from the eigenvalue of A(') 

with largest real part. If XI be the imaginary part of this 

eigenvalue of X(O), then the phase goes as, 

(a n2XI/Bo) In In Q/A (6.81 

Thus the phase of the amplitude is determined by the 

4x4 matrix X, which is free from infrared singularities and 

hence may be calculated perturbatively in QCD. (This is 

true for the phase of the Sudakov form factor also, where X 

is a number, rather than a matrix). This is an important 

result, since this shows that the phase of the hard 

scattering processes may provide an important test of QCD. 
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We should remember that (6.5) represents the asymptotic 

behavior of the sum of only those graphs where the c line is 

the continuation of the a line and the d line is the 

continuation of the b line. The sum of the other set of 

graphs, where the c line is the continuation of the b line 

and the d line is the continuation of the a line may be 

obtained from (6.5) by interchanging the color and the 

helicity quantum numbers of the lines c and d and the 

momenta p, and pd. 
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VII. CONCLUSION 

In this paper we have found a sys tema tic way of 

calculating the asymptotic behavior of the scattering 

amplitudes of on-shell quarks (anti-quarks) in the s+m, t/s 

fixed limit. The method can also be applied to analyze 

amplitudes with more than four external on-shell quarks 

(anti-quarks). The leading asymptotic behavior comes from 

the self-energy insertions on the external lines. This is 

given by the renormalization group modified formula of 

Cornwall and Tiktopoulos: 9 

1 exp[ - - 
32x2 

where Ci is the eigenvalue of the quadratic Casimir operator 

in the representation to which the ith external particle 

belongs and Q is some energy of order Gj. Systematic 

corrections to (7.1) for the qq+qq amplitude may be made by 

using the full expression (6.5) and adding to it the term 

with 'crSd interchanged, crd interchanged and P,tPd 

interchanged. For q{+qS amplitude we get a similar form as 

(6.5), with different functions Xii, and Ai,. For amplitudes 

involving more external quarks, we again get a similar form 

as (6.5) r except that here the dimensionality of the matrix 

X and the vector A is larger than 4, the exact number being 

equal to the number of independent tensor structures in the 

amplitude. 
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The result derived in this paper supports Mueller's 
6 conjecture on the asymptotic behavior of the wide angle 

elastic scattering amplitudes of hadrons. For his result, 

Mueller used a form like (6.7) for the qq+qG amplitude. In 

his calculation, the color singletness of the external 

hadrons automatically provided an intra-red cut-off v'~S, 

where X-m2/s corresponds to the Landshoff pinch point and 

X-1 corresponds to the hard scattering region, where the 

quark counting rule is valid. As mentioned in the 

introduction, the off-shell regularization effectively 

reduces to an on-shell one, when we sum over a set of 

graphs, and use the fact that the hadrons are color 

singlets. In our result (6.5), if we set the infra-red 

regulator R to be J% and also u=/zs, so as to avoid logs of 

&‘TS, the asymptotic expression (6.7) becomes 

exp [- 2 (In f 
-- 

In In f - In F In lnJp - lnJx (7.2) 

which is exactly the form assumed by Mueller. 

On the basis of this equation, Mueller showed that the 

leading contribution to the wide angle elastic ~171 scattering 

amplitude comes from a region Xs-s 2c/(2c+l) where C=BCF/Bo, 

which gives a factor of ~1~~~' In ((2c+1)/2c) multiplying 

the quark counting rule prediction for the amplitude. Thus 

our result supports Mueller's conjecture. We hope that the 

technique used in this paper may be applied directly to the 

analysis of hadron hadron elastic scattering amplitude and 
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will enable us to make systematic corrections to Mueller's 

result. 

Pire and Ralston' have suggested that the phase of the 

q?j+qs and qq+qq amplitudes may be responsible for the small 

oscillation of the experimental data for hadron-hadron 

elastic scattering cross-section about the quark counting 

rule prediction, as was noted by Brodsky and Lepage. 8 This 

is achieved by considering the interference between 

Mueller's result and the quark counting result. We have 

seen that the phase of the amplitude is free from infrared 

divergences. Hence it is calculable perturbatively and is 

proportional to In In Q/A, thus confirming Pire and 

Ralston's assumption that the scale of the Q dependence of 

the phase is set by the QCD scale parameter A. We hope that 

the analysis of the full hadron hadron scattering amplitude, 

using the method used here, will also provide us with a 

quantitative result for the oscillation of the scattering 

cross section. 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

Fig. 10: 

Fig. 11: 

Fig. 12: 

Fig. 13: 

FIGURE CAPTIONS 

A diagrammatic representation of the regions of 

integration in the loop momentum space, which 

contribute to the qq+qq amplitude in the leading 

power in Q. 

Examples of four quark subdiagrams (square boxes) 

and gluon subdiagrams (circular boxes). 

Some typical contributions to 4. 

The eight quark Green's function F. 

Graphical representation of the integral in (3.5). 

Examples of four particle irreducible eight quark 

subdiagrams of F (square boxes). 

Some typical contributions to Ktaj. 

A typical contribution to the eight quark Green’s 

function, suffering from ordering ambiguity. 

Some typical contributions to F (bed) - 
Some typical contributions to the integral of 

(3.5), where the Q integral suffers from 

ultraviolet divergences. 

Graphical representation of ri. 

A Green's function with r-J gluons attached to a 

fermion line. 

Soft approximation for the Green's function shown 

in Fig. 12. 



-54- FERMILAB-Pub-82/66-THY 

Fig. 14: 

Fig. 15: 

Fig. 16: 

Fig. 17: 

Fig. 18: 

Fig. 19: 

Fig. 20: 

Fig. 21: 

Fig. 22: 

Expressions for the special vertices and 

propagators shown in Fig. 13. 

Examples of tulips and gardens. 

The most general subdiagram of F, suffering from 

ordering ambiguity. 

Graphical representations of r i after the 

rearrangement given in Eqs. (4.8) r (4.9) and 

(4.10). The broken lines indicate that soft 

approximation is made for the gluon lines crossing 

the broken line. 

Sum of all insertions of the gluons coming out of 

MR into the blobs Ja, Jb, Jc and Jd in Fig. 17. 

A trial amplitude. 

The amplitude of Fig. 19, after the S-R 

decomposition of its 4PI subgraphs and sum over 

all insertions of the gluons, coming out of the S 

part, on the quark lines. 

A typical contribution to F' and the corresponding 

contributions to aF'/alnQ. In each graph, the 

subgraph to the right of the broken line is 

constrained to be hard due to the action of the 

derivative operations. (This excludes the quark 

lines cut by the broken lines.) 

Some typical contributions to pfi). 
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