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ABSTRACT 

In monopole-fermion dynamics, the boundary condition, 

which is responsible for barvon number non-conservation, 
WLV- 

also violates electric and color ^charge conservation. We 

show, bY detailed calculations, that actually the latter 

conservation laws are dynamically restored. It is shown 

that for a finite size monopole, there is a small. but finite 

amplitude for the monopole ground state to make a virtual 

transition into a state containing a dyon and some fermions 

carrying equal and opposite charge as that of the dyon. But 

the amplitude for this state to make a virtual transition to 

a state carrying a net total charge is identically zero. 

The monopole ground state, as a result, is an eigenstate of 

electric charge even in the presence of massless fermions. 

We also calculate the four body charge and chirality 

conserving but baryon number violating condensates, which 

exist independently of the existence of anomaly and hence 

persist even in the presence of more generations of massless 

fermions. 
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I. INTRODUCTION 

It was proposed by Rubakov [II, and subsequently by 

Callan [21, that monopoles of the 't Hooft-Polyakov type [31 

in grand unified theories may catalyze baryon number 

violation at the strong interaction rate. Since then a 

number of investigations have been made to try to clarify 

the origin of this fascinating phenomenon and to calculate 

various fermion condensates around the monopole [4-111. 

These studies have so far brought forth the following 

understanding: The baryon number violation is essentially 

caused by the peculiar non-ahelian dynamics inside the 

monopole core in the J=O partial wave sector, which is 

expressed through the effective boundary condition on the 

fermion fields at the monopole core. If we denote the 

unbroken generator of the SU(2) subgroup in which the 

monopole is embedded, by T3, the boundary condition says 

that a left (right) handed fermion carrying negative 

(positive) T3 charge, entering the monopole core, must be 

accompanied hy a left (right) handed fermion carrying 

positive (negative) T3 charge, coming out of the core. For 

embeddings for which the members of the SU(2) doublet carry 

different baryon numbers, it may effect baryon number 

non-conservation. That this mechanism operates without 

hindrance is essentially due to the nature of the J=O 

partial waves, which are present because of the extra 

angular momentum of the monopole-charged particle system 
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r121. Outside the monopole core, the interactions between 

the radial magnetic field and the Dirac spin and the extra 

angular momentum precisely cancel and the radial motions are 

effectively free. Because of these circumstances, the 

monopole ground state is not an eigenstate of the baryon 

number operator. It is rather a superposition of states 

with different haryon numbers and the monopole may absorb or 

emit fermions, carrying net baryonic charge, at no cost of 

energy. It has also been clarified [2,5,6,91 that the 

Adler-Bell-Jackiw anomaly plays a secondary role: it is 

needed only for those processes which violate chirality. 

Now, the boundary condition described above seems to 

imply more than the haryon number violation. In fact, it 

implies that whatever quantum numbers are different for the 

upper and lower members of the SU(2) doublet should be 

non-conserved. These include electric and color charges in 

addition to the baryonic charge. Are these charges indeed 

not conserved? In the limit of a point-like monopole, 

studies of various fermionic condensates have revealed that 

they are actually conserved; charge non-conserving 

condensates all vanish due to a factor of the form 

exp(-const. In m) arising from the infinite coulomb energy 

15,6,111. The charge non-conserving boundary condition is 

effectively replaced by a charge conserving one. 

This however immediately raises the question as to what 

happens if the finite size of the monopole is taken into 

account. One would expect that the infinity in the above 
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exponent will then become finite. Does that then mean that 

the electric charge (and the color) symmetry is violated in 

the presence of the monopole of finite size? This is the 

question to which we shall address ourselves in this paw r . 

We will show, by explicit calculations, that these charges 

are exactly conserved and explain how this comes about. 

The above conclusion is by no means a trivial one. In 

fact, in the limit e-+0, eg finite, (e=electric charge of the 

fermion, g=magnetic charge of the monopole) with finite 

monopole radius, a simple calculation shows that the 

electric charge conservation is violated in a 

monopole-fermion system, in exactly the same way as the 

baryon number conservation. It requires certain careful 

manipulations and definitions to restore the electric charge 

conservation in a monopole-fermion system, with any finite e 

and finite monopole radius. First of all, it is quite 

important to note that in the presence of a monopole of 

radius ro, we may define two types of gauge invariant 

fermion creation operators. If 6 and A refer to the u 
fermion field and the gauge field respectively, the operator 

exp (-ial' A dr) $t(r,t) creates a fermion with its string of 
r. r 

gauge field lying between r. and r. Hence we may interpret 

this operator as the creation operator for a fermion and an 

equal and opposite charge at the monopole core. This 

creates a radial electric field lying between r. and r and 

hence the state has a large energy (of order e2/r0) 

associated with this electric field. At ( this point we 
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should mention that the bosonized fermion operators, defined 

in Ref.2, are precisely this type of fermion creation 

operators.) The second type of gauge invariant fermion 

creation operator is of the form exp ( idyA,dr)$'(r,t). 

This creates a fermion with its string of gauge field lying 

between r and m. This state has energy of order e2/r, which 

rema ins finite even in the limit of a point monopole. The 

first type of fermion creation operators create charge 

neutral states, even if the fermion field carries a net 

charge, whereas the second type of fermion creation 

operators create charged states. 

We shall demonstrate, by explicit calculation, that for 

a finite size monopole, the Green's function involving the 

first type of fermion creation operators may have finite 

value, even if the fermion fields in the Green's function 

carry a net total charge. This reflects the fact that the 

monopole may make virtual transitions to a state containing 

a dyon and fermions carrying equal and opposite charge 

(where by dyon we mean a state with a net charge within the 

monopole radius ro, whatever be the way we choose to define 

ro). This is analogous to the way in which the QED vacuum 

makes a virtual transition to a state containing e+e- pair, 

and does not imply charge non-conservation. The amplitude 

for such virtual transitions, however, falls off as the 

monopole radius goes to zero, because of the large energy 

associated with such intermediate states. 
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The Green's functions involving the second type of 

fermion creation operators, on the other hand, vanish 

identically, unless the total charge, carried by the 

fermionic fields in the Green's function, is zero. This 

shows that the electric charge is indeed conserved in a 

monopole fermion interaction. 

We shall organize the rest of the paper as follows. In 

Sec. II, we briefly review the SU(2) model to be studied and 

fix our notations. Sec. III deals with the bosonization of 

the model and explains how we can introduce the two types of 

gauge invariant fermion operators in such a language. In 

Sec. IV, which constitutes the main part of the paper, we 

examine various two body fermionic Green's functions in 

detail for a monopole of finite size. Gauge invariant 

fermion operators of the first and the second type are 

clearly distinguished, and we focus on the Green's functions 

for which the total charge carried by the fermion field is 

non-zero. The result for a four body charge neutral 

condensate is also described briefly. Discussions of the 

various results, obtained in the paper, will he found in 

Sec. V. Three appendices are provided: In Appendix A we 

give the technical details of the evaluation of a 

complicated, yet important integral, encountered in the 

text. Appendix B describes the quantization of the system 

in a finite box of radius R, which is needed to regularize 

some divergences, and the computation of some integrals that 

appear in the Green's functions involving the second type of 
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gauge invariant fermion operators. Appendix C describes the 

calculation of a four body charge neutral chirality 

conserving condensate. 

II. THE MODEL 

We consider an SU(2) gauge theory with a Dirac doublet 

of massless fermions and an adjoint Higgs. For convenience, 

we restrict ourselves to one Dirac doublet. The case of 

more than one Dirac doublet may be treated in a similar way. 

We assume that the SU(2) gauge symmetry is spontaneously 

broken down to U(l) by the vacuum expectation value of the 

adjoint Higgs. We shall refer to the charge associated with 

the unbroken U(1) generator as the electric charge. This 

model has maqnetic monopoles of the 't Hooft Polyakov type. 

We wish to study the interaction of this monopole with the 

fermions. 

It has been shown that if we restrict ourselves to the 

J=O partial wave sector, the monopole-fermion system may be 

described by an effective two dimensional theory. In the y5 

diagonal representation, the four component Dirac field may 

he written as ( $; ), where $R and $L are two component 

spinors. In the J=O partial wave sector, these spinors may 

he written as[51: 

(%+-I ‘z4 T+i) 

Yuci CS,t) =(J4?i %)-' (' C+ CYL,t)y+N T-i-CL, CA,tl 1-q ~+i) 
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i,cx are respectively the isospin and the Lorentz spin 

indices. n+ and n- are respectively the eigenstates of i;*P 

with eigenvalues *l. The tensor basis in which we have 

expanded the field $ui are slightly different from the basis 

chosen in Refs. [1,21, hut the reader may easiSy verify that 

the tensors n+, nSi and '1-u n+i are linear combinations of 

the tensors used in Refs. [1,21. 

Me now define the two component fields: 

, 

(r,t) in 

(we work 

monopole 

solution, together with dyon like collective co-ordinate 

fluctuations X(r,t) is written as, 

Next we introduce the collective co-ordinate X 

the same way as in Refs. [1,21. In the AZ=8 gauge 
in this gauge throughout our calculation), a 

49 * &A A,.$,+ I ~ ~~iJ ~j + ~~'~(Sai -.~,~~) nick 

- E&ij (2-3) 

where the radial function K(r), describing the deviation 

from the Abelian monopole, becomes 1 at the origin and 

vanishes exponentially as r+=. 
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The interaction of the J=O partial wave fermions with 

the monopole field is described by an effective two 

dimensional action (which may be obtained from the four 

dimensional action using Eqs. (2.1) and (2.3)), 

I =~,- = r”& I”dA { 2%’ (x)=+ t!.$ k’j;: + i? i $ K +T i& 
-4) I, 

+ g (T. -r’Y5L- 

~~iiu’,LCmh+71L&A~3 (2-G) 

where the prime and the dot denotes ar and 3, respectively. 

If we now define the gauge invariant fields RR and LN as, 

R,(&,t) T Cc+ ( i A(%,*) Y%) R(k+) 

t, (A,&) = e0-j c- i /jlYz,t) ‘usw ‘ C&It 1 

then Ieff takes the form, 

I eff = _I-&$-&+ p#(jq2+g teAZ+ E,ijw,+L, idLr4 

_ ..j (i, YAWN -K,,~IR~)+ 2 cit., irSRN.+iN 

Since K(r)+1 as r+O, the last two terms in the right hand 

side of (2.6) show that the fields RS and ~~ effectively 

become extremely massive near the origin. This makes the 

components of RR and LN vanish in a certain way as r+O and 

leads to the boundary condition [1,2,51,F1 

(R,, 4 RN-) I,;, = 0 (L.+ 4 a..R.=o 0 

ignoring terms of order ro, and the fluctuation in the 
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collective co-ordinate X. Although the boundary conditions, 

in general, will be modified in the presence of A field 

fluctuations, we shall be usinq Eq. (2.7) throughout our 

calculation. We shall justify the use of these houndary 

conditions in Sec. V. Here r. is any distance beyond which 

the classical monopole field, is indistinguishable from the 

Ahelian monopole field, i.e. beyond which K(r) is 

practically zero. We call r. the monopole radius. Once Sk 

and LN+ are required to satisfy the boundary conditions 

(2.7), we may forget about the dynamics inside the monopole 

core, and describe the system by an effective action, 

I* = fdq’vdri c & ~EqiqZ+ EM i 4&J +T, i js ‘(4 

- 4 CT,Y’ L, -EN y’ RN) 3 

The fields RR and LN have the following interpretation. 

If An(r,t) is the four dimensional gauge field associated 

with the unbroken generator of the gauge group, then, in the 

AZ=0 gauge, A, is given by 1'. Thus the gauge invariant 

fields RN and LN refer to exp(iY'IiA,dr) R(r,t) and 

exP (-iY5.fgArdr) L(r,t) respectively. It is easy to see that 

v"(-v') measures the charge of the R(L) fields. Hence the 

exponential factors in RR and LN describe strings of gauge 

field between the monopole core and r. In other words, the 

fermion creation operator RN+' r,t) (LN+(r,t)) creates a 

fermion at the point r and an equal and opposite charge at 

the monopole core and a string of gauge field extending from 
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the monopole core to the fermion. 

In our analysis in the next two sections, we shall use 

another type of gauge invariant fermion creation operator, 

which creates a fermion at a point r, and equal and opposite 

charge at m, and a string of gauge field lying 

between the point r and infinity. These operators are given 

by exp (-iy5JFArdr)R(r,t) and exp (iy5.fTArdr)L(r,t), or, in 

terms of the X field, exp (iv'(X(r,t)-X(-,t)))R(r,t) and 

exp (-iy5(A(r,t)-A(m,t)))L(r,t) respectively. We denote 

these fields by &(r,t) and k(r,t). In calculating the 

Green's functions involving these operators, we run into 

divergences in the spatial integrals from infinity, and we 

must regularize these divergences in a consistent way. This 

may be done by quantizing the system in a box of radius R, 

and taking the R+m limit at the end of the calculation, as 

has been described in Appendix B. 

III. BOSONIZATION 

Following Callan [2], we can map the two dimensional 

fermionic system, containing the fields RN and LN, into a 

two dimensional bosonic system, containing the fields eR and 

$,, by the following correspondence: 

KJ+ =p- b- 9 I: ifi C~~(~,t)-~~li~~(O,t)b~)l z-IJ- 

_ y ~~~ = im N, C?o$ [ ifi ( ‘& Ck+)+~f’+, CA,+) dc4] 
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‘tie 3 Jg 1\1, “4 c iJi7 ccP,C%t) -J~~L~A~+~ h)3 
e 

-zL(-J+ = i@ I\I, yf [ ifi (q‘G+,C 1 +pp-,C4t) ddl 
zn- 

(3-l 1 

where c is a constant and Nu denotes normal orderinq with 

respect to an infinitesimal mass u. The fields $R and 0, 

satisfy the boundary conditions, 

yK' T y: .= 0 at 4= 4, (3.2) 

We exhibit some details of the bosonization here since 

they will be useful later. The normal ordering operator N,, 

is defined in the following way. We first define the 

operators af and a! at any fixed time t, through the 

equations: 

+ 4 <k,k,t) qIi@iiidZcask(n-A.) 

and, 

qh?,t) = ‘&i 
TT 

i ($&+ C-&#,f+&) &‘@- 

+ U$ Ck,b,t) QiwL 1 2 cas kc%&.) 
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= - is;, <3,t, A:+‘! 

Z--L- 4TT [ Q, (F/,+,9+‘) + A- c&t, A’, *‘I + B+ Woc~‘I 

+ B- ( A,-$, 4; -t’ I + 2 .2-r\ g c’l 

where, 

A, (4, t, A?',?) = E.Y.) f(A-A') * <t-t') i icl 

B* <pl,t, pz', t') = L-l f@4-(Y'-2&,)2 c*--t'l? +j 
(3-7) 

k& a, Ck, b,+) IO& = 0 (s-4 

where 10>f is the vacuum of the free massless field theory. 

- $Qk&& a,& 2, cE.,t, n',t') = Fa+ - R- + 8, - R-+zrh 

(3 -9) 

- 4'i-i 
J 

,,"kJ &, ;i, Cq,t,n',t') = A,- A- - 134 + B- 
0 

(3.. IO) 
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- “TrkT “a, A~.fi’dAt a, iI&’ “n. (A, t, /5’, t’) 

‘= R, + fl- - B+ - B- @I) 

Using Eqs. (3.1) and (3.5)-(3.8) we get, 

<o I KN7 (4,-k 1 I& (A', t') I o> 

= en+ [ -l-l- { x, (h,t,A’,t’I - ‘I AA & ii&,+?:+‘) 
PI. 

-y#$l &, 2, [~,t,n;t’l -4 q,,i4&AJ~a a& & “a0 (4+J -5:t’j51 
6 

(3-U) 
Using Eqs. (3.6) and (3.9)-(3.11) one can show that the 

right hand side of (3.12) reduces to the correct free 

fermion propagator. 

We shall now write down the fully interacting theory. 

To do this, we need to express the currents -$ylLN and 

RNulRR in terms of the bosonized fields eR and @L. Using the 

point splitting method of Ref. [131, we findF2, 

1, Y’ LN = -qc 

EN+ R, = -q’ 
R 

Substituting this in the effective action and 

integrating it once by parts, we get, 
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I, = I-& rdA { 2sz (,Sq)\l)’ +-$ 8, qPR a”% ++ a*% a, Q 
-ti a., 

-i’<~L-~R)/ZJi=fj t Si/RFaCE ~TgRMS (3-I 4) 

where, 

SURFACE ‘TERMS 

‘2+Jd& [i,(oo,S) <cp,(oO,tl-qla (~.tJ)-A(~u,t)(~~(~“,t)-g)c~~~,t~~ 
00 

(3.15) 
we shall come back t0 a discussion of the surface terms 

at the end of this section. For the time being let us 

ignore them. 'xl may be interpreted as the radial electric 

field EC. We may eliminate it by using the eqUati0n.S Of 

motion: 

E,s j,’ r (3.16) 

and obtain the effective Hamiltonian of the system: 

H = fi$@dk C -$I$ ++ (y&y++ (@A2~.$ (q:\’ 
” 

e2 
+ 3ZTr2'42 

(3. ‘7) 

We now note that the fermion fields RR,., and Lo,,, 

defined in Eg. (3.1), create a non-zero value of eR-sL 

between the points rO and r, while acting on the state 

$,-$,=O. This can be seen by considering the COmIiWtatOCr 
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[+(qgA,t) - %14,tl), #N+_ Cfi’Nl 

= 5: SC4-,k.) 8CSA.) Rr.J% C&‘,k) (3. IS) 

and similarly for LNf * This corresponds to creating a 

non-zero radial electric field, falling off as l/r2, between 

the points r0 and r. Hence the operators IN+, RNt create an 

anti-fermion at the point r at time t and an equal and 

opposite charge at the monopole core at the same time. Thus 

these operators indeed correspond to the first type of gauqe 

invariant fermion creation operators given by Eq. (2.5). 

Next we try to see whether it is possible to represent 

the gauge invariant operators & and k, introduced at the 

end of Sec. II, in the bosonized theory. These operators 

must satisfy the following properties: 1) For e=O, the X 

field is frozen and hence the Green's functions involving 

the fields i;N & must and correctly reproduce the free 

fermion propagator. 2) The operators carrying the fields < 

and 4.4 must create a non-zero electric field between the 

points r and infinity. The most obvious guess for such 

operators is, 

.Y/ 
R N+ = @ NjL q cificq, C*,t ) + J-$, 

4 
(A.t 1 dd 

-$&pg N, Qfxjrim (% (h>t)-l=kw) dA 
r, 
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CL= d$$ “r+ -f c im Ccp‘(4,f) + J-y@+) de/l)] A 

- &+ = i ,!L c N, tip c 2fi ( (PL cR,+)-$9diLch,t) d 

By considering the commutator 

(3.19) 

and a similar commutator involving EN*, we 
(3.24 

see that the 

operators G+, &+ indeed create a non-zero electric field 

between the point r' and infinity. 

We must now proceed to show that in the e+O limit, the 

fields defined in Eq. (3.19), reproduce the correct free 

field propagator. The Green's function 

<OliiNr((r,t)~~~(rl,tl)lO> is given by an expression similar 

to the right hand side of Eq. (3.12), with the integrals 

from r. to r replaced by integrals from r to infinity. Some 

of these integrals are ambiguous due to the lack of proper 

regularization at spatial infinity. If we regulate these 

integrals by quantizing the system in a box of radius II, 

then, as has been shown in Appendix B, the resulting 

expression correctly reproduces the free fermion propagator. 

Thus we see that the operators defined in Eq. (3.19), indeed 

correspond to the second type of fermion creation operators, 

mentioned at the end of Sec. II. 
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Finally, let us discuss the surface terms (3.15). To 

get an estimate of these terms, we consider a particular 

mode of excitation of the O(ZeI,-sR) field of energy E (say). 

It will be shown in the next section that for Ero<<l, the 

value of the @ field at r. in this particular mode goes as 

(Er0)l+0(e2) . We get an estimate for )I(ro,t), by using the 

equation, 

2 oc g/it” N (EA,)‘+0~e=)(k.)-2 at A=& (3.21) 
and, 

N,,, = 0 (3.22) 

in order to ensure that the collective co-ordinate 

excitation is non-singular at the origin [1,21. Eq. (3.21) 

may also be assumed to be an estimate of i' for r<ro. Then, 

(3.23) 

Hence 

j (418,) $ia(%=&)w (En.)‘+“‘e2’ E (3.2$$ 

which is small compared to E, so long as Ero<<l. In our 

calculation in appendices A and B, we shall see that it is 

the excitation modes with Eccrg' which give the major 

contribution to all the Green's functions. For these modes 

the boundary term X(r,)@(r,) may be neglected. 
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Next, we must estimate the boundary term at infinity. 

After we regularize the theory by quantizing it in a box of 

radius R, the boundary term at infinity becomes, 

j\CR) $CR) c3.25) 

. 
1 (R) is determined from the equation, 

j, (RI = i,(fi,) + (e'/~T;/'!!.';-W%') dp1 (3.26) 

As can be seen from Eq. (3.23), i(r,) is of order E. The 

second term on the right hand side of (3.26) is also finite. 

There is no divergence from the region of integration at 

small r, since @-(Er) l+O(eL) in the region of small r. 

There is no divergence from the region of large r either, 

since Q goes to a cosine function in this region. Hence 

x(R) is a finite number, independent of R in the Limit of 

large R. Q(R), on the other hand alternates between the 

values +1 and -1 as we move from one energy level to the 

next one. This may he seen from Eqs. (B.18) and (B.19). In 

the R-t- limit, the spacing between these levels goes to 

zero, and m(R), expressed as a function of E, hecomes a 

rapidly oscillating function. Hence, although Q(R)X(R) is 

finite for a particular mode, its effect vanishes in any 

calculation, which involves sum over different modes. 
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IV. CALCULATION OF VARIOUS GREEN'S FUNCTIONS 

We shall now calculate various Green's functions in the 

interacting theory in various limits. We define the fields 

$ and Q as, 

Qj = (y% -9x,/n 

‘p = (Q. + qJ‘) ifi 
The Hamiltonian may then be written as, 

)-( = f& [+ $2 i,$ cp’ -I p a/‘+~+ cf+& gz4 (4.3) 
.a, 

Hence the equations for $ and Q completely decouple. The I$ 

field is a free field satisfying the boundary condition Q'=O 

at ro. The Q field satisfies the equation: 

(‘a,” - a: -t e2/‘8TrzYz) a = 0 

and the boundary condition, 

(4.4) 

with the solution, 

js = J-cc& ( Q-~cF)+ eiEt&)) JET f,,~,~d 

= e-’ + PC”’ 
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fv(E,r,ro) is the solution of the equation, 

d&p1 + -?. 
dAr 

‘f,” +(E’- 2;’ fyCPL) -0 
A d9r 

with the boundary condition: 

and the normalization: 

at A :: 3. ,: cd 

w 

,P 
E E Jgy f. Cl?, ,$;zJ S-;,<E,h',A&)" 2rriiC%-..Y'.) (4 -3) 

,% .fY c E, .&, ,f&) fY CUE’, A, &I = *‘ii- a=?) i,Wi) 

Eq. (4.7) is the Bessel's equation of order v. Here, 

‘/2 ‘)~,, : c -+ + g+ ) @.I i) 

The true vacuum of the system satisfies the equation: 

a(E) jc’) = 0 VE (4.12) 

Normal ordering operation upon this vacuum, which we 

shall denote by Nl,r, is defined by the negative-positive 

frequency decomposition in Eq. (4.6). The general solution 

of Eq. (4.7) may be written as, 
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f, (E,/i,.Y,j r ii, 7, CEYL) + b,, JI,,cE&) (4.13) 

The boundary conditions (4.8) then gives, 

a, 
X# r - ,L!. C J7i Ji, (P)) I,= ~yl, 

Jcf 

We define, 

2; <A,+, x’,t’) = c $L-‘(,,g,t) ) P’(*t:~t~,l 

i may be calculated in various limits by knowing fv. 

The various Green's functions, involving the fermion fields 

defined in Eqs. (3.1) and (3.19) may then be calculated by 

using the following results [141, 

where [A:-', A:+)] u means that while evaluating 
,z, ’ 6) 

commutator, we must assume that the field Q satisfies the 

equations of motion of a free field with infinitesimal mass 

u, while in evaluating [A(-), A(+) ll,r we must assume that 

the field Q satisfies the equations of motion (4.4). These 

commutators may be expressed in terms of ho and h, defined 

in Eqs. (3.6) and (4.15) respectively. Eq. (4.16), together 

with the equation analogous to (3.51, 
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N % &,“) /yv, ce”) = &p’J~c+‘I l\l~;~y’KJ (4.[7) 

helps us in evaluating all the Green's functions. 

(A) TWO BODY FERMIONIC GREEN'S FUNCTIONS INVOLVING THE 

OPERATORS DEFINED IN EQ. (3.1): 

We want to calculate, 

where n,n'=fl. We do this in the following way: 1) We first 

express +R in terms of the fields 4 and @. 2) For the 0 

field, we convert the normal ordering with respect to u to 

normal ordering with respect to l/r using Eq. (4.16). 3) we 

then combine the product of normal ordered operators in 

terms of normal ordered product of operators using 

Eqs. (3.5) and (4.17). 4) Finally, we calculate the vacuum 

expectation value of normal ordered operators using the fact 

that 0(-' and $I:-' annihilates the vacuum. The result is, 

lLk(t 2 *Ti- e+ C ix 1 e+ ( c2 ) e+’ lz3 ) 

where, 
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Eo = 4 { 2, Ce,wA -2 l”i” 3* xcc4,t,e:t~) - ffdd J,. xail(XIt,8;t 
I 

I 

+ ‘1 ‘1’ j~%$k~, 2, E,,, x;, C,A,t,d,t’) (9. zcj 
5. 

El z LJ y ‘3 (4,L,Y:‘t’) -12 J /' d, 2 cn,~t,~+',<J -y'j 'is ' 
,A, 

At, : (R,&,A:t') 

" f&h .i"id iIt citJ "B (A ~+, ,a',-t') { 
+ "i '! / .'1. il. 

and, 

(4.a) 

EL< 1: -y {. E ih,t,~,iJ-‘n”,i~;t,,,3:t’)i -7 {‘cc, d&~n,f-,.,?,>‘r) 
,io 

- “n, c ,4,t, ,$ ,y)) I& - 7 p5z & c o”C.r,;+..~‘, ‘T) -lYtiC?;*;4:~r~~l.r~, 
i 

IT-t + { .‘d,,,S I\& I 
.?L; %t a., ( il c /5 ,t, .d’;T ) - 25, IX, -6, 6j~-Yl) 4, 

*’ + x ( 4’,fJ, .q t-t< ) .- z;;, (,<‘,-C’, &‘,-t() -q d,i at, <x (A,$ 
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In Eq. (4.19), the term exp (El) comes from the 

contribution of the I$ field, the term exp (E2) exp (E3) 

comes from the contribution of the 0 field. We shall now 

consider various limits. First, note that if we take the 

e2+0 limit at fixed r o, h becomes identical to io. As a 

result, E3 is zero, and exp (El) exp (E2) nn'lnz/2n 

reproduces the free field propagator (3.12). 

Next, we shall take the limit ro+O first, keeping e2 

finite, and then take the e2+0 limit. We must first 

evaluate the propagator A(r,t,r‘,t') in this limit, using 

Eq. (4.15). We use the property, 

.A c in ,ruip)j N p”-” d 
cfcc” ccc’ 

(47 ,J-, C,(L))) ,../ p,, (4. a) 

near p=O. Eq. (4.14) then tells us that in the ro+O limit, 
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a,. :z Co-il,5tar\t b,= c j4.24) 

We now take the limit e+O (w+1/2) and use the property, 

J-,,iUl = \Iz/-rrr aa4 (4.Z.S) 

to get, 

i'+ c E , ./Jr, c ) c 2 4 ch E 4 (jJ %G) 

Hence, from (4.15), 

x ( K,.-,n',t'J T J'$ ,-=(+-+" 
4 him Ey ./SC-n Evr' 

'= (-+ c A+ + fi-- B+ -IL) (4.27) 

where A, and B, are defined in Eq. (3.7). 

We also have the following relations: 

- 4-1-r I" CL5 at x ( /s,,C, 4', t') 
0 

= fi + - A _ - B+ + R- ,+ 2 c PY, (. ./$' + +.~A - : <: ) - r;.*, (4 '-(t t ' ] A- i (~) .1 
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_ GTT pee/ IV %,I n (4,-t, A',, t') 
J 

= R+- n-4 B+-Bs -2 Clm (',5 + t--t'- cgj -A- (.e- (t-.t;f)~-i~J] 

(4.29) 

> 
- ljn jX& J-b a, dt “a (4,t,qt’) ‘( il 

z n+ + f-\- -t ~5, + B- - L’ c .e.y, (‘A/+ -t-t’- (~1 + ry, ( *J- CC-L’) i fe3 

- L’ L Q,, c .,c + .& tJ - r’c ) + ,g,, (,5 - (-6 -t’ ) + i’C ) ] 

-6 2 I: ,kn c-i - k’ - [ ( ) + ci, i- Ct -t’) + i C~) -j 

First note that the u dependence of El, E2 and E3, 

coming from the lnu2c2 term in Ao, cancels with the explicit 

multiplicative factor of uc in Eq. (4.191, and hence the 

final result is u independent. 

We now look for divergent terms in the exponential of 

(4.19). To do this, we first express El, E2 and E3 in terms 

of the functions A, and B+, using Eqs. 13.71, (3.9)-(3.11), 

(4.27)-(4.30). In E3, we get divergent terms of the form 

A,(r,t,r,t), but they all cancel between the i and i. terms. 

The only divergence comes from the terms 
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jscLs f d/L' d+ & i ,s C*,t,.,$,*,,c) -ii, <.r;,t, 6s,'r) T&=t 
0 (~-31) 

and, 

(“‘(LS (- “& yi + ’ & 1 I& ( ,j, t’ , .,s*,,t ) - ‘ia ( ,5,-t’, JS ‘, t )Ih 
0 ; 

(4.X) 

since these expressions contain terms of the form ln(t-T) 

and ln(t'-r), which blow up at r=t and at r=t' respectively 

(See Eg. (4.30)). As a result, in E3, we get a term of the 

form -1nm and the Green's function (4.18) vanishes 

identically. The origin of this divergence will become clear 

when we discuss the effec'tof finite monopole radius. Rut it is worth 

mentioning that in the ro+O limit the function f, satisfies 

the equation f"(P)=! a,s well as d/dP(JPfv(o))=O at p=o. 

f,(p)=0 corresponds to the condition @(r=O)=O. This is a 

charge conserving boundary condition, since 6(r=O) measures 

the net flow of the U(l) charge into the monopole core. 

Thus, although we started with a charge non-conserving 

boundary condition, the dynamics turns the boundary 

condition into a charge conserving one, because of the 

infinite energy of the dyon in the point monopole limit. 

We shall now turn to the evaluation of the Green’s 

function keeping e2 and r o finite, and then consider various 

limits. We need to do this only for the integrals (4.31) 

and (4.32), with the lower limits of integration replaced by 

r0' since the other terms are finite in the ro*O limit and 

hence the effect of having a finite r. and e 2 will be a 
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small correction, as long as e 2 and r. are small, and e2r/r0 

is large. We start with Eqs. (3.6) and (4.15) and obtain, 

,.I” > 
& 

Y 
4&i> 3, cYr r 2x-c -s,t, 4’,r) -Z,(-.4,t, ~cdT=+ 

= 
0. 
f~‘w&.Ev I: {“‘dEi 

4’rr t 3, 
f Y <E, 4 ,i, j E hs {‘.~E,J f CE ,<’ ,A 1 E&,’ r/ >,* 

2 (I 

- 4 i’iccg(Ec~d-;~“j) 
.%a 

E d-5 yclas (+,&-3,)) E &5’ 
.L 

The calculation of the triple integral is rather 

complicated but we can reliably extract the terms divergent 

in the limit ro+O. [See Appendix A for the details of the 

calculation]. We consider the following limits: 

1) e2 small, r. small, e2r/r0 large: In this limit, the term 

divergent in the limit e2r/rO+m is given by, 

( 'I + 
2 

20-,I& 2 + clCcTZl).l x/r, 53 + j-Lnltc 
-IT Yo 

(4 wf) 

where c is defined as, 

5 2 I;-- y.2 = F?'/iCrT' + Ci Cc4) (4.55) 

which shows that the Green's function (4.18) falls off as 
(r ,,r~1/2+oln2+0(a2) 

0 as ur/r 0 +m. 

2) o=l (special case), r/r0 large: In this case the function 
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f, may be expressed in terms of the trigonometric functions 

and hence the integral (4.33) may be evaluated exactly. The 

result is, 

E- ,!& 1‘2 
4 AG 

which corresponds to a suppression factor 

@/4 yy 

(536) 

(4.37) 

We now point out the following important features of 

our result: 

I) Note that for a finite r. and e2, the Green's function 

(4.18) is always finite, even when nfn', i.e. the fermion 

fields in the Green's function carry a net total charge. 

This, however, does not mean that charge conservation is 

violated, since the fermion fields RN+ and ~~~ are always 

accompanied by an equal and opposite charge at the monopole 

core, and hence the net charge carried by all the operators 

in the Green's function (4.18) is zero. 

2) The Green's function (4.18) is suppressed by a power of 

(rO/e2r) in the limit r +O. 0 This reflects the fact that the 

excitation energy of a dyon state is large (-e2/r0) and 

hence such excitations become more and more difficult in the 

ro+O limit. Note that the suppression factor is present 

even for n=n', i.e. even when the net charge carried by the 

fermion fields in the Green's function is zero. This may be 
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explained as follows. For tft ' the fermion fields 

F$Q(r" t') and RAn(r,t) create equal and opposite charges at 

the monopole core, but at different times and hence we do 

not avoid creating a high energy state even for n=q'. We 

expect the suppression factor to disappear for t=t' . 

(It-t'l<<ro). This is indeed the case, because at t=t’, 

there is a divergent integral in E2, 

“%i T ‘2 “$ {~%“ a* dp ly i/s;+,, n: t’) I*<.(, (5 38) 

Y P, 

which exactly cancels the divergent term in E3 for nrl’=+l, 

i.e. if n=n', and we get a finite answer. In this case we 

do not create any net charge at the monopole core at any 

time. We create equal and opposite charges at the points r 

and r' at time t. In fact definitions (3.1) and (3.19) give 

the same answer for this particular Green's function since 

the electric field extends from the point r to r' at time t 

in both the cases. More generally, for the calculation of 

any charge neutral condensate, we get the same answer, 

irrespective of whether we use definitions (3.1) or (3.19) 

for the gauge invariant fermion fields. 

Next, we turn to the Green's functions of the form: 

<a I k’& (,Y,~t 1 L’ (‘*‘;t’) IO) 

=-yy’>z <i31N,ef~f- 2 d-e C’$ (A,+)-y j*5q,(,5,tu dAj 
4” 

/L;, e,xf 1. zfi ( qL (;@(,t.) - ~‘.(~~~&,-tj CL4 ,f Jci (4.33) 
8, 
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We may analyze this in the same way as (4.18), and 

obtain an expression similar to (4.19), with the difference 

that n' is replaced by -n' in E2, E3 and the multiplicative 

factor m’!Jc/2*, but not in El. We obtain the same 

suppression factors as in the previous case, except that in 

this case we get a finite answer in the r8+0 limit if t=t' 

and n=-n'. (Rn and Ln carry opposite charge, that is why we 

get a finite answer for n=-n' in this case, as opposed to 

for n=n' in the previous case). 

(B) TWO BODY FERMIONIC GREEN'S FUNCTIONS INVOLVING THE 

OPERATORS DEFINED IN EQ. (3.19): 

We shall now turn to the Green's functions involving 

the fermionic operators defined in Eq. (3.19). The Green's 

function 

IL 
LOI IT w; (A,fl q, LA; L’) I c> 

is given by an expression similar to (4.191, with all the 

integrals Jrrr' 
rO 

in El, E2 and E3 replaced by the integrals 

-I;,/ The result is, 
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?2d.$s eq3 c ;ii; ) “++ (~ izz j + (1 F”, ) (4.41) 

where, 

+ ,?%s + "a, (~a,t,n:t')+y yppf 3, ‘I,, 2, CA,+, 4:-t') 
41 

(4.42) 

Tic2 zz TT 5 x ( 3, t, A y) + 2 +& d, Yz a., t, ,A; t' ) 
2 & 

and, 

- a”, (A, t, 3,r)) I,, + 7 (~4dA~ 2, (-z C%,L, xyr) -a”, c/ii,+, .c,:,r)) L,-+. 
~4 

+ CL ~‘25’ PI 7,) a, 4 ( 2&t, 4/,lrJ -;5, (h/z, d’u))l,=+ 

+ 23 (. A’, t; A;-t’)- z;, LY,t:./;:-t’I q&A Jtz i’x(.A,t: e(,r) 4 ’ 

-4 c,s,ty, 3: ‘~)~~~-t, + *$-“’ a&” I’~(gt;4:*r) -z,ci,:i/s;r))~r,, 

+ J.>s ;~*L’ rl, c?y (yy(n,~t;,.4:r) -~,C/;,t',n';,~j))-,.t'I 
A s 

(4.4’1) 
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The integrals of the form, 

*J+& ( 25 ’ 2; 
7’ 

2,, (a” [A,.&, ,6:-t’)- ~,.(n;t,,,s:f/l)l,-~,: t:f’ 

and, 

pd./s J'L' 
K' C:',~ dt, ; cx,t, 4:t') 

diverge from the region of large s,s'. We regulate these 

divergences by quantizing the system in a finite box of 

radius R (see Appendix B). Then, in the first integral the 

divergence appears as (l/n)ln(Rc) where S=min(l/r,e2/ro). In 

the second integral the divergence appears as (l/n) In (Rx) 

where X=min(r-1,(r')-1,(t-t')-1,e2/r0). If we add the 

divergent terms from E2 - and E3, we get, 

, lg C~ y’2’-I) Lh c + fLlif< Ti- .? &50) 
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Thus if n=-n', the term in the exponential diverges to 

-m in the limit R+m, and the Green's function vanishes. On 

the other hand, if n=n', i.e. the total charge carried by 

the fermion fields in the Green's function is zero, the 

divergent terms in the exponent cancel and we get a finite 

answer. 

The following points are worth mentioning here: 

1) The divergences of the integrals (4.48) and (4.49) which 

make the charge non-conserving Green's functions vanish, is 

independent of the ro+o limit, it persists for finite r8. In 

fact, the region of integration responsible for the 

divergence is R-1<<E<<(r')-1,r-1,(t-t')-1,e2/ro, i.e. the 

region of small E or large s,s' (Appendix B). This is to be 

contrasted with the region of integration 

1 (f')- rr -1,(t-t')-1<<E<<e2/ro, which was responsible for 

large contribution to the integral (4.33) (See Appendix A). 

2) In the cases of physical interest, where 

r-l,(r1)-l,(t-t')-'<<e2/ro, the 5 and X in ln(R6) and 

ln(RX) are (r')-',r-' or (t-t')-'. However if we take the 

limit e2+0, keeping all other quantities fixed, then both 5 

and X are equal to e2/r o and the divergent term is given by 

In (Re2/ro). If we now take e2+0 limit keeping R fixed, 

Re2/r0 is no longer a large number and there is no 

divergence in the integrals (4.48) and (4.49). This shows 
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us how to recover the free field limit for e2=8. This is a 

consistency check on our calculations, since we know that in 

the free field limit there exist charge non-conserving 

Green's functions which are finite. For any finite non--zero 
2 e , the charge symmetry is restored. 

It can easily be checked that the vacuum satisfies the 

cluster property, i.e. the Green's function 

<GI 0+ei,t+r, n; tt-'+r) C-o,t,,,;',f') Ii:) (yl-Sl, 

where 6 is the operator ~,,(r,t)~Nnl(r',t') with n'=-n, 

vanishes in the T+m limit. The operatorC?'ffas a whole is 

charge neutral, hence it does not have any 1nR term in the 

exponential. But some of the divergent terms in the 

exponential have the form ln(R/T), and the logs of T are 

left in the exponential after the large logs of R cancel. 

These logs of T are responsible for the vanishing of the 

matrix element (4.51) in the T-+m limit. 

Green's functions of the form <,,ENr,, may be calculated 

in a similar way. We find a non-vanishing answer only for 

l-l=-Tl' . 
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(C) OTHER GREEN'S FUNCTIONS: 

Other two body Green's functions of the form 

<“&.J,,~~n’~o>, <OILNn~N,,' IO>, <O(&,,~N,,,lO>, and similar 

Green's functions involving the fields RNn and LN,,, should 

vanish identically, since they carry a non-zero fermion 

number, which is an exactly conserved quantum number of the 

theory. This corresponds to the symmetry $+$+a in the 

bosonized action. In our calculation, these Green's 

functions have a net multiplicative factor of P and hence 

vanish as u-+0. [Although in the definition (3.1) u is any 

arbitrary mass, we can use the relation 

free<OiNp(eA) lObfree= 1 only in the ~0 limit. Since in our 

calculation we use this result quite often, we must take the 

p+O limit in our final result]. 

Calculation of Green's functions involving more than 

two fermionic fields either in the present model, or in the 

model with more than one Dirac doublet of fermions, show the 

same general features. The Green's function may vanish for 

two reasons. If it violates a charge which is violated as a 

consequence of a continuous global symmetry of the theory, 

then we get a net extra factor of u in the final answer, 

which vanishes in the u-+0 limit. On the other hand, if the 

Green's function violates the conservation of the charge 

associated with the unbroken U(1) generator of the gauge 

group, then we get a divergent term in the exponential, 

which makes the integral vanish. Thus, the charge 



-4o- FERMILAB-Pub-83/58-THY 

conservation in a monopole-fermion system is a consequence 

of the Coulomb interaction term. In fact, if e is 

identically zero, then we may qet a finite answer for a 

charge violating Green's function around the monopole. This 

is a reflection of the fact that for e=O, the dyon state is 

degenerate with the monopole ground state, and as a result, 

the true monopole ground state may he a superposition of 

states carrying different electric charges. 

A sample calculation of a four fermion condensate in a 

theory with two Dirac doublets of fermions (which is the 

relevant case for SU(5) GUT) is given in Appendix C. The 

condensate is chirality conserving but barvon number 

violating. This calculation illustrates the fact that it is 

the non-trivial boundary condition at the monopole core, 

rather than the Adler-Bell-Jackiw anomaly, which is 

responsible for baryon number violation in the 

monopole-fermion interaction. Since the existence of this 

condensate does not depend on the existence of anomaly, it 

exists even in the presence of arbitrary number of higher 

generations of massless fermions. 

V. DISCUSSION 

In this paper we have calculated various fermionic 

Green's functions for a monopole-fermion system. Although 

the boundary conditions on the fermion fields are charge 

exchange ones, so that for a finite size monopole, one may 
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expect the Green's functions to be charge non-conserving in 

general, we have shown that all the Green's functions obey 

the charge conservation law. 

The crucial observation made in this paper is that in 

order to define a gauge invariant fermion creation operator, 

we must also specify the string of electric flux emanating 

from the fermion. In the present model, we have two 

choices, we may either take the string to extend from the 

fermion to the monopole core, or we can take it to extend 

from the fermion to infinity. In the first case, we create 

a gauge invariant operator by creating an equal and opposite 

charge at the monopole core, together with the fermion, 

hence we essentially create a neutral dyon-fermion system. 

In the second case we create a gauge invariant operator by 

creating an equal and opposite charge at infinity. The 

Green's function involving these two types of operators have 

drastically different behavior. The fermion creation 

operators of the first type create a dyon state of energy 

-e2/r0, where r. is the radius of the monopole. As a 

result, we shall expect the Green's functions involving 

these operators to be suppressed in the limit ro+O. Our 

calculation shows that this is indeed the case, these 

Green's functions carry factors of order exp(-c ln(e2r/ro)) 

where c is a constant, irrespective of whether the total 

charge carried by the fermion fields is zero or not. On the 

other hand, j?or finite ro, these Green's functions are 

finite, even if the fermion fields involved in these Green's 



function carry a net total charge. This, however, does not 

imply non-conservation of charge, since each of these 

fermion creation operators is charge neutral. Also, if the 

Green's function involves product of two fermion fields of 

opposite charge at the same time, then it is finite even in 

the ro+O limit, since the fermion creation operators do not 

create any charge at the monopole core at any time. 

The finiteness of the Green's functions at finite r. 

only tells us that the ground state of the monopole-fermion 

system has a finite probahility of making a transition into 

a virtual dyon-fermion state, in the same way that the 

vacuum of QED has a finite probability of making a 

transition into a virtual e+e- pair. There is one subtle 

point which is worth mentioning here. We know that the 

propagator of a free field of mass m falls off as exp(-mIxI) 

as x+m, where x is the space-time separation between the two 

points. This reflects the fact that when we create a 

particle-antiparticle pair, separated by a distance x, we 

create a state of energy 2m, and the state must exist at 

least for a time x/2, before the particle-antiparticle pair 

may annihilate. Thus the action of the solution, which 

interpolates between the vacuum and a particle-antiparticle 

pair separated by a distance x, is of order mx. This 

produces the suppression factor of exp(-mx). We have the 

same situation here, but instead of producinq a 

particle-antiparticle pair, we create a fermion at the point 

r, and an equal and opposite charge at the monopole core. 
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This state has an energy of order e2/r0, and naively we 

would expect an exponential suppression of the form 

exp(-ce2r/ro). However, in the region of physial interest, 

for which e2r/r0>>1, we only get a suppression factor of the 

form exp(-c ln(e2r/ro)). This is a result of summation of an 

infinite number 2 of terms in the perturbation series in e . 

Physically this reflects the fact that even when we create a 

fermion at a point r, and an equal and opposite charge at 

the monopole core, the system need not be in a state of 

energy e2/r0 for a time of order r. The monopole core may 

release its charge by emitting charged fermions, which then 

annihilates the oppositely charged fermion at the point r. 

As a result, the suppression factor is much softer. 

The Green's functions involving the second class of 

fermion creation operators are finite even in the limit of 

zero monopole radius, provided the total charge carried by 

all the fermion operators in the Green's function is zero. 

This is due to the fact that these fermion creation 

operators do not create states of large energy. On the 

other hand, if in the Green's function the total charge 

carried by the fermion operators is not zero, it vanishes 

identically, even for finite monopole radius. This shows 

that the ground state of the fermion-monopole system does 

not have a finite amplitude for transition into a state 

containing a neutral core and a set of fermions carrying a 

net total charge. This establishes the charge conservation 

rule for a monopole-fermion system. 
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To calculate the scattering of low energy fermions from 

the monopole, both in the initial and the final state the 

monopole core must be kept charge neutral. Hence the 

fermion creation and annihilation operators that one must 

use in the calculation are the ones whose electric fields 

extend to infinity. As a result, the total charge carried 

by the incoming fermions must be equal to the total charge 

carried by the outgoing fermions. 

Finally, we make a comment on the boundary condition on 

the field Q at the monopole core. The condition Q'=O may be 

written in terms of the four dimensional field J, as, 

CR ?.A^ wi-2 9.; y4)J,,Ae=o 

which says that the total chiral current flowing into the 

monopole core at any instant of time is zero. This boundary 

condition was derived in the absence of the electric field, 

in which case the chiral current does not have any anomaly 

and is exactly conserved. However, in the presence of the 

electric field, the chiral current is no longer conserved 

because of the anomaly. The non-conservation of the chiral 

charge outside the monopole core is taken care of by the 

e2Q2/r2 in the Hamiltonian [9], but the contribution to the 

chiral charge non-conservation from inside the monopole core 

must be taken care of by changing the boundary condition at 

r=r 0' Also, when we take into account the effect of the 

electric field, the monopole offers a resistance to the flow 
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of a net charge into its core, because of the large energy 

associated with the electric field. Again, the effect of 

the electric field enerqy outside the core is taken care of 

by the e2Q2/r2 term in the Hamiltonian, but its effect 

inside the core must be taken care of by modifying the 

boundary conditions. Since for e2=0, Q'=O is the correct 

boundary condition, whereas for large e2/r 0, we expect a 

charge conserving boundary condition Q=O, a generous 

estimate for the modified effective boundary condition is, 

97’ + ((3 e?‘/4., Pj = CT (5.2) 

where S is a constant of order unity. This boundary 

condition amounts to adding a term (Se2/Rro)cosEro in the 

numerator and (6e2/Ero)sinEro in the denominator of 

Eq. (4.33). This does not change the results (4.34) or 

(4.35) so long as 8 is a finite constant and hence all our 

results are valid even with the boundary condition (5.2). 
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APPENDIX A: EVALUATION OF SOME INTEGRALS 

In this appendix, we shall exhibit the details of the 

calculation which leads to the Eqs. (4.34-4.37) of the text. 

The integral we wish to evaluate is of the form, 

6.d E dn .$ t++? f, (E,,~;,~,) .g& 

- 4 /5 in, E (&-Ao) ni71 E w-.4*jJ 

as given in Eq. (4.33) of the text. Here, 

(A. I) 

fy (’ f, .A, ?L.) = CL J,. tic) + b, J-, Cr 1 (R.2) 

where x and x0 denote respectively Er and Erg. av and b, are 

determined from the boundary condition (4.81 

normalization condition (4.9). (4.8) gives, 

nw -- 
T;; 

d cd% T.J-&, 03) / d-& CyG, J, CG,) 
&x; u 

The normalization condition (4.9) is 

incorporate at the region of large r,r', where, 

pg 3, C.xl = cm(x- (Lg. 4 ~-$).Tri 

giving, 

and the 

v\ *3) 

easy to 

(A- 4) 

( a; + b: -2 CL, b, 6 Lr\Tj- CT) ‘= i?ry (d 
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av and b, may be obtained by solving Eqs. (A.3) and (A.5). 

But just from Eq. (A.5) we can see that, 

tu.l(, I b,~ 5 (I-/5ihwld “G 

since it describes an ellipse. 

The integral (A.l), with the co-efficients a ", bv given 

above, is too complicated to evaluate exactly. But as we 

shall show, we may reliably compute the leading contribution 

for small r8. The following cases have been examined: 

Case (a): a<<l, or/r8>>1 

Case .(b): u takes special value=l, r/r8>>1 

Hereafter we shall concentrate on the case (a) , which 

is of most interest. Calculations for the case (b) can be 

done in a similar way. We shall briefly comment on it 

later. 

First we need to study the behaviour of the 

co-efficients av(x8) and bv(x8) for various x8: 

(i) o X <cl: We may use the expression for the Bessel 

functions near the origin. Then we find, from (A.3), 

2” 
a, = -_ 2 rCv) 
b, 

5- xo’-Zn- 
2 - qf v r c I -.v) 

(ii) x8>>1: In this region we may use the asymptotic form 

(A.4) for the Bessel functions, giving us: 
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a, / b, E 4.&n <.x0+ o--rr/z) /ccJ ( x. - cTr/z) 

(iii) General x0: For any general x0, we may make small U 

approximation to evaluate the right hand side of (A.3). In 

this approximation we expand the Bessel's function J+,, about 

the point v=1/2 in a power series in U(%W-l/2) and keep 

only terms up to the first power of u. We use the equations: 

Y- ,5..i-n f' + ~7 3. CL (.?p) oin p - 5.~ (zp) Cizx (‘3 

@ J-ceh ((2) ,.& (.csp _ c7.{ct (Z(2) cc?\-‘+ fi~f(7t;‘I .4&P 5 

(A-9) 

to obtain, 

5 _ ,5&r +~~(~3~x,/x.+S;<zX,)ce3'X.-CILCZXp)/ilT,~Xr)+~~~2J 
--- 

b, 
,...-.__-- 

co-s x- + ir(-ALrn~X./K, + c"i Crux,) La5 x, + S;CZ~,J 4c.,~.jhoc~~l 

Q9 .I 0) 

Here Ci and Si are the cosine and the sine integral 

functions, defined by, 

CL(X) .= YE + Lnx + \ +2JY-I & 
0 t. 

si (X) z (x?ht dJ; ac, - $?LL[erk eonS.to-nt 
1 T- 

Using the small and large x behavior of the Ci and 

Si functions, 

CjCX) v Lx KY-E CLL1 x-0 

NC /xe a5 x-+4) 
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SiCX) NX u x-40 

ry I$- + ‘F/~x’ a.4 x-+-a 

where P is a positive constant and c,E are constants, we can 

verify that we get back (A.71 and (A.81 from (A.101 in the 

appropriate limits. 

We now proceed to evaluate the integral (A.1). To do 

this, we divide the whole integration region over E into 

different regions and evaluate the contribution from each 

region separately. 

(i) OzELu/r, where a is a small but fixed number: In this 

region, Er and Erg are both small. We may evaluate a, and 

bV from Eqs. (A.5) and (A-7), which gives av=a, bv=O. 

Jy (Es) may be obtained by using the small Es approximation, 

which gives, 

(/?g J-*crj ‘y @ ($)’ pv7+fi / r(zltl) 

leading to, 
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I 
1, E $- {“& 

L' 
L ~,Jk fp(E,/5,&) t:cL5f f$?x j;cE-,;4:~&) f twj 

0 

- 4 .4L, E (4-A,) .5& EC4’-.&)I 

-N ($)2v+L(i,(;,+,)j’ $$ < J- (+)z”‘3 t 

-I ‘lT i .&I ,5 L, (o( C.pI-AIJ /‘A) - ..L- /5zs3 (*(.“+*!-zQ/4) 3 (\w) 
.&‘A’-1& 

which is finite in the limit r '0. 0 
(ii) __ u/r<E<aa/ro: In this region ErO/o is small, Er is of 

order unity or larger. Thus we can still use Eq. (A-7) for 

evaluating a" and b 
V’ 

which gives a,=JZi, b,=O. In 

evaluating the integral over 6 J,(ES), we use the small u 

expansion (A.9) for Jv, which gives, 

- (~~ZCr-cmx)~~~ielCx)-~3C~Z(Zxj-,s,i,X U~CW-J-~ 

_ ‘Tl 2 .4Cn x- Cicx.1 4 cmxc, Ci CZX,J 4,5ih X, si(2=Yrjj +oca') 

(A-G-j 
Thus, 

E As’ 3 - $ AL,, E/4-4,) Al& C‘ (.$<I- 3, ) I 
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= ~I "TT J 
9 

=d7% .cg { (emx,-co3x) CckyK,- cmx') t crI:+5~--(Lcsx.) 

j-c, CX’I -CL Cx,) - en,d ci czdj -~6L11Yi si CZX')+~-X. c~(zx,) 

+ ./%!I+ x. w2ij j + + 
- &)I to(crL) - hL7\(~x-xo )4.L-P Cx~--xJ3 

We can further simplify this integral by using small x0 

formulae given in (A.12). Then we obtain, 

12 ce .+ .$ -g i(I-~~K)Cf-~s~‘/-45.~C~ihX:3 
VA 

+C@Th) ( 
cm/,$ c 

dpz 
$ r -f ( I- cm%‘) ( CL(~) - em x C< (z~x)-4,x C&<&T) 

--QT/~, 4&x +!L,2)1 + $r--x’j +occ~z~l (e- 171 
In the second integral in (A.17), the terms with Ci(x), 

Ci(2x) and (Si(x)-n/2) give only a finite contribution, 

since they provide sufficient damping. The rest of the 

integral can be done with the formulae: 

Jb (CES FK./E ) dE z C'j Cb~&/- '?~(cx+) 

<> ;6 L,n EA /EC ) d. E : 51' iby) -'>i (a+) (A. IS) 

and then using the asymptotic behavior of the Ci and Si 

functions given in Eq. (A.12). Then we get: 

I, = :fi ( I 4 zo- &Z) ,& s; + fi&+c @. 19) 

(iii) aU/r0(E~6a/r0, B is a large but fixed number: In this 
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region Erg-u,Er>>l. Thus av and b, are both of order unity. 

We may use Eq. (A.10) to find av and by and Eq. (A.15) to 

evaluate the integral .f' &J,(Es)Eds. 
rO 

Using the fact that 

ErO is small, and Er is large, and using the asymptotic 

behavior of the Ci and the Si functions from Eq. (A.12), we 

get, 

+ F-- Tzf J,c-t)Z (J-LOTX) + cr(Lr,,Z- :!+&,x) Y -jf- i 

~>” d.-tm ;r.,(t) CZ /5-&K- ‘%T- ~I-%TX) (A. 20 ) 

Then, since a v and b, are bounded from above by 6, 

r3 5 _1_ 
s 

PT/S, 

4,iT 
a_E c 2 p& f,tc,r,~,n,) Ed53 

4r/*f, 
f 4, 

3, 
is bounded by, 

I, 5 rJf I 

/w/4" 
dE /'E = n ,R,s!? 

dr/2 a o( 

where M is a finite positive number. 

(iv) &J/ro<<E<<a/ro: In this range U<<xo<<l,x>>l. The ratio 

a,/b, may be determined from Eq. (A.lO). Using the limiting 

behavior of the Ci and the Si functions, we get, 

.gv - &,x, + o-//x. + 0 Co-S, Y.) +CjCs2) (11\. 2 3) 
t>a’ 

where O(u.lnxo) term contains terms proportional to u.lnxo, 

and less singular terms in the small x0 limit. Using the 

normalization condition (A-5), we get, 
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a,=&%(41 9-x,+ =1x,) t o(~T,2*x,) + CCC+1 @-24 

b, = fl+- CATS Y. + 6 co-1 (a5 

where in the second term of the above equation the O(U) term 

does not have a o/x0 term. We shall now show that the U/x0 

term in av gives a finite contribution to, 

I’, ~ p 
Pv/4* dE 1 ( i”f, if,~,x~) G E b) C 1“ fY (,f,A5:~8,j q-z .5. 8” 

EYJ E dd') - 44 in E(,$-An) .4,& E&+'+Ljj 

To see this, first note that f' &J+,,(ES)Eds is 
r. - 

bounded from above by a finite number, so that I4 is bounded 

by. 

4$y’“&y ( i’, u; -cc; 6: cc3 I u, b,l ) 
0 

where the Ci's are finite positive constants. Thus the 

contribution to I4 from the U/x0 term in av is bounded by, 

c CT (y dE T c ( I -c- 
(3+(” CA‘ E 75 2 

(c.28) 

which is finite since B-l and a/& are both small numbers. 

Hence we may keep only the zeroth order terms in the 

expansion of aV and b, as a power series in u. Using 

Eq. (A-201, we get, 
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wi4, 
I, = L ( d_" I: { .5.& f 

-n- y/vr, -c- 
D Cl-cu3.K) +~.GGn x, 13Gnz-p&x) 

+ ([- x, ,,i & x - ?;T cq .K * c I - (-Q%I )o f <,x Q-~-e x’ j 

- ,4 & CX-X,) A&, ('-d-x,) -I- fL,XiiCC 

Again the O(o) term is bounded by, 

CrJ 
,~ti</X a 

d "/'F s-t, ccl- Q,fi id/'13 'r' J 
Pcr/Yd 

Q-3c) 

and can be ignored. The result is, 

I-, = I TT J- cc/<fz" { 4 & x, & & (r'4,) +.5~ihXon&(Y~-X,) 

p-/a, 

+ .4 i,,2 x. 3 q + fL r,i t-e 

These integrals may be expressed in terms of the sine 

and the cosine integral functions and may be shown to be 

finite in the ro+O or a+0 limit. 

(v) c/ro~E~8/ro: In this interval x0-l,x>>l. The analysis of 

the integral in this interval is similar to that for 13. We 

can bound the modulus of the integrand by a finite number, 

and show that the integral gives at most a finite 

contribution of order (8/u). 

(Vi) 8/r0(Ezm: In this region xo>>l,x>>l. Thus, we may use 

Eq. (A.8) for the ratio a,/b, and also the asymptotic form 

(A.4) for J+v(ES), getting, 
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16 f,, (.E, ,5,&o) ‘= Cc> E c4-4,) cj3.3.z) 

As a result the integrand in (A.1) vanishes identically 

in this region and hence the contribution to the integral 

also vanishes. 

Thus we see that in the ro+O limit, the expression 

(A.11 diverges as, 

+ c I + zrr .Lr\2 + O(.G-2)) Ln y 4 fini& (A-33) 
u 

the finite part does not contain any lnu term, so that the a 

dependence for the leading term is indeed as exhibited. 

We now briefly comment on the case (b). In this case 

we can utilize the fact that the Bessel functions of half 

integer order can be written in terms of sines and cosines, 

in particular, 

c- 
m J, cp) ‘- .‘“21’ - Cm.0~ (’ 

C’ 

Jy? J--.yi (FJ = - $2’ - n,& p 
L 

Using these equations we can find out the leading 

divergent part in the integral (A.1). This is given by, 

.r(” (.& /& 

-7 0 LJ 
(R-56) 



-56- FERMILAB-Pub-83/58-THY 

APPENDIX B: QUANTIZATION IN A FINITE BOX 

In this appendix, we discuss the quantization of a 

boson field e in a radial box of inner radius r. and outer 

radius R, satisfying the boundary condition 

6' I r=r =@'lrzR=O. First, let us assume that the field e 
0 

satisfies the free field equations of motion. Then we may 

expand it as, 

$pcY;,tl .= 71- .T -L 
R ,-,=, \Iz'+ ,j+ 

h 

with, 

k, .z ahT / (' R-r;,) @,B-zl 

&- (“J 
n = ,/q-q? b--3, 

p being an infinitesimal mass of the 0 field. 0, as given 

in (B.l), satisfies the equation, 

f +:‘I (.A,+) dt, : (17 
Y7, 

@1-4) 

since sink,(R-ro)=O. A similar equation is satisfied by any 

time derivative of 6:'). This implies that in the free field 

limit, the gauge invariant fermion operators of type 11, 

defined in Eq. (3.19), are identical to the gauge invariant 

fermion operators of type I, defined in Eq. (3.1). This can 

be easily seen if we ignore the normal ordering in 
Eqs. (3.1) and (3.l9), but this is also true for the normal 

ordered operators, as can be shown by using Eq. (3.5). 
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Another way of showing this is to note that the Green's 

function, 

&/$,+,.r,'&) z‘ [ Q‘t'c13,t), $J+' 

.= +- *g, &-p 4 c-a b, o-&oJ c-a k,(/,‘.n.,J e 
-1 F,“’ ((~~(‘I 

(13. 5 j 
n 

satisfies, 

JR&5 ‘a”, 
0 

cr;,t,Yz,,t') = (id 2c* ( 4,t, .4.;~t‘) I: 0 (B. 6) 

for all values of r, t and t'. Hence any time derivative of 

li,ds is also zero. In particular, 

(K.7) 

and, 

$k (iL & a~t, .x;, (A.-t, .4$, t'J 7 c (p-xi 

Thus in the free field case the fermionic Green's function 

involving the fields &*, iNk are identical to those 

involving the fields RR+, LN? ' since the former may be 

obtained by replacing the integrals I" by -,z in expression 
r0 

(3.12). Since we know that the Green's function involving 

the fields REk, LNk correctly reproduces the free fermion 

propagator, so does the Green's functions involving the 

fields RN*, iNf. 
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Let us now turn to the case of interacting fields, 

where, by interacting fields, we mean that the field Q 

satisfies the equation: 

The field Q may then be expanded as, 

g ( *,t) :: x r” , _L. (4(E,) e~-iF”t+ a+cEJ e-q R h‘-I J-Fir JzE; 

d-c% fYP+l.LR) (B. IO) 

where, 

-fvw,, fi, PI,,R) = av ;T,<F,iT) + b, J-, iE*A) ((3 I I ) 

( 

1/2 

L’ z + .e’ 

I 6 .q L ) 
(a. 12) 

TIP 
b, are determined from the boundary conditions and the 

normalization condition: 

d [ JqTT (a, J-s,(E*.K) + b” J-T_, (w))l,=x -= O (E.IJ) 

xx D 

d [ cc (u., 3, CE,.~ + 6, Xv =v%)~l,.R - o (6 I 4) 
A% 
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and 

/&, J, CF,,pz) c b, J.” cF,A)y E, A cl% - R/rr (B. is1 
e 

The ratio av/bv may be determined in various limits in 

the same way as in Appendix A. Hence we can directly use 

the results of Eqs. (A.7), (A.8) and (A.10) in our 

calculation. We shall evaluate the integral, 

T .= ,$“d, $&/ & d,, ?“a <,s,t,n.;t’) - ~o(,s,t-,d,t’)j 

= -‘i .p ~I 
R 

1 pi4 E, &-2 fy cc,, /5.A., R) 5 
h>I $iiF, 4 

7 ,I %’ F,, iE,n’ f” CF,, A’, A”,R) f c? ct ~“’ 

- I& 2 :-!, 
-zF&‘“(t-f’j 

h‘ 1 4’Ti Is:“ 
I2Ale t;‘“’ (5i-T-G)) (2 nL F:~‘(A~.‘I.)) e (6. Iti) 

The right hand side of Eq. (B-16) may be analyzed in 

the same way as the integral (A.l). In this case, 

however, we shall simplify our calculation by keeping only 

the leading divergent terms in the exponent, i.e. by 

ignoring all divergent terms of order e' or higher. Then, 

after we evaluate av and b, by using the appropriate 

equations (Eq. (A.71, (A.8) or (A.lO)), we may replace 
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J+V(Es) by Jklj2 (Es) in evaluating the integral 

.ffisf,(Es)Eds, since these integrals are smooth functions of 

o=v-l/Z at a=O. Thus we may write, 

fY < ';, A,A,,R j c (a,, r-it, Eb.5 + b, cas F,.4] c+ @f. 17) 

Combining the results (A.71, (A.B), (A.101, (A.5) and 

(B.17), we get, 

& S; (E,, A, A,, R 1 e 2 CDS c--,( .4-4, j f;.& E, ,%, >2’3 

c 2 ,r, .&I E;\ 4 i- Eq 3, <<Ci<I 
(_g. IS) 

En is determined from the boundary condition (B.14). 

Thus, 

E, .= (p-5) G/R -j&s F,iS,<c<rc<:I 

= I) ‘ii- / R +A E-3, >>o- (B. i3) 

Hence we are led to, 

f”J-iQ fy (.f, ,.4, .A., r: ) E, d-5 = .R z Las lTn.r, +- f,,h. ccr<c ( 
A (y -.$ y-n 

R = - ..- 2,4& F, J,y.pru) $,% r,,fi”>‘C 
rl’ii 
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If we now examine the right hand side of Eq. (B.16), we 

see that for Enro>>U,E (0) 
n ro>>u, the contribution to the sum, 

coming from the h and the iO terms cancel. Contribution 

from the region Enrow u may be bounded from above by a finite 

constant, exactly as we did in Appendix A. Thus, we are 

left with the contribution, 

+ &gJ R’Tr { 2. 
-z b-4 IiiCL-t’l 

(?-? ITT 

ca (h-$$iYt’ e - c= 

R A A& v((.k>&) A &, “2:<.4:r.m’7-) e - 
i. q 7; c& ,t ‘ ) / R 

- ~- 
h’ii K R 

iJ3 a) 

where CY is a small but finite number. 

We are interested only in the divergent part of the 

integral. Since each individual term is finite, the only 

divergence in the R+- limit may come from a sum over 

infinite number of terms. Hence we may focus our attention 

on the region of large n. For large n and small r/R, r'/R, 

We may replace (n-l/2) by n everywhere in the first term 

inside { }. Also, in the region of summation nxro/R is a 

small number and hence we may drop these terms from the 

second term inside { }. The result is, then, 
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(4c/‘i.) R/ii 
+ L_ * Q-Lanrr(4et')'R pa YlK(~h*'I 

" ~- 1 

If we define, 

8 = 7-r-icLx ( It-t'/ , Aor', &/'5.) 

then (B.22) may be decomposed as, 

u( R/e 
+ ,‘I + c-z ~=~f-t’J’K cc.3 ny-<.J 

@r/A., R/k 
4 + ..F-- __. 1 e- 

i n~-,i i-t L’J /R 
crj ~nrri-?5J (B. 24) +Y(R/@+l r( R 

The second term in the above expression is finite, 

since for nzR/R, at least one of the terms e -ins(t-t')/R or 

cosnx(r+r')/R beqins to oscillate, thus guaranteeing the 

convergence of the sum. In the first term, on the other 

hand, we may replace both the terms e -ina(t-t')/R and 

cosnn(r+r')/R by unity and the sum diverges in the R+m 

limit, giving us, 

We should remind the reader that in our calculation we 

have kept only the leading divergent terms in the 

exponential, as a result we might have lost the divergent 

terms of the form e21nR. Such terms may be calculated by 

going through a detailed analysis of the inteqral, as 

in Appendix A. 
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The integral, 

FERMILAB-Pub-83/5&THY 

k iR b a, zh,t, d,t') 

may be analyzed in a similar way and may be shown to be 

finite. Thus the divergent terms in the exponent of (4.41) 

come from the divergences in E2 and E3. The divergence in E2 

is due to the integral (4.49) of the text, and that of E3 is 

from the integral (4.48) and a similar integral with (r, t) 

replaced by (r',t'). As a result, the net leading divergent 

term in the exponent of (4.41) is given by, 

7i- 
2 

p”L” (y7’4 L f? (_B-?7) 

APPENDIX C: FOUR BODY CHIRALITY CONSERVING CONDENSATE 

In this appendix, we shall describe a sample 

calculation of four fermion condensates in SU(5) grand 

unified theory with one generation of quarks and leptons. 

We shall focus on chirality preserving ones, since this 

discussion lucidly illustrates that the Adler-Bell-Jackiw 

anomaly iS not the primary cause of the baryon number 

violation. 

As has been repeatedly discussed, the four SU(2) Weyl 

doublets which are relevant in the above setting are 
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u$= $-: R ‘ ( ) > Y cz, = u,’ 
R‘, L i 1 UI R,‘- 

For each of these doublets, we need a corresponding 

boson operator. The following linear combinations of them 

completely decouple dynamically: 

,+ .r .+ < ?;) _ cp;t A qy’ - +:’ j 

y), ~: .$ ( qh” - y’:’ - T;’ 1.. q: I 

(pz .~ * ( q; + q’; + cg;’ + qy’ J 

q3 .: + ( pi’; + qq - ‘Fh” - cf: ) 

White @i(i=1,2,3) remain free fields with infinitesimal mass 

U, @ is the combination which acquires r dependent mass due 

to the Coulomb interaction. 

Let us consider the following operator which preserves 

both the charge and the chirality (but violates baryon 

number): 

6 ( a, b, a’, b’) = y/(” my)- (CL+hY5) y+ )iJ”’ 

x ,CZI 
yh ( a’ + b’ ‘Y” ) TV- p (” (57.3) 

where a,b,a',b' are constants and 'I+ are the charge raising 

and lowering Pauli matrices. Expressed in terms of 

components, this operator reduces to, 
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cL,Yr~~+h'k'5) C+ z,r"(u'+b'Ys) I.(= (3) 

which is a baryon number violating, but charge and chirality 

conserving condensate. (A similar operator without T+ 

suffers from short distance singularities and will not lead 

to an unambiguous finite answer). Expanding the fermi 

fields as in Eq. (2.1), we get, 

<oi &(~,b, c<,b')l@> = - 
(liEi4 - 

' (a 1 [(&+b) KC"+ R:' 

-(a-b) t':'+ L';1 ] /-(&f&h') R':'+ KC'_" -(CL'1 b') py+ p] lC> 

7-' 0-L 2+ 7: (TL T- (c-5) 

where we have used orthogonality property n+n7- ' -0. The Fierz 

identity for the Pauli matrices gives 

7-+ 1% 7, ';7t 6, 'I- := 2 @6-j 

Now we evaluate the four-body condensates appearing in 

the above expression. Consider for example 

<OlR11)tR~1)R!2)tRl?~~ Substituting the bosonized formula 

(3.1) (since we are evaluating charge neutral condensate, 

definitions (3.1) and (3.19) give the same answer), and 

using the rules for combining normal ordered exponentials, 

we get, after simple calculations, 
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(01 R(1’ + Ry K:“’ F:‘.z’ [ 0) ‘Z (g; j2(/& <o I N, 
47r&+ 

e 
@,I cts 

I CP 

(c.7) 

The fact that this expression does not involve I&ds Or 

@ in the exponent is a manifestation of the fact that we are 

dealing with an operator which does not carry either charge 

or chirality. As stated before, sl and e3 remain free 

fields, so the expression <OINll( 1 IO> in Eq. (C.7) is simply 

unity. Other condensates can be evaluated in a similar 

manner. Putting them all togethe'r, we obtain, 

<o, ,(‘I rk(a,.br-‘j .?y,, y/“’ pl of* (a’+ b’y5) ‘y’. Lp’ IL?) 

Notice that the axial vector parts do not contribute. This 

is a consequence of a discrete symmetry: It can be easily 

checked that the Lagrangian of the system and the boundary 

conditions are invariant under the transformation 

w 
(61 

---tt - &p Rr< l. 
Ei, L/q;’ 

for both s=l and s=2 separately. Under this symmetry 

operation, the axial vector currents change sign while the 

vector currents do not. 
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In this example, it is clearly the boundary condition 

which is responsible for the baryon number violation, while 

the anomaly is completely irrelevant. As a result, such 

four body condensates exist even in the presence of higher 

generation massless fermions, as opposed to the chirality 

violating condensates, in which the total number of fields 

in the condensate must be equal to the number of Weyl 

multiplets. 
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FOOTNOTES 

FIThese boundary conditions are valid only for those modes 

of excitation for which the energy of excitation (E) is 

small compared to the inverse radius of the monopole (r. -3 . 

Since in our calculation most of the important contribution 

comes from such modes, this is a consistent approximation. 

For a detailed study of how the boundary conditions change 

when EroLl, see Ref. 5. 

F2At this point, the necessity of working with gauge 

invariant fermion operators becomes clear. If we work with 

the bare fermion fields R and L, the point splitting method 

of Ref. 14 would have given us the current ~J(x+E)~~$(x), and 

not the gauge invariant current Ji(x+e)yVexp(-igj(;L:dx)JI(x). x 
This is automatically taken care of by working with the 

gauge invariant fermion fields RN, LN, or RN, iN. 
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