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On shell two point functions generated due to string loop corrections are 

shown to give rise to BRST anomaly in the scattering amplitudes in the form 

of total derivative terms in the moduli space. This anomaly may be cancelled 

by modifying the vertex operators in a way that precisely corresponds to mass 

renormalization in the theory. 
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1. Introduction 
i ,; 

It has become clear through recent studies that the boundaries of the moduli 
. 

space give rise to divergences[l,2] (as well as BRST anomaly[3,4]) in string the- 

ories whenever any of the massless fields in the theory develop a tadpole. These 

divergences (BRST anomaly) may be cancelled by introducing explicit diver- 

gences (BRST anomaly) at the tree level of the theory in the form of background 

fields which break conformal invariance on the sphere, and the requirement of 

the cancellation of divergences (BRST anomaly) gives rise to the loop corrected 

equations of motion for the background fields in the string theory[&lO]. There is 

another kind of divergence in string theory which also comes from the boundary 

of the moduli space. These are associated with the non-vanishing two point func- - 
tions in the loop amplitudes. It was shown in ref.[ll] using unitarity requirement 

that the presence of such divergences require the momenta carried by the vertex 

operators to be modified precisely in a way so as to correspond to mass renor- 

malization. On the other hand, it was shown in ref.[12] that such divergences 

- contribute to the anomalous dimensions of the vertex operators. Thus the vertex 

operators must be modified once the string loop effects are taken into account, 

so as to keep the net conformal dimension of the vertex operator fixed. This is 

again manifested as a mass renormalization in the theory. In this paper we give 

yet another way of understanding mass renormalization in the string theory, us- 

ing BRST formalism. We shall show that the presence of non-vanishing, on-shell 

two point functions in the one loop string perturbation theory gives rise to BRST 

anomaly in the loop amplitude which, in general, prevents the zero normed states 

to decouple from the S-matrix. This anomaly may again be cancelled by modi- 

fying the vertex operators from their (string) tree level expression precisely in a 

way so as to correspond to a mass renormalization. 
_ -1. 

- -- - In sec.11 of the paper we discuss this effect in detail- by studying a one loop - 
scattering amplitude. The analysis is generalized to higher loops in sec.111. In - =...- 
sec.IV we summarize our results. 
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. 
2. One loop mass renormalization 

i ,;” 

Let V @, k) be th e on+hell vertex operator f0.r a given state with momentum 
. 

k, and V(z, -k) be its hermitian conjugate operator. Let us assume that the 

correlator of V with c on a torus does not vanish, and define, 

6m2 = J d=Td=al(V(zl, k)c(zz)+#(a, -k)(rl 1 b)(f7 1 b)),, (2-l) 

where b, c, 6, c are the standard ghost fields, r is the Teichmuller parameter on 

the torus, v(z), q( z are the Beltrami differentials dual to 7, T respectively, ( )T ) 

denote correlation functions on the torus, and 

b7 I b) = / d=wq(w)b(w). (2.2) - 

- 

--..._ _ - 

For simplicity we have restricted ourselves to the bosonic string theory. We 

believe that the analysis may be generalized to the fermionic string theory by 

working with the vertex operators in the -1 picture, and carrying out the in- 

tegration over the resulting supermoduli using the prescription of refs.[4,13,14], 

although we must first resolve the ambiguity associated with the choice of basis of 

the super-Beltrami differentials[l4,15]. Also we shall assume, for simplicity, that 

? is the only operator which has a non-vanishing correlator with V at one loop 

order, so that there is no mixing between various operators. We shall now show 

that the effect of non-vanishing 6m2 is to give rise to a BRST anomaly in the - 
scattering amplitudes. For this let us consider a one loop scattering amplitude 

with n + 2 external legs (n 2 1) described by on-shell vertex operators Vi(zi, ki) 

(1 5 i 2 n + 2). Th e corresponding amplitude is given by, 

Let us now assume that one of the vertex operators, say VI, corresponds to 

the vertex operator V appearing in eq.(2.1), and another, say Vn+2, describes a 
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null state, i.e. 

i .=- . . - 

. +)+)Vn+z(~) = {QB,+)?(z)} = ‘j6 J,(w)dwE(z)?(z), (2.4 

- 

for some operator 9. Here JB is the right handed BRST current and QB is the 

corresponding BRST charge. The w contour is taken around the point Z. (We 

could also have chosen the left-handed BRST current and replaced E(Z) by C(Z) 

and w by @  on the right hand side of eq.(2.4)). I n order to get a unitary and gauge 

invariant theory, the null states must decouple, hence the amplitude (2.3) must 

vanish. We may try to prove this using eq.(2.4), deforming the BRST contour 

away from zn+z, and shrinking it to zero. During this deformation the BRST 

contour will pick up residues from the locations of the ghost field b, as well as 

the locations of the vertex operators Vi(q). Using the fact that the commutator 

of QB with b is the stress tensor, the residue at the location of b may be shown 

to generate a total detivative in r[16,17]. In the bosonic string theory, this picks 

up a divergent boundary contribution from r = 00 after integration over 7. This 

divergence is associated purely .with the presence of the tachyon in the theory, 

and we do not have anything more to say about this in this paper. This boundary 
- . ..- _ 

contribution is absent in the heterotic and the superstring theories. The sum of 

the residues at the location of the vertex operators takes the form, 

-- / dzr(E d2zi) z $( c(~j)Vl(~j)(~~(~i))E(z~+2)P(Zn+2)(~ 1 b)(q 1 ‘)>,y 

P-5) 

using, 

[Q~,Vj(zj)] = &-(c(zj)V,(q)). (2-6) 
i 

_ 
-1. 

- -- - Thus the confibution is a total derivative in zj, and-hence may be expressed 

- =.a-- as boundary terms. There are two types of boundaries which may give non- 

vanishing contribution to (2.5). Firstly, we may consider boundary contribution 

c 

4 



where all the points zi approach each other. For reasons which will become 

.-- clear later, we shall pictorially represent this configuration as in fig.l(a), where 

. S and T denote a sphere and a torus respectively. The contributions to the 

BRST anomalies from such boundaries are associated with one loop tadpoles, 

and, if present, must be removed by the Fischler-Susskind mechanism[5]. We shall 

focus our attention on the contribution from the boundaries shown in fig.l(b), 

where all but one of the z;s approach each other. As we shall see, anomalies 

coming from these graphs may be cancelled by modifying the tree level vertex 

operators in a way which corresponds to mass renormalization. Finally, there are 

boundaries of the form shown in fig.l(c), where all but two (or more) external lines 

approach each other. These boundaries are harmless due to the following reason. 

Near any boundary, we may introduce a complex parameter t parametrizing the - 

configuration of the vertex operators such the t approaches zero as we approach 

the specific boundary. (1 t ] measures the distance scale between the points 

which approach each other relative to the size of the original torus). It can 

then be shown that the contribution from the boundary term has a factor of 

I t It29 where e is the total momentum carried by the vertex operators which 

approach each other. For example, in fig.l(c) fZ2 = (kr + ICZ)~, and we may 
---.- . L always analytically continue this to sufficiently large positive value by adjusting 

the external momenta, so that the boundary contributions vanish. This freedom 

is absent in fig.l(a), where e vanishes identically, and also in fig.l(b), where 

J2 7 kf is fixed by the tree level mass-shell condition. 

We may now proceed to evaluate the boundary contribution corresponding 

to fig.l(b). S ince in this configuration ~2,. . . zn+r approach zn+2, we shall change 

variables as,* 

_ _T_ * For n 2 2, there is an ambiguity in the choice of the set of independent variables near 
the boundary. This ambiguity may be resolved by regardingthe n-point amplitude as an 
integral over the moduli space of a Riemann surface with n punctures, as explained in 
the next section. For the time being we may restrict ourselves to the case n = 1 where 
there is no ambiguity, and the analysis given in this section is completely rigorous for such 
amplitudes. 
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,c- 

. 

Then, 

z2 - &+2 = t, 

zi - zn+2 = tx; (3 5 i I:n+ 1). 

n+l n+l n-Cl 

n d2zi = tn-‘t-n-‘d2t n d2xi E Jd2t n d2xi 
i=2 i=3 i=3 

(2.7) 

(2.8) 
at 1 at 

- = ’ azi 
dZ2 

- = 0, (3 5 i 2 n + 1). 

We now use the integration rule, - 

J dnxdfr -= 
dXP J 

d”&,(Jf’$$) P-9) 

L 

under a change in the integration variables from {xp} to {y”}. Here J is the 

Jacobian of the transformation. Using eqs.(2.7-2.9) we may write down the term 

in (2.5) which involves 6 after change of variables; this is the only relevant term 

which contributes to the boundary at t = 0. This gives the following contribution 

to the BRST anomaly, 

- 
A = - 2xid2t$ { tnvlt-nml (C(zn+2 + t)V2(zn+2 + t) 

n+l 
C]lI KC Zn+2 + txi)) E( Zn+2)~(Zn+Z)Vl(Zl)(rl 1 b)(f7 15) 

i=3 >I 
- 

T 

(2.10) 
. _Y_ 

Let us now define x, to be a;)arge but fixed number. We may now evaluate 

- - (2.10) by ’ t d m ro ucing a complete set of states at the boundary of a disk of radius 

tx, with center at the point zn+2. Denoting by 4 the complete set of operators, 
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we may express the correlator appearing in (2.10) in the t --) 0 limit as, 

,c- 

. c (J(Zn+2)Vl(Z1)(71 I b)(v I b))&x’=)2h’(‘%=)2h* 4 
( 

n+l 

C(Zn+2 + t)V2(Zn+2 + t)( n K(Zn+2 + tXi))E(Zn+2)?(&+2)4(z,+z + txm) 
i=3 ) s' 

(2.11) 

where 4 is the operator conjugate to 4, (Iz~,K~) are the conformal weights of 

the operator 4, and ( )s denotes the correlation function on a sphere. By our 

original assumption, the only operator 4 that contributes to the correlator on 

the torus is EC? appearing in eq.(2.1), since we have taken VI to be the operator 

V. Consequently we get 4 = c&&V, since c&z is the operator conjugate to c. 

The correlator on the sphere may be simplified by using SL(2, C) invariance[l8]. 

Finally, noting that, 

(E(0)E(x,)i%(x,))s = -52 = (c(O)c(l)F(x,&, 

- - - . -  .  

L we may express (2.11) as, 

-._ 

(2.12) 

(2.13) 

Substituting this in (2.10) we see that the BRST anomaly A may be written . _E_ 
-=-a, L. 

- - 
A = 

s 
d2t;(F(t,t)), (2.14) 
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where, 

. lim F(t, iF) t-+0 
.= -&.&--~ /(z d2xi)( E(O)~(O)c(l)E(l)V2(1) 

cnfi ~(Xi))C(~co)~C(.,)r(Xoo)v(Xoo)) 

i=3 S 

F 6m2fm1A s- 

(2.15) 

Before proceeding further, we shall fix some normalization convention. We 

set CY’ = 2 and the string coupling constant to be unity. Then a suitable normal- 

ization convention consistent with tree level unitarity is to taker 

V(z, k)?(w, -k) = 
(z - $0 - tip 

+ non - leading terms, (2.16) 

and define, 

L 
d2t 3 -&dtdf = &dxdy, (2.17) 

-._ where t = x + iy. We may now define the integral (2.14) by cutting out a small 

hole of radius E around the origin t = 0, carrying out the integration, and take 

the E -+ 0 limit at the end. This gives the boundary contribution at t = 0 as, 

A = --ffm’As (2.18) 

-with As as defined in eq.(2.15). L- 

- 

C 

* In our convention the propagator of a field with mass m is givan by (k2 + m2)-‘. 
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We shall now show that this BRST anomaly may be cancelled by modifying 

.-- the tree level vertex operator. If, 

V(z, k) = Vo(z) : eik.X(z) :, 

then let us define, 

&v(z, k, 6k) = vo(z)(: ei(k+6k)‘X(z) : _ : eik’X(z) :) 

E iVo(z) : eik.X(z)bk. X : +O((Sk)2), 

(2.19) 

(2.20) 

for some 6/c. It can be easily seen that, 

[QB, c(z)E(z)W(z, k, bk)] = -;Ak2c(z)&(z)c(z)V(z, k + bk), (2.21) 

- 
where, 

Ak2 = (k + 6k)2 - k2. (2.22) 
---.- . 
- 

Let us now consider the tree level scattering amplitude involving the same 

set of vertex operators VI,. . . Vn+2, except that we now use the vertex V + 6V 

for Vr. This amplitude may be written as, 

nfi d2xi( c(l)c(l)V2(l)(nfi ~(xi))c(o)cjo)Vn+2(O)c(x~)E(x,)VI(x~)) . 
i=3 i=3 

(s2.23) 

__. We now use eq.(2.4), and deform the BRST contour away from the point 0, 
--- shrinking it to a @oint on the sphere. During this process we pick up residues 

- - from the poles at xi, 1 and xoo. All the total derivative terms integrate out to zero 

assuming that there are no tadpoles or two point functions on the sphere. The 

9 



only non-vanishing contribution comes from the commutator (2.21) and gives, 

(2.24) 

This can be made to cancel the anomaly given in (2.18) if, 

Ak2 = Sm2 (2.25) 

which corresponds to a mass shift of -6m2. This agrees with the result of 

ref.[ll] based on unitarity arguments or of ref.[12] based on anomalous dimension 

calculation. 
- 

L 
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3. Higher genus 

. 

- 

-_- 

Before’discussing the generalization of the above analysis to the higher genus 

case, let us note that a more systematic way to calculate string loop amplitudes 

is to express an n-point amplitude as an integral over the moduli space of a 

Riemann surface with n-punctures. In this formalism we insert a factor of CE 

at each vertex operator, trade in the integration over the zi for integration over 

the moduli of the punctured surface, and insert a factor of (vi ] b)(qi ] 8) in 

the correlator for each moduli, vi, qi being the Beltrami differentials dual to the 

moduli[16,4,19-211. This way all the vertex operators commute with QB, and in 

an amplitude involving a null state, all the total derivative terms come from the 

anti-commutator {QB, (vi ] b)}. A typical boundary of the moduli space of the 

punctured surface consists of two punctured surfaces described by the coordinate 

system w and y (say), glued together near the origins 20 = 0 and y = 0 through 

the transition function y = t/w, t being the particular moduli that vanishes at 

the boundary[22]. In terms of the variables appearing in (2.10), the coordinate 

y on the punctured sphere (appearing on the left hand side of fig.1) is k, 

while the coordinate w on the punctured torus (appearing on the right hand 

side of fig.1) is z - zn+2, where z denotes the coordinate on the original torus. 

If we define a third coordinate v = - In y = In w - In t to describe the region 

] w I<< 1, ] y I<< 1, then we get the picture shown in fig.1, the long neck 

(of length - -In ] t I) describing this region in the v-coordinate system. The 

- 

-behavior of the integrand near the boundary may be written down using the 

factorization hypothesis of ref.[23], by introducing a complete set of states at 

the two boundaries of the long neck. The integration over the moduli splits into 

the integration over t, E, and integration over the moduli of the two separate 

punctured Riemann surfaces. Correspondingly, the set of beltrami differentials 

near the boundary splits into the beltrami differentials vt, 77; dual to t, F, and the 
C 

. _*. 
~- - ==-beltrami differentials dual to the moduli associated with-the separate punctured 

- - surfaces. In the calculation we are interested in, the (vt ] b) factor is removed 

from the correlator, since {QB, (r]t ] b)} is used to generate the & operator. The 
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(qt I 6) factor, on the other hand, inserts a 5 zero mode on the neck. 

,c- Using this formalism we may analyze the amplitude described in eq.(2.3), 

and get back expression for the BRST anomaly given in eqs.(2.14-2.15). In this 

derivation~we never have to use the rearrangement of the ~9s given in eq.(2.12), 

since V2 automatically comes with a factor of CE; at the same time the 6 zero 

mode on the neck coming from (qt I 8) t e 11 s us that corresponding to the in- 

sertion of a E(zn+2) on the torus, we need the insertion of a E(x~) (and not 

q%o)~qxoo)) on the sphere. This is esthetically pleasing for the bosonic string 

theory, but absolutely essential for the fermionic string theories, since there the 

picture changing operators coming from integration over the supermoduli involve 

ghost fields, and the rearrangement of the ghost fields such as in eq.(2.13) is not 

possible in the presence of these operators. 
- 

This formalism also lets us tackle the higher loop effects of mass renormaliza- 

tion in the same way as in the one loop case. Let us, for definiteness, consider the 

case of two loop corrections to the amplitude involving the same set of vertex op- 

erators VI, . . . Vn+2. The two loop BRST anomaly associated with the two point 

function (VV) comes from two different boundaries, as shown in figs.2(a) and (b). 

In order to compute the total BRST anomaly to this order, we must also include 

the BRST anomaly in the one loop graph where the vertex VI is replaced by 6V. 

This comes from two sources, one, due to the non-commutativity of QBRST with 

CEGV, this contribution is shown in fig.3(a). The other source is the boundary 

-contribution shown in fig.3(b). Of these, fig.3( ) a exactly cancels fig.a(a), the can- 

cellation mechanism being the same as in the one loop case. Fig.2(b) gives a new 

contribution to the BRST anomaly. This contribution, however, is divergent, 

the divergence coming from the boundary region where the genus two surface 

breaks up into two,genus one surfaces, as shown in fig.4. The operator insertions 

responsible for the divergent contribution are shown in fig.4. This contribution 

- -rrc is given by, ’ L. 

-iAs(6m2)2 / $ = i(6m2)2(lnc)As, (3-l) 
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where, as before, E is the lower cut-off of the t integration. The physical origin 

r of this divergence is the fact that the two loop two point string amplitude auto- 

. matically includes the one particle reducible graph which has an on-shell internal 

propagator. From our experience in field theory we know that such graphs are 

cancelled by lower order counterterms, and hence should not be included in the 

two loop mass correction. We shall now show that a similar mechanism operates 

in string theory, namely, the graph of fig.3(b) h as a divergence which precisely 

cancels the divergence of fig.2(b). 

In order to do this we express 6V in fig.3(b) as a difference of two terms, 
vOci(k+6k).X and voeik.Xs The contribution from each of these terms has the 

form given in eqs.(2.14) and (2.15), except that for the Vgei(k+Gk).X term, t’-l 

in eq.(2.15) is replaced by fml(tf)~*“” = f-l(l + iAk21n(tE) + . . .). Thus the 

leading contribution to fig.3(b) is given by, 

- 

iAk2(6m2)As 
J 

d2t-$y) = -i(6m2)2As(ln E), (3.4 

- 

---.- . L 

_ _v. 

using eq.(2.25). Thus we see that the divergent contribution to the BRST 

anomaly from eqs.(3.2) and (3.1) cancel each other. 

Although the logarithmic divergences in fig.2(b) and 3(b) cancel each other, 

extracting the finite part after the cancellation is not entirely straightforward. 

The problem is to compare the parameter t, or more specifically, the lower limits 

-of integration of this parameter, appearing in the two different diagrams, fig.a(b) 

and 3(b). It can be seen following the analysis of ref.[12] that this lower limit 

must depend on the conformal factor of the metric if we want to maintain two 

dimensional reparametrization invariance. A related problem is that since 6V 

is not an operator of conformal dimension (l,l), matrix elements involving 6V 

on a given Riemann surface will also depend on the choice of the metric on 

~- - -that Riemann surface. As a result, in order to carry out any- computation, we 

- - must specify some standard metric on each Riemann surface. We propose the 

following scheme for this purpose (see also ref.[ lo]). To start with we specify some 
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standard metric on the sphere for each configuration of punctures on the sphere 

r in some standard coordinate chart. The standard metric on the torus is then _. . . 

. 

L 

chosen so as to satisfy the following consistency condition. In the degeneration 

limit shown in fig.1, the configuration should look like a punctured sphere with 

the standard metric in the standard coordinate system (denoted by z), and a 

punctured torus with the standard metric in the standard coordinate system 

(denoted by w), glued together near the origin through the transition function 

z = t/w[22]. This procedure may be continued to higher genus surfaces, - 

the metric on the genus g surface has to satisfy the requirement that in the 

degeneration limit the surface decomposes into two punctured surfaces of genus 

gr and g - gr respectively, with the standard metric on each of them in the 

standard coordinate charts denoted by z and w, glued together near the origin 

through the transition function z = t/w. This scheme gives an unambiguous 

definition of t, and hence enables us to compare the degeneration parameters 

t for two different Riemann surfaces, e.g. fig.3(b) and fig.4. The final answer 

for the mass shift should be independent of the initial choice of the standard 

metric. After all, it was shown in ref.[12] that after taking into account all the 

corrections, the modified vertex operator, rather than the original one, has the 

right conformal weights to give rise to metric independent amplitudes. It will 

be interesting to see if these qualitative ideas may be developed into a concrete 

form to calculate some explicit two loop mass corrections in some specific string 

- 

-_- theory. - 
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4. Conclusion 
‘ r 

To summarize, in this paper we have shown that the effect of mass renormal- 
. 

ization due to string loop effects may be interpreted as a cancellation of BRST 

anomaly between string tree and loop graphs. This has the advantage over the 

anomalous dimension calculation that this formalism checks the cancellation of 

the full BRST anomaly, and hence the anomaly in all the generators of the Vi- 

rasoro algebra, whereas the anomalous dimension calculation only checks the 

cancellation of the anomaly in the subgroup of the Virasoro algebra generated by 

Lo[12]. Furthermore, the calculation we have presented at one loop is free from 

divergences at all stages. At higher loop order, although the individual contri- 

bution to the BRST anomaly suffers from divergences, they cancel when we sum 

up the graphs, and again gives us a finite answer for the BRST anomaly. Finally, 

we should emphasis that although we have used the bosonic string theory to il- 

lustrate the general ideas, the analysis is based on the general properties of the 

BRST operator, and hence is expected to be valid for all theories. This includes 

fermionic string theories (once the ambiguities pointed out in refs.[14,15] are re- 

solved), as well as theories based on general two dimensional (super-)conformal 

---.- . field theories, rather that just free field theories. 

Note added: 

in string theory 

issues involving - 
ref.[25]. 

Effects of wave-function and coupling constant renormalization 

have been discussed in a recent paper by Minahan[24]. Some 

tachyon mass generation at one loop have been discussed in 

Acknowledgements: I wish to thank J. J. Atick, I. Klebanov and N. Seiberg for 

illuminating conversations. 
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