SLAC-PUB-4383
August, 1987
T

Mass Renormalization and BRST Anomaly in String Theories™

ASHOKE SENT

Stanford Linear Accelerator Center

Stanford University, Stanford, California, 94305

ABSTRACT

On shell two point functions generated due to string loop corrections are
shown to give rise to BRST anomaly in the scattering amplitudes in the form
of total derivative terms in the moduli space. This anomaly may be cancelled
by modifying the vertex operators in a way that precisely corresponds to mass

renormalization in the theory.
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1. Introduction

It has become clear through recent studies that the boundaries of the moduli
space give rise to divergences[1,2] (as well as BRST anomaly(3,4]) in string the-
ories wheﬂever any of the massless fields in the ﬁheory develop a tadpole. These
divergences (BRST anomaly) may be cancelled by introducing explicit diver-
gences (BRST anomaly) at the tree level of the theory in the form of background
fields which break conformal invariance on the sphere, and the requirement of
the cancellation of divergences (BRST anomaly) gives rise to the loop corrected
equations of motion for the background fields in the string theory[5-10]. There is
another kind of divergence in string theory which also comes from the boundary
of the moduli space. These are associated with the non-vanishing two point func-
tions in the loop amplitudes. It was shown in ref.[11] using unitarity requirement
that the presence of such divergences require the momenta carried by the vertex
operators to be modified precisely in a way so as to correspond to mass renor-
malization. On the other hand, it was shown in ref.[12] that such divergences
contribute to the anomalous dimensions of the vertex operators. Thus the vertex
operators must be modified oncé the string loop effects are taken into account,
so as to keep the net conformal dimension of the vertex operator fixed. This is
again manifested as a mass renormalization in the theory. In this paper we give
yet another way of understanding mass renormalization in the string theory, us-
ing BRST formalism. We shall show that the presence of non-vanishing, on-shell

“two point functions in the one loop string perturbation theory gives rise to BRST
ah_omaly in the loop amplitude which, in general, prevents the zero normed states
to decouple from the S-matrix. This anomaly may again be cancelled by modi-
fying the vertex operators from their (string) tree level expression precisely in a

way so as to correspond to a mass renormalization.

In sec.Il of the paper we discuss this effect in detail by studying a one loop
scattering amplitude. The analysis is generalized to higher loops in sec.IIl. In

sec.IV we summarize our results.
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2. One loop mass renormalization

LetV (z, k) be the on-shell vertex operator for a given state with momentum
k, and V(z,—k) be its hermitian conjugate operator. Let us assume that the

correlator of V with V on a torus does not vanis'h, and define,
sm? = / d2rd22, (V (21, K)e(22)e(22)V (22, —k) (1 | B)(7 | B))go  (2:1)

where b, ¢, b, € are the standard ghost fields, 7 is the Teichmuller parameter on
the torus, n(z2), 77(2) are the Beltrami differentials dual to 7, 7 respectively, ( )7

denote correlation functions on the torus, and
(118) = [ dPunw)bte). (2:2)

For simplicity we have restricted ourselves to the bosonic string theory. We
believe that the analysis may be generalized to the fermionic string theory by
working with the vertex operators in the —1 picture, and carrying out the in-
tegration over the resulting supermoduli using the prescription of refs.[4,13,14],
although we must first resolve the ambiguity associated with the choice of basis of
the super-Beltrami differentials[14,15]. Also we shall assume, for simplicity, that
V is the only operator which has a non-vanishing correlator with V at one loop

order, so that there is no mixing between various operators. We shall now show

_that the effect of non-vanishing 6m? is to give rise to a BRST anomaly in the

scattering amplitudes. For this let us consider a one loop scattering amplitude
with n 4 2 external legs (n > 1) described by on-shell vertex operators V;(z;, k;)
(1 <7< n+2). The corresponding amplitude is given by,

n+1 n+1 B
/ dZT(H d?z;) < H Vi(2:))e(2n+2)e(2nt2) Vara(2nra) (1 | 0)(7 | b)>T. (2.3)

Let us now assume that one of the vertex operators, say V7, corresponds to

the vertex operator V appearing in eq.(2.1), and another, say V, 2, describes a
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null state, i.e.
~VIC(z)E(fJ)Vnn(’z) ={Qs,e(x)V(2)} = j{JB(W)dwE(z)V(Z), (2.4)

for some operator V. Here J B is the right handed BRST current and Qp is the
corresponding BRST charge. The w contour is taken around the point z. (We
could also have chosen the left-handed BRST current and replaced ¢(z) by ¢(2)
and w by @ on the right hand side of eq.(2.4)). In order to get a unitary and gauge
invariant theory, the null states must decouple, hence the amplitude (2.3) must
vanish. We may try to prove this using eq.(2.4), deforming the BRST contour
away from 2,42, and shrinking it to zero. During this deformation the BRST
contour will pick up residues from the locations of the ghost field b, as well as
the locations of the vertex operators V;(2;). Using the fact that the commutator
of @p with b is the stress tensor, the residue at the location of ¥ may be shown
to generate a total detivative in 7[16,17]. In the bosonic string theory, this picks
up a divergent boundary contribution from 7 = oo after integration over 7. This
divergence is associated purely with the presence of the tachyon in the theory,
and we do not have anything more to say about this in this paper. This boundary
contribution is absent in the heterotic and the superstring theories. The sum of

the residues at the location of the vertex operators takes the form,

n+1 n+1 a R _
~ [en(] ¢y a—zj<c(zj)vy(z,-)(ﬂ Vi(2))2(znr2)V (zns2) (n | B)(7 | ”)>T’

i=1 i

(2.5)
using,

7]
[@B,V;(2)] = a—zj(C(zJ')V}'(Zf))- ' (2.6)

Thus the contribution is a total derivative in 2;, and hence may be expressed
as boundary terms. There are two types of boundaries which may give non-

vanishing contribution to (2.5). Firstly, we may consider boundary contribution



where all the points 2z; approach each other. For reasons which will become
clear later, we shall pictorially represent this configuration as in fig.1(a), where
S and T denote a sphere and a torus respectii}ely. The contributions to the
BRST anomalies from such boundaries are associated with one loop tadpoles,
é.nd, if present, must be removed by the Fischler-Susskind mechanism[5]. We shall
focus our attention on the contribution from the boundaries shown in fig.1(b),
where all but one of the z!s approach each other. As we shall see, anomalies
coming from these graphs may be cancelled by modifying the tree level vertex
dperators in a way which corresponds to mass renormalization. Finally, there are
boundaries of the form shown in fig.1(c), where all but two (or more) external lines
approach each other. These boundaries are harmless due to the following reason.
Near any boundary, we may introduce a complex parameter ¢ parametrizing the
configuration of the vertex operators such the t approaches zero as we approach
the specific boundary. (| t | measures the distance scale between the points
which approach each other relative to the size of the original torus). It can
then be shown that the contribution from the boundary term has a factor of
| t |€, where £ is the total momentum carried by the vertex operators which
approach each other. For example, in fig.1(c) €2 = (k1 + k2)2, and we may
always analytically continue this to sufficiently large positive value by adjusting
the external momenta, so that the boundary contributions vanish. This freedom

is absent in fig.1(a), where £ vanishes identically, and also in fig.1(b), where

_£2? = k% is fixed by the tree level mass-shell condition.

We may now proceed to evaluate the boundary contribution corresponding

to fig.1(b). Since in this configuration zs,... 2,41 approach z, .2, we shall change

. *
variables as,

* For n > 2, there is an ambiguity in the choice of the set of independent variables near
the boundary. This ambiguity may be resolved by regarding the n-point amplitude as an
integral over the moduli space of a Riemann surface with n punctures, as explained in
the next section. For the time being we may restrict ourselves to the case n = 1 where
there is no ambiguity, and the analysis given in this section is completely rigorous for such
amplitudes.



22 — Zpny2 =1,

) (2.7)
s . Zi— Znyo =tz; (34 Sn +1).
Then,
n+1 n+1 n+1
1 2?2 =t te1a2t ] d2zi = Jd? [ d2s
1==2 1=3 1=3
(2.8)
ot ot
Ozg > 9z » 3<i<n+1)
We now use the integration rule,
afr
d"z— = | d"y K .
[ a3 = [ s 2L (2.9)

under a change in the integration variables from {z*} to {y*}. Here J is the
Jacobian of the transformation. Using egs.(2.7-2.9) we may write down the term
in (2.5) which involves 7% after change of variables; this is the only relevant term

which contributes to the boundary at ¢ = 0. This gives the following contribution
to the BRST anomaly,

n+1

/d2 1—‘[d2:1r:td2 {t" 1m— 1<c(zn+2—l—t)Vg(z,HLg'—}-t)
n+t+1 ) _
(] Vitensa + t2)elnsn)? GraaVa(en)n [ 9(715)) ).
i=3 4 T

(2.10)

Let us now define z, to be alarge but fixed number. We may now evaluate
e (2.10) by introducing a complete set of states at the boundary of a disk of radius

txoo with center at the point z,.,2. Denoting by ¢ the complete set of operators,



we may express the correlator appearing in (2.10) in the ¢ — 0 limit as,

S (B(ems2)Va(21) (1 | 0)(7 | 5)) (200 (FEoo) P54
APl

n+1
(elewsa + OValonsn + (T Vlonsn + t2)eonsa) (onialblonsn +t200))
1=3
(2.11)
where qz is the operator conjugate to ¢, (hg,hy) are the conformal weights of
the operator ¢, and ( )s denotes the correlation function on a sphere. By our
original assumption, the only operator qz that contributes to the correlator on
the torus is ccV appearing in eq.(2.1), since we have taken V; to be the operator
V. Consequently we get ¢ = cdcedcV, since cdc is the operator conjugate to c.
The correlator on the sphere may be simplified by using SL(2, C) invariance[18].
Finally, noting that,

(2(0)e(z00)0e(ze0)) g = —22, = (€(0)e(1)2(To0) ) . (2.12)

we may express (2.11) as,

n41
{07 )2 (1)( [ Vi(ad)e(oee)0c(zen)o(ze)V () )

(e(zn+2)e(zn42)V (2ns2)V (21) (0 | 0) (7 | B)) it~ H1E™

s (2.13)

Substituting this in (2.10) we see that the BRST anomaly A may be written

— ma.s, = . .

A= / @2 (F(t,), (2.14)



where,
lim F(2,7)

- n+1 .
= ~smei=1 [(I] #2{ 0P Oee¥a(a)
o (2.15)

(]T Vied)e(ame)oc(amo)e(aae)V (5

1=3
= 5m2t_~1As.

Before proceeding further, we shall fix some normalization convention. We
set o’ = 2 and the string coupling constant to be unity. Then a suitable normal-

ization convention consistent with tree level unitarity is to take,

. 1
CEDHEED

V(z,k)V (w, —k) 5 + non — leading terms, (2.16)

and define,

1 - 1
d*t = ——dtdf = ——dzd 2.17
47t 2r T4 (2.17)
where t = z + 1y. We may now define the integral (2.14) by cutting out a small
hole of radius € around the origin t = 0, carrying out the integration, and take

the € — O limit at the end. This gives the boundary contribution at ¢ = 0 as,

A= —%5m2As . (2.18)

~~"with As as defined in eq.(2.15).

* In our convention the propagator of a field with mass m is givan by (k2 + m2?)~1.



We shall now show that this BRST anomaly may be cancelled by modifying

.- the tree leyel vertex operator. If,
V(z,k) = Vo(z) : ¥ X (2.19)

then let us define,

6V (z,k,6k) = Vo(2)(: etlk+8k)X(2) . _ . ,ik-X(2) )

= iVo(2) : e XE)sk . X : +0((6k)?), (2.20)
for some é6k. It can be easily seen that,
(@5, c(2)2(2)8V (2, k, 6k)] = —%Akzc(z)ac(z)é(z)V(z,k +6K),  (2.21)
Where,
Aké = (k + 6k)* — k2. (2.22)

Let us now consider the tree level scattering amplitude involving the same

set of vertex operators Vi,...V, 2, except that we now use the vertex V + 6V

_for V1. This amplitude may be written as,

n+1 n+1
H dzx,<c )e(1)Va(1) H Vi(z:))e(0)e( )Vn+2(0)c(:z:°o)é(x°o)V1(zoo)> .

(3.23)

We now use eq;(2;4), and deform the BRST contour av;ray from the point 0,

~-~—shrinking it to a point on the sphere. During this process we pick up residues
—m from the poles at z;, 1 and z,. All the total derivative terms integrate out to zero

assuming that there are no tadpoles or two point functions on the sphere. The



only non-vanishing contribution comes from the commutator (2.21) and gives,
1., :
—2-Ak As. (2.24)
This can be made to cancel the anomaly given in (2.18) if,
Ak2 = ém? (2.25)

which corresponds to a mass shift of —ém?2. This agrees with the result of

ref.[11] based on unitarity arguments or of ref.[12] based on anomalous dimension

calculation.

10



3. Higher genus

Beforediscussing the generalization of the above analysis to the higher genus
case, let us note that a more systematic way to calculate string loop amplitudes
is to express an n-point amplitude as an integral over the moduli space of a
Riemann surface with n-punctures. In this formalism we insert a factor of c¢
at each vertex operator, trade in the integration over the z; for integration over
the moduli of the punctured surface, and insert a factor of (n; | b)(#; | b) in
the correlator for each moduli, ;, 7; being the Beltrami differentials dual to the
moduli[16,4,19-21]. This way all the vertex operators commute with Qp, and in
an amplitude involving a null state, all the total derivative terms come from the
anti-commutator {@p, (n: | b)}. A typical boundary of the moduli space of the
punctured surface consists of two punctured surfaces described by the coordinate
system w and y (say), glued together near the origins w = 0 and y = 0 through
the transition function y = t/w, t being the particular moduli that vanishes at
the boundary[22]. In terms of the variables appearing in (2.10), the coordinate
y on the punctured sphere (appearing on the left hand side of fig.1) is t

Z—Zp4y2’
while the coordinate w on the punctured torus (appearing on the right hand

side of fig.1) is z — 2,12, where z denotes the coordinate on the original torus.
- If we define a third coordinate v = —Ilny = Inw — Int to describe the region
| w |[<< 1, | y [<< 1, then we get the picture shown in fig.1, the long neck
(of length ~ —In|¢|) describing this region in the v-coordinate system. The
T -behavior of the integrand near the boundary may be written down using the
factorization hypothesis of ref.[23], by introducing a compleﬁe set of states at
the two boundaries of the long neck. The integration over the moduli splits into
the integration over ¢, ¢, and integration over the moduli of the two separate

punctured Riemann surfaces. Correspondingly, the set of beltrami differentials

near the boundary ‘spl’its into the beltrami differentials n;, ﬁ.t dual to ¢, Z, and the

-—--=—Dbeltrami differentials dual to the moduli associated with-the separate punctured
S surfaces. In the calculation we are interested in, the (n: | b) factor is removed

from the correlator, since {@p, (n: | b)} is used to generate the ;% operator. The

11



(¢ | b) factor, on the other hand, inserts a b zero mode on the neck.

* Using this formalism we may analyze the amplitude described in eq.(2.3),
and get back expression for the BRST anomaly given in egs.(2.14-2.15). In this
derivation we never have to use the rearrangement of the &s given in eq.(2.12),
since V3 automatically comes with a factor of c¢¢; at the same time the b zero
mode on the neck coming from (7; | b) tells us that corresponding to the in-
sertion of a €(zn42) on the torus, we need the insertion of a &(z.,) (and not
&(£00)0¢(zs0)) on the sphere. This is esthetically pleasing for the bosonic string
theory, but absolutely essential for the fermionic string theories, since there the
picture changing operators coming from integration over the supermoduli involve
ghost fields, and the rearrangement of the ghost fields such as in eq.(2.13) is not

possible in the presence of these operators.

This formalism also lets us tackle the higher loop effects of mass renormaliza-
tion in the same way as in the one loop case. Let us, for definiteness, consider the
case of two loop corrections to the amplitude involving the same set of vertex op-
erators Vy,...Vy,12. The two loop BRST anomaly associated with the two point
function (V'V') comes from two different boundaries, as shown in figs.2(a) and (b).
In order to compute the total BRST anomaly to this order, we must also include
the BRST anomaly in the one loop graph where the vertex V; is replaced by V.
This comes from two sources, one, due to the non-commutativity of Q grst with
cc6V, this contribution is shown in fig.3(a). The other source is the boundary

“contribution shown in fig.3(b). Of these, fig.3(a) exactly cancels fig.2(a), the can-
cellation mechanism being the same as in the one loop case. Fig.2(b) gives a new
co.nt‘ribution tb the BRST anomaly. This contribution, however, is divergent,
the divergence coming from the boundary region where the genus two surface
breaks up into two genus one surfaces, as shown in fig.4. T}}e operator insertions
responsible for the divergent contribution are shown in fig.4. This contribution

" is given by, A -

s [ _1

—%As(5m2) — = 2 (6m?)(ln€)4s, (3.1)

12



where, as before, ¢ is the lower cut-off of the ¢ integration. The physical origin
.. of this divergence is the fact that the two loop two point string amplitude auto-
matically iﬁcludes the one particle reducible graph which has an on-shell internal
propagator. From our experience in field theory we know that such graphs are
cancelled by lower order counterterms, and hence should not be included in the
two loop mass correction. We shall now show that a similar mechanism operates

in string theory, namely, the graph of fig.3(b) has a divergence which precisely
cancels the divergence of fig.2(b).

In order to do this we express 6V in fig.3(b) as a difference of two terms,
Voet(k+8k)-X and Voet*X. The contribution from each of these terms has the
form given in egs.(2.14) and (2.15), except that for the Voe!(k+6k)-X term f-1
in eq.(2.15) is replaced by #—1(tf)34%* = F—1(1 + 1AK2In (¢f) +...). Thus the
leading contribution to fig.3(b) is given by,

L AK(6m?) / a2 lngtf)) ~ 2 (6m?)24s(in ), (3.2)

using eq.(2.25). Thus we see that the divergent contribution to the BRST

anomaly from eqs.(3.2) and (3.1) cancel each other.

N Although the logarithmic divergences in fig.2(b) and 3(b) cancel each other,
extracting the finite part after the cancellation is not entirely straightforward.
The problem is to compare the parameter ¢, or more specifically, the lower limits
-of integration of this parameter, appearing in the two different diagrams, fig.2(b)
and 3(b). It can be seen following the analysis of ref.[12] that this lower limit
mlist:, depend on the conformal factor of the metric if we want to maintain two
dimensional reparametrization invariance. A related problem is that since 6§V
is not an operator of conformal dimension (1,1), matrix elements involving §V

on a given Riemann surface will also depend on the choice of the metric on

-~ -=—that Riemann surface. As a result, in order to carry out any computation, we
e e must specify some standard metric on each Riemann surface. We propose the

following scheme for this purpose (see also ref.[10]). To start with we specify some

13



standard metric on the sphere for each configuration of punctures on the sphere
in 'some standard coordinate chart. The standard metric on the torus is then
chosen so as to satisfy the following consistency condition. In the degeneration
limit shown in fig.1, the configuration should look like a punctured sphere with
the standard metric in the standard coordinate system (denoted by z), and a
punctured torus with the standard metric in the standard coordinate system
(denoted by w), glued together near the origin through the transition function
z = t/w[22]. This procedure may be continued to higher genus surfaces, —
the metric on the genus ¢ surface has to satisfy the requirement that in the
degeneration limit the surface decomposes into two punctured surfaces of genus
g1 and g — g respectively, with the standard metric on each of them in the
standard coordinate charts denoted by z and w, glued together near the origin
through the transition function z = t/w. This scheme gives an unambiguous
definition of ¢, and hence enables us to compare the degeneration parameters
t for two different Riemann surfaces, e.g. fig.3(b) and fig.4. The final answer
for the mass shift should be independent of the initial choice of the standard
metric. After all, it was shown in ref.[12] that after taking into account all the
corrections, the modified vertex operator, rather than the original one, has the
right conformal weights to give rise to metric independent amplitudes. It will
be interesting to see if these qualitative ideas may be developed into a concrete
form to calculate some explicit two loop mass corrections in some specific string

theory.
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4. Conclusion

To éurﬁmarize, in this paper we have shown t‘ha.t the effect of mass renormal-
ization due to string loop effects may be interpreted as a cancellation of BRST
anomaly between string tree and loop graphs. This has the advantage over the
anomalous dimension calculation that this formalism checks the cancellation of
the full BRST anomaly, and hence the anomaly in all the generators of the Vi-
rasoro algebra, whereas the anomalous dimension calculation only checks the
cancellation of the anomaly in the subgroup of the Virasoro algebra generated by
Lo[12]. Furthermore, the calculation we have presented at one loop is free from
divergences at all stages. At higher loop order, although the individual contri-
bution to the BRST anomaly suffers from divergences, they cancel when we sum
up the graphs, and again gives us a finite answer for the BRST anomaly. Finally,
we should emphasis that although we have used the bosonic string theory to il-
lustrate the general ideas, the analysis is based on the general properties of the
BRST operator, and hence is expected to be valid for all theories. This includes
fermionic string theories (once the ambiguities pointed out in refs.[14,15] are re-
solved), as well as theories based on general two dimensional (super-)conformal

field theories, rather that just free field theories.

Note added: Effects of wave-function and coupling constant renormalization
in string theory have been discussed in a recent paper by Minahan|24]. Some

_issues involving tachyon mass generation at one loop have been discussed in
ref.[25].

Acknowledgements: I wish to thank J. J. Atick, I. Klebanov and N. Seiberg for

illuminating conversations.
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