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ABSTRACT

It is frequently useful to construct dual descriptions of theories containing
antisymmetric tensor fields by introducing a new potential whose curl gives the
dual field strength, thereby interchanging field equations with Bianchi identities.
We describe a general procedure for constructing actions containing both potentials
at the same time, such that the dual relationship of the field strengths arises
as an equation of motion. The price for doing this is the sacrifice of manifest
Lorentz invariance or general coordinate invariance, though both symmetries can
be realized nonetheless. There are various examples of global symmetries that
have been realized as symmetries of field equations but not actions. These can
be elevated to symmetries of the action by our method. The main example that
we focus on is the low-energy effective action description of the heterotic string
theory compactified on a six-torus to four dimensions. We show that the SL(2,R)
symmetry, whose SL(2,Z) subgroup has been conjectured to be an exact symmetry
of the full string theory, can be realized on the action in a way that brings out a
remarkable similarity to the target space duality symmetry O(6,22). Our analysis
indicates that SL(2,Z) symmetry may arise naturally in a dual formulation of the

theory.



1. Introduction

Montonen and Olive [1] conjectured in 1977 that some theories with a sponta-
neously broken gauge symmetry possess a duality symmetry that interchanges elec-
trically charged elementary particles with magnetically charged t” Hooft—Polyakov
monopoles. Such a symmetry would relate strong coupling to weak coupling, since
it sends the coupling constant to its inverse. Later analysis showed that among four-
dimensional field theories the best candidate for realizing the Montonen—Olive dual-
ity conjecture is the globally supersymmetric N = 4 Yang-Mills-Higgs system [2].
A similar duality conjecture for ten dimensions that would relate strong coupling

in string theory to weak coupling in five-brane theory was made in refs.[3 — 6] .

Apparently unrelated work, at about the same time as the Montonen—Olive
conjecture, showed that many extended supergravity theories in four dimensions
have global non-compact symmetries [7] [8]. Some of these symmetries were real-
ized as symmetries of the action, whereas others were only demonstrated to be
symmetries of the equations of motion. In particular, many of these theories con-
tain an SU(1,1) symmetry (or, equivalently, an SL(2,R) symmetry), which is a

symmetry of the equations of motion only.

Ref.[9] investigated dimensional reduction of the bosonic sector of N = 1 super-
gravity theory in ten dimensions, coupled to a set of abelian gauge field supermul-
tiplets, to four dimensions. The resulting action describes the bosonic part of the
low-energy effective field theory for the heterotic string theory compactified on a
six-dimensional torus at a generic point in the moduli space, where all non-abelian
symmetries are broken. The action of this theory has a manifest global O(6,22)
symmetry. A discrete O(6,22;Z) subgroup of this, which is a symmetry of the
Narain lattice [10] [11], can be shown to be an exact symmetry of the compactified

string theory at each order of the string loop perturbation expansion.

This dimensionally reduced theory also turns out to have a hidden SL(2,R)
symmetry,[12 — 14] which is only a symmetry of the equations of motion and not

of the action. Part of this symmetry is broken by the instanton corrections in string



theory. It was conjectured in refs.[13][14] that the remaining subgroup, which turns
out to be the discrete group SL(2,Z), may be an exact symmetry of the heterotic
string theory compactified on a six-dimensional torus. (This suggestion was origi-
nally made in the context of a generic four-dimensional string theory by Ibanez et.
al.[15] based on the analysis of the scalar sector of these theories.) It was argued
in ref.[13] that since the elementary strings can be regarded as soliton solutions in
this effective field theory [16] [17], SL(2,Z) invariance of the effective field theory
may be all that is required to establish SL(2,Z) invariance of the full string theory.
Further support for SL(2,Z) symmetry in toroidally compactified heterotic string
theory was provided by noting that the spectrum of electric and magnetic charges,
and also the known part of the mass spectrum of the supersymmetric states in this

theory, are all consistent with the proposed SL(2,Z) symmetry [18] [19].

Although SL(2,R)x0(6,22) appears as a symmetry of the classical equations of
motion of the low-energy effective action, the two factors seem to be on a somewhat
different footing: 0(6,22) is a symmetry of the effective action, whereas SL(2,R) is
only a symmetry of the equations of motion. Also, the discrete subgroup O(6,22;7)
is a symmetry of the string spectrum at the string tree level, but the discrete sub-
group SL(2,7) is certainly not a symmetry of tree level string theory (though it
could be a symmetry of the full non-perturbative string theory), since it inter-

changes string states with 't Hooft—Polyakov-type monopole solutions.

One of the main purposes of this paper is to reformulate the theory in such a
way that, at least in the context of low-energy effective field theory, the O(6,22)
and SL(2,R) symmetries appear on a more or less equal footing. In particular,
we shall rewrite the dimensionally reduced action in such a way that both the
0(6,22) and the SL(2,R) transformations appear as symmetries of the action, and
not just of the equations of motion. The price that must be paid for this is manifest
general coordinate invariance of the action, though the action does have general
coordinate invariance. The way this works is that the action is invariant under a
symmetry that reduces to the usual general coordinate transformations when cer-

tain auxiliary fields are eliminated by their equations of motion. Actually, spatial



reparametrization invariance remains manifest.

We start in sect.2 with a very simple system that illustrates the key new fea-
ture of our construction, namely, free Maxwell theory. In the usual formulation,
the equations of motion of Maxwell theory (without sources) are symmetric under
the duality transformation E — é, B — —E, but the action is not. We show
that by introducing appropriate auxiliary fields it is possible to make this duality a
manifest symmetry of the action. Although this process sacrifices manifest Lorentz
invariance, the action is invariant under a certain set of transformations that re-
duce to the usual Lorentz transformations when the auxiliary fields are eliminated
by their equations of motion. We show how to couple this theory to gravity and
to make it supersymmetric while maintaining manifest duality symmetry. Gener-

alizations to higher dimensions and other systems are discussed briefly.

In sect.3 the formalism developed in sect.2 is used to write down an action that
is equivalent to the action of the dimensionally reduced D = 10 N = 1 supergravity
theory, but which has manifest 0(6,22) and SL(2,R) invariance. In this form of
the action, the fields that transform under SL(2,R) and O(6,22) are treated quite
symmetrically. In this sense, SL(2,R) and O(6,22) appear to be on equal footing.
This action is not manifestly general coordinate invariant, but (as above) it does

have general coordinate invariance nevertheless.

When the auxiliary fields of the SL(2,R)x0(6,22) invariant action are elimi-
nated by their equations of motion, the original action of ref.[9] is recovered. In
the special case where the various four-dimensional fields that originate as compo-
nents of U(1)!% gauge fields in ten dimensions are set to zero, there is no preferred
choice as to which fields should be regarded as auxiliary. In particular, choosing a
different set of fields in the manifestly SL(2,R)x0(6,22) invariant formulation to
be the auxiliary fields, and eliminating them by their equations of motion, gives
rise to a manifestly SL(2,R) and general coordinate invariant formulation of the

theory (at the sacrifice of manifest O(6,22) symmetry).

Although this analysis puts SL(2,R) and O(6,22) symmetry on a very symmet-



ric footing from the point of view of the four-dimensional effective field theory, the
0(6,22) invariant formulation of the theory could be regarded as more fundamen-
tal, since it is the formulation that appears naturally in the dimensional reduction
of the N = 1 supergravity theory from ten to four dimensions. However, in sect.4
we remove this asymmetry by showing that it is the SL(2,R) and general coordinate
invariant (but not manifestly O(6,22) invariant) formulation that arises naturally
in the dimensional reduction of the dual formulation of the N = 1 supergravity
theory in ten dimensions based on a six-form potential with a seven-form field
strength. Since the fields in this dual formulation couple more naturally to the
five-brane [4], we speculate that the SL(2,Z) symmetry may have a more natural
realization in the theory of five-branes. In particular, we show that when expressed
in terms of the natural variables of the five-brane theory, the complex field that
transforms under the SL(2,Z) symmetry takes a form very similar to the fields that
transformed under the target space duality symmetry, expressed in terms of the

natural variables of the string theory.

Sect. 5 gives a summary of our results and some comments. In particular,
we comment on a possible reformulation of the N = 1 supergravity action in ten
dimensions, which, upon dimensional reduction, would give the manifestly SL(2,R)
invariant form of the effective action even when the U(1)!% gauge fields in ten

dimensions are included in the theory.

The appendix contains part of the analysis involved in the dimensional reduc-

tion of the dual formulation of D = 10 N = 1 supergravity theory.



2. Duality Invariant Einstein—-Maxwell Action

In this section we discuss the construction of an action that is equivalent to the
usual Einstein-Maxwell action, but is manifestly invariant under a duality symme-
try that reduces to the usual E—B , B— —F symmetry when the auxiliary fields
of the theory are eliminated by their equations of motion. The method that we use
is very similar to one introduced by Henneaux and Teitelboim to solve the problem
of constructing an action for the self-dual (2¢ + 1)-form field strength in 4q + 2
dimensions [20]. In the special case of two dimensions, it was discovered indepen-
dently by Floreanini and Jackiw [21] and used by Tseytlin for the construction of
a manifestly duality invariant scalar field theory in two dimensions [22]. In each of
these papers, the key ingredient was to give up manifest Lorentz invariance of the
action. This will also be the key ingredient in our construction. One of the main
differences between the analysis of the papers mentioned above and our analysis is
the dimensionality of space-time; whereas the analysis of the previous papers are
applicable in 2, 6, 10, ... dimansions, our analysis will be in 4 dimensions. How-
ever, at the end of this section we shall discuss the generalization of our analysis
to any dimension. We also clarify the relationship between our results and those

of ref.[20].

This section will be divided into five subsections. In subsection 2.1, we present
an action in four dimensions, which has manifest duality symmetry and is equiv-
alent to free Maxwell theory. The action reduces to Maxwell’s action when the
auxiliary fields are eliminated by their equations of motion. Although this ac-
tion is not manifestly Lorentz invariant, we shall show that the action is, in fact,
invariant under a set of transformations that reduce to the standard Lorentz trans-
formations when the auxiliary fields are eliminated by their equations of motion.
In subsection 2.2 we show how to couple this theory to gravity while preserving
manifest duality symmetry. This gives rise to a theory that is not manifestly in-
variant under general coordinate transformations, but is invariant under a set of

transformations that reduce to the usual general coordinate transformations when



the auxiliary fields are eliminated by their equations of motion. Furthermore, the
action reduces to the usual Maxwell action in curved space-time when the auxiliary
fields are eliminated by their equations of motion. In subsection 2.3 the construc-
tion is generalized to a field theory of p-form fields in 2p + 2 dimensions for any
integer p, and the relationship between our action and that of ref.[20] is discussed.
In subsection 2.4, the construction of subsection 2.1 is generalized to the field the-
ory of m-form fields in d dimensions for any m and d, and the action is written in
a form in which the original field, and the dual (d — m — 2)-form field appear on
an equivalent footing. Finally, in subsection 2.5 we show how to supersymmetrize
our version of Maxwell’s action (as described in subsection 2.1), while preserving

manifest duality symmetry.

2.1. DUALITY INVARIANT ACTION

The basic idea of our construction is to introduce independent gauge fields
for the electromagnetic field strength and its dual. The fact that the two field
strengths are the duals of one another is then arranged to be a consequence of the
equations of motion. Accordingly, the basic field variables of our action are a pair
of gauge fields AELO‘) (0<pu<3, 1<a<?2). We begin with flat space-time. The

appropriate action is then

S:—%/de@%w@m+ﬂWB@§, (2.1)
where
E =90 — gAY B = ik A% 1 <ij k<3 (22)
and

N 2.3
_'<—1 0)’ (23)

This action has the following gauge invariances

SAW = w(@  5A = gA@), (2.4)



Using the gauge transformation parameter ¥(®) we can set
Al — o (2.5)

Since A(()a) only appears as part of a total derivative in the action, no equations of

motion are lost. (This is to be contrasted with choosing Ag = 0 gauge in the usual

(2)

formulation of Maxwell theory.) The equation of motion of the field A;” now gives

ko, (BOF — By =0, (2.6)

(2)

1

Since this does not involve any time derivative of A;”', we can treat AZ@) as an
auxiliary field, and eliminate it from the action (2.1) by using eq.(2.6). Eq.(2.6)

gives

B@* = WV 1 g0 (2.7)

for some ¢. Using the freedom associated with the gauge transformation parameter

AWM we can set ¢ = 0, so that eq.(2.7) reduces to
Bk = gV, (2.8)

Substituting the value of B®* given in eq.(2.8) into the action (2.1), we get back
the usual Maxwell action for the field A/(})

1 . .
-3 / d*z(BW W — g M) (2.9)
in the gauge A(()l) = 0. The Gauss’s law constraint, 8iEZ.(1) = 0, is a consequence

of the Bianchi identity for B®* in eq. (2.8). Note that (2.1) is first order in time

derivatives, and therefore it is well-suited to a Hamiltonian analysis.



We now return to the original action S given in eq.(2.1) and study its symme-
tries. First of all we note that this action is manifestly invariant under the duality

symmetry

A = £o5AP) (2.10)

which implies the transformation

( B(UZ’) B
E, E,
when we use the equation of motion (2.8) of A§2). Note that in the usual formulation
of Maxwell’s theory, the duality transformation is a highly non-local transformation
on the vector potential. In contrast, here it is a local transformation on the fields
Al

The action given in eq.(2.1) is manifestly invariant under rotations, but not
manifestly invariant under Lorentz boosts. Nevertheless, it can be checked easily
that the action is invariant under the following transformation in the A(()a) =0

gauge:

51450) — xovkakAga) 4 U.fﬁaﬁeijkajA](f)u (212)

where ¢ is an arbitrary constant three-dimensional vector. Furthermore, if we use

the equations of motion (2.8), the above transformation reduces to

§AWY = 200k, AY 4 570y AN, (2.13)

(3 1

which is the usual Lorentz transformation law of the field Agl) in the A(()l) =0

gauge.

10



2.2. COUPLING TO GRAVITY

We shall now generalize the action (2.1) to curved space-time in such a way
that when the fields A,(f) are eliminated using their equations of motion, we recover

the Maxwell action for the field AE}) in curved space-time

1 1) (1
~2 /d4$\/—gg“ngUFﬁy)F,§U). (2.14)
In order to do this, we start with the most general form of the action that is first

order in time derivatives, invariant under the duality transformation (2.10), and

invariant under the gauge transformations (2.4). This is given by

1 ‘ : , , ,

Sg=—5 / dx [B@%WE@ +t;; BB 4 uijBW)maﬁB(ﬁ)J]. (2.15)
Here t;; and u;; are unknown coefficients that are determined by first eliminating
the fields AZ@) from the action (2.15) by using their equations of motion, and then
demanding that the resulting action is identical to the action (2.14). It turns out

that this procedure determines the coefficients ¢;; and u;; uniquely. The final action

obtained this way is given by

L T ) i p)ip) o kT p@is  pd)
Sy = 2/d 2| B@L,sE! T BB 4 M B L ( B |
2.16

Here, as in eq. (2.14), /=g = y/—det(g) and ¢g" is the inverse of g,,, the

ordinary four-dimensional metric. These conventions are retained even when space
and time components are enumerated separately. By rewriting this formula in
terms of F| i(ja) instead of B(®* general coordinate invariance in the spatial directions

becomes manifest.

The action S, is manifestly invariant under the duality transformation (2.10)

and the gauge transformations (2.4). Although S, is not manifestly invariant

11



under general coordinate transformations, it can be shown to be invariant under

the following transformation:

‘ N (o i 8™ ik ()
AL = A + @) AT+ €]~ L LapB P — e B L (27)

To see the connection between this transformation and the usual general coordinate

@ @ _

transformation, we eliminate A;” using its equation of motion. In the Ay

(2)

gauge, the A;” equation of motion is given by

N ) ) 0om
I )

Choosing the gauge transformation parameter A1) appropriately, this equation

can be integrated to the form

Oom
1) 9k;j 2)j kim Y 0l _
B\ +7__ggooB( 1 e " W=, (2.19)

(2)

If we now substitute the expression for A;” obtained from eq.(2.19) into the ex-

(1)

pression for §A;" given in eq.(2.17), we get

AN = 9,40 4 (9,67) AN 1 09,40, (2.20)

This is the standard general coordinate transformation law of a vector under an

(1)

infinitesimal coordinate transformation z# — x# + £ in the Ay’ = 0 gauge.

2.3. (GENERALIZATION TO p-FORM FIELDS IN 2p + 2 DIMENSIONS
(cx)
1

In 2p + 2 dimensions, we start with a pair of p-form gauge potentials A, ,,

12



(0<pur<2p+1,1<a<2), and define

B, =oAL, Fl)p@[iﬁﬁbﬁm

1 <vig,jr <2p+1 2.21

By _ L g 4@ <ig,jk < 2p+ (2.21)
p! I g2 gp 1’

L) — <(_01)p ;) , (2.22)

In terms of these quantities, the generalization of the action (2.1) is given by

and

S = _% /d2p+2$[3(a)ilmip‘ct(;ypﬁ)Ei(lﬁ)i + B(a)il..‘ipB(a)il..‘ip]. (2.23)
! cdp

This action is invariant under the gauge transformations

514(()?1)...1,,,1 - \I’Eﬁ?‘ip,p 5Az(f?‘ip = a[ilAz('QOf?‘ipP (2.24)
the duality transformation
ARy — £OAD . (2.25)
and the ‘Lorentz transformation’
SAL =PI 0AL) 4 (-1 ELl) B, (2.26)
Using the gauge transformation parameter ¥(®) we can set the gauge Aéi)...z'p,l =0.

(2)

If we now eliminate the fields Ail...z‘p using their equations of motion, we recover

the standard action for a (p 4+ 1)-form field strength in 2p + 2 dimensions

_m / PIRLE) e B e, (2.27)
where
FD s = 0 A (2.28)
Also, in this case the Lorentz transformation law of Az('ll.).‘ip takes the standard form
in the A(()Q..‘ip,l = 0 gauge.

13



For p even, the matrix [,((lpﬁ) can be diagonalized to the form Diag(1,—1). The
action (2.23) then describes the direct sum of two decoupled theories. One of them
is described by the action of a self-dual (p+ 1)-form field strength as written down
in ref.[20], the other is described by the action of an anti-self-dual (p+ 1)-form field
strength.

Coupling this theory to gravity involves a straightforward generalization of

eq.(2.16). The corresponding action is given by

1 2p+2 » ) p(B) Girjr - - Yinjy P P
Sg:_Tp!/dp x[B( a)ir.. Zﬁaﬁ ) WB( air..ip g(a)ji...j
1 . .. . g% o o
+ Hal...zpjl...]pk:ZWB(&)“...zpﬁgépﬁ)B(ﬂ)jl...]p '
(2.29)
This is invariant under the ‘general coordinate transformation’
DA, =g0,A Y+ (1) o)A
Ok (2.30)
0 Yirjr - - - Jinjp (p) vy 9 ()
+§ ( )p 1\/1_900 [’ocﬁ ()J ~J _g—a[kA“ ’LP]]

If we eliminate Agf.)”ip

from the action (2.29) by its equation of motion, we get
back the covariantized form of the action (2.27). Also, in this case the general

(1)

coordinate transformation law of the field A;

the A( )

0%1...%p

the sum of the action of a self-dual (p+ 1)-form field strength and an anti-self-dual

reduces to the standard form in

= 0 gauge. Finally, if we diagonalize the matrix £P) we get back

(p 4 1)-form field strength in curved space-time, as written down in ref.[20].

2.4. m-FORM FIELDS IN d DIMENSIONS

Let us consider next the free field theory of an m-form field A, ,,, in d

dimensions. The corresponding field strength is

Fup i = a[#lAHZ---HmH]’ 0<u<d-—1. (2.31)

14



The equations of motion and the Bianchi identities are
nﬂ1p18p1F,u1...,um+1 = 07 8#1.-.,Ltm+21/1---1/d7m728,u1Fluzm‘uqu = 0 (232>

We can dualize this theory by introducing a dual (d — 2 — m)-form potential,
By, .. v._.._,, and the corresponding field strength,

Gl/l...Vdfmfl = a[1/1 BVQ...Vd,”L,l]? (233)

such that

1

H1p1 Hm4-1PmA-1 e —

Ej‘ul.“um+1yl.nyd77n71Glll...l/d,m,1' (234)
It is easy to check that the equations of motion of F' correspond to Bianchi identities
of G and vice versa. Examples of such pairs of dual fields are a scalar and a two-form
field in four dimensions, a two-form field and a six-form field in ten dimensions,

etc.

Normally, the action of such a theory is written either in terms of the original
field A or the dual field B, but not both. We shall now write down a form of the

action in which A and B appear on an equal footing. Consider the action

1 o
So :ml(d — 1>' it imJ1e - Ja—m—1 FOil...’L.’mGjl...jdfmfl
1
EERTESR (2.35)
1
_'_ 2 . (d —m — 1)'Gil---idfmflGil---idfmfl7
1<i,j<d
The action (2.35) is invariant under the following gauge transformations:
6A0i1...im—1 :\Ilglll)“im717 6BOi1---'L'd—m—3 = \Il7§12.)..id7m73
5 A i, =0, AV SBis ia s = O ALY (2:30)
11 dm — Viq i9.im]’ i1..8g-m—2 — Y[iy G2 id—m—2]

15



2)

Using the gauge transformation parameters U, U(2) we can set the gauge

AOilmim—l = 0? BOiL..’L‘d,mfg - 0 (237)

Finally, with the help of the gauge transformation parameters A and A®), the
equations of motion derived from the action (2.35) can be shown to be precisely
those given in eq.(2.34). Also, if we eliminate either the A or the B fields from the
action (2.35) by their equations of motion, we get back the standard free action
for the other field.

In many cases, the free equations (2.34) get modified by the addition of a
Chern-Simons term to the field strength. The duality relations (2.34) then get
modified to

1

pfapPr | phmeipm (FplmpmH—I—Qpl...pmﬂ) = m

oG, |
(2.38)

where Q is an m + 1 form” We now ask the question: Is it possible to modify

the action (2.35) in such a way that the corresponding equations of motion are the

modified eqs.(2.38)7 The answer to this question is yes. We simply need to add

the term

1
S1 = )'Fil...im+1Qi1...im+1

(m+1
L1
m! (d—m —1)!

(2.39)
(iim i Ja—m—1 Qoiy i Gjl---jd—m—l

to the action Sp given in eq.(2.35).

* Note that although the addition of Q to F' seems to destroy the symmetry between F and
G, we could have added the dual of 2 to G with the same effect.

16



2.5. SUPERSYMMETRIZATION OF THE DUALITY-INVARIANT MAXWELL AcC-

TION

We shall now discuss how to supersymmetrize the duality-invariant Maxwell
action while preserving manifest duality invariance. Since we are using a formalism
that is not manifestly Lorentz invariant, we can use two-component spinors instead
of four-component spinors for describing the fermionic fields in this theory. We
know that the supersymmetry partner of a vector field in four dimensions should
be a Majorana spinor. Such a field can be represented by a pair of complex two-

component spinors (@ (1 < a < 2) satisfying the condition'
¢(a)* _ U2£aﬂw(ﬁ)- (2.40)

Here o; are the standard Pauli matrices. They act on the implicit spinor index of

(@) The full action is now given by

S = / d'z] - %(B(O‘)iﬁagEl-(ﬁ) + B@)iple)y

(2.41)
+ i@ gyap(@) — w(a)Tﬁaﬁakak¢(ﬂ)} .
This action is invariant under the following supersymmetry transformations:
1
(@ == (L350, BP*e — 5, Bk gye*
(G 2( aBOk k 2¢”) (2.42)

sAL =i o — i Log0i00¢,

where € is an arbitrary two-component complex spinor.

In order to see that the action (2.41) and the transformation laws (2.42) reduce

to the standard action and supersymmetry transformation laws in four dimensions

1 These are essentially the same thing as what is often described as two-component spinors
with dotted and undotted indices. The notation used here is much more natural in the
present context.

17



when we eliminate the auxiliary fields AZ@) by their equations of motion, we intro-

w(l)
W= (w (2)> (2.43)

n=i <02€*> (2.44)

and the four-dimensional matrices v* such that

0 0 —io;
v = - (2.45)
10; 0

In terms of these quantities, the fermion bilinear term in eq.(2.41) may be written

duce four-component spinors

as
—iapy - O (2.46)

Also, using eq.(2.8) the supersymmetry transformation laws given in eq.(2.42) may

be reWritten asS
(SA(l)— ek 1) ——1 FH 2.47
i iy, (0 1'7//%/ 7, (2.47)

which are the standard supersymmetry transformation laws in four dimensions.
Finally, from eqs.(2.40), (2.43) and (2.44) we see that ¢ and 7 satisfy the Majorana

condition

v =iy, 0t =iy (2.48)

Since the fermi terms in eq.(2.41) have been shown to agree with the standard

formula for the kinetic term of a spinor, they can be coupled to gravity, thereby

18



achieving general coordinate invariance and local Lorentz invariance, in the stan-

dard way, namely

/ d*z/—glieh @1 D,p(@) — el DL g0y D, P)]. (2.49)

where D, denotes the covariant derivative involving the spin connection. The

coupling to supergravity can then be worked out by standard methods.

3. Low-Energy Effective Action in String
Theory with Manifest SL(2,R) Symmetry

The low-energy effective action describing heterotic string theory compactified

on a six-dimensional torus at a generic point in the moduli space is given by [9] [18]

1 A
/ dirv=g|R [ 20" A A= Z2F, (LML)op P
(3.1)
1
+ A4 Ff, Loy Fo + 0" Tr(9,MLO, ML),

where AZ (1 < a < 28) are a set of 28 abelian gauge fields and

1

F, = 0,45 — 0,45, P = L(J/=g) 'S, (32)
A= A1+ (3.3)
is a complex scalar field,
0 Is O
L=11Ig O 0 , (3.4)
0 0 —I

and M is a 28x28 matrix-valued scalar field satisfying the constraints
MY =M, MTLM =L (3.5)
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The action (3.1) is manifestly invariant under an O(6,22) transformation
M —Q"MQ, A% — QLAY (3.6)
where () is a 28 x 28 matrix satisfying
Q'L =1L (3.7)

The equations of motion derived from the action (3.1) have a further SL(2,R)
symmetry [8] [12] [13] [14], given by

aX+b ~
i Ao(ML)p FY, + (At + d)FY,. ad—be=1.  (3.8)
The action (3.1), however, is not invariant under this SL(2,R) transformation.
More specifically, the terms involving the gauge fields are not invariant; the other

terms are invariant.

In subsection (3.1) we shall show that, using the formalism of the previous
section, we can write down a manifestly SL(2,R)x0(6,22) invariant action, which
is equivalent to the action (3.1). The price that we’ll have to pay is again manifest
general coordinate invariance of the action. We shall also see that SL(2,R) and
0(6,22) transformations appear in a symmetric manner in the resulting action. The
analysis of this subsection raises the question whether it is possible to write down
a third form of the action in which SL(2,R) and general coordinate invariance of
the action are manifest, but O(6,22) appears only as a symmetry of the equations
of motion. In subsection (3.2) we show that this is possible for a restricted class of
field configurations—the configurations for which all four-dimensional fields arising

out of dimensional reduction of ten dimensional U(1)!0 gauge fields are set to zero.
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3.1. MANIFESTLY SL(2,R)x0O(6,22) INVARIANT ACTION

We shall carry out the construction of a manifestly SL(2,R)x0(6,22) invariant
action in three steps. In the first step we shall show how to generalize the action
(2.1) to the case of multicomponent gauge fields. As we shall see, this will auto-
matically introduce the matrix M appearing in eq.(3.1) and satisfying (3.5) into
the action. In the second step, we shall show how to couple the action (2.1) to
the complex field A transforming as in eq.(3.8) in an SL(2,R) invariant manner.
Finally, in the third step, we shall combine steps 1 and 2, as well as the result
of the last section, to couple the gauge fields to the matrix-valued field M, the

complex field A, and the metric g, in an SL(2,R) invariant fashion.

Step 1. We consider generalization of the action (2.1) to multicomponent gauge
fields Agl’a). The general form of the action consistent with the requirement of du-
ality symmetry (2.10), gauge invariance (2.4), rotational invariance, and invariance
under the parity transformation Aga’a) (aY, %) — (—1)“A§a’a) (20, ), is given by

SP7Q = _% /d4I[B(a7a)i£aﬂQabEi(bﬁ) + B(a7a)iPabB(b’a)i], (39)

where () is a space-time independent matrix, P is a space-time dependent matrix

(in general), and

plaa)i _ Eijk@jAl(ca,Oé), E®® — gyAlee) _ 8iA(()a’O‘). (3.10)

7 7

Since only the symmetric parts of () and P contribute to the action, we can choose

these matrices to be symmetric without any loss of generality. Also, using the
(b,a)

)

freedom of a linear redefinition of the gauge fields, Al SuwA

; , where S is

a space-time independent matrix, we can ensure that the matrix () has eigenvalues

* We assume that the matrices P,  etc. are inert under these symmetries. Otherwise more
general possibilities may arise.

21



+1, so that Q% = I. If we now eliminate the fields Aga,z) from the action (3.9)

using their equations of motion, we get the action

—% / d*z[B@V p, B0V — Y (QP1Q),ENY). (3.11)

This action is manifestly Lorentz invariant provided
QP Q=P (3.12)

Comparing egs.(3.11), (3.12), with (3.1), (3.5) in the background g, = 1, A = 1,

we see that we need the identification
Q=1L, P=LML. (3.13)

The action (3.9) is not manifestly Lorentz invariant. But it is invariant under
hidden Lorentz transformations, which are direct generalizations of the Lorentz
transformation laws (2.12). Since these transformation laws can always be derived
from the general coordinate transformation laws of the final action that we shall
write down, we shall not write down the Lorentz transformation laws of the fields

Aga’a) explicitly here.

Step 2. We now go back to the action (2.1) and try to couple the complex field A to
this action in an SL(2,R) invariant fashion. In order to do this, we first introduce

a matrix

M= M) (3.14)
)\2 )\1 ‘)\|2

satisfying,

M =M, MLMT =L (3.15)
Under the SL(2,R) transformation (3.8) of the field A, the matrix M transforms
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in a simple manner,

M — W Muw, (3.16)

(-)
w= . (3.17)

An SL(2,R) invariant coupling of the action (2.1) to the field A may now be written

where

down as follows:

S, = _% /d‘*:):[B(O‘)iﬁagEi(ﬁ) + B(a)i(ﬁTMﬁ)aﬂB(ﬁ)i]‘ (3.18)

Using the relation

wlw! =L, (3.19)
one can easily see that the action (3.18) is invariant under the transformation (3.16)
on M, together with the transformation

ALY (wT) AP (3.20)

i
After eliminating the fields AZ@) using their equations of motion, we get the action

1 _
- / A eV FW FY — \MFS ED oo (3.21)

The gauge field dependent part of the action (3.1) in flat background, and for
M =1, L = I, is precisely 22 copies of this action. Also, the duality transformation
(3.20) takes precisely the form of eq.(3.8) with M = L = I after we eliminate AZ@)
from these transformation laws using their equations of motion. The gauge fields
A/(?) may be identified with the dual vector potentials introduced by Kallosh and
Ortin [23].

Again, the action (3.18) has a hidden Lorentz invariance. But we shall not

write down the Lorentz transformation laws of the gauge fields explicitly here.
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Step 3. We shall now combine egs.(2.16), (3.18) and (3.9) together, for the identi-
fication given in eq.(3.13), to obtain the manifestly SL(2,R) invariant coupling of

(a,)

the gauge fields A, to the fields M, A and g,,,. The resulting action is

L [ e[ plaai ®5) kg (a,a)i (b,8)]
S)\7M79 =—5/d SL’[B ’ EaﬂLabEZ’ +e€ WB ’ EaﬂLabB ’
? I (3.22)

9ij (a,a)i( pT (b,8)j

B LML LML),B )
—5g" ( )aﬁ( )a

If we eliminate the fields AEM) from this action using their equations of motion,

we get back the gauge field dependent part of the action (3.1)

1 . SN
- / Ao/ =g Fe ) (LML) POV — X Fla [, FODm] (3.23)

The action (3.22) is manifestly invariant under the O(6,22) transformation
given in eqgs.(3.7) and the SL(2,R) transformation given in eqgs.(3.16), (3.20). It
is not manifestly invariant under general coordinate transformations. However, it

can be checked that it is invariant under the transformation

540 =9;4(") 1 (044
(3.24)

0of 95 apy (ML), BO) 9" ijk gla,a)j
_g {\/__QQOO( )Ozﬂ( )ab + WE }7

which generalizes (2.17) and reduces to the usual general coordinate transformation
law of the field Aga’l) in the A(()a’l) = 0 gauge when the fields Aga,z) are eliminated

by their equations of motion.

In terms of the matrix M, the A field kinetic term appearing in eq.(3.1) can

also be written in a manifestly SL(2,R) invariant form:

1 -1
I 4 — MV
300a)2Y OpAIy A 19 tr(0,MLI,ML). (3.25)
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Thus the full action (3.1) may be replaced by

S = /d4:c [\/—g{R — ig”l’tr(ﬁu./\/lﬁay./\/lﬁ) + %g“”Tr(auML&,ML)}

1 ) 4,0k ) )
B 5 {B(a,a)ZEOéﬁLabEi(b,ﬂ) + EZ]k ZWB(a,a)ZEOéﬁLabB(b,B)] (326)

9ij (a,@)if pT b,8)5

- B\@Y L ML) qg(LML) o B\
NS S

In the above equation T'r denotes trace over the indices a, b and ¢r denotes trace

over the indices «, 3. Note that the matrices M, L and M, L appear quite sym-

metrically in the expression for S.

In three dimensions both SL(2,R) and O(6,22) become part of a larger symme-
try group O(8,24) [24]. This provides further evidence that SL(2,R) and O(6,22)
should play identical roles in the full string theory.

3.2. ActioN WiTH MANIFEST SL(2,R) AND GENERAL COORDINATE IN-

VARIANCE

We have seen that starting with the action (3.26) and eliminating the auxiliary
fields AEM) by their equations of motion gave the manifestly O(6,22) and general
coordinate invariant action (3.1). Note, however, that in the action (3.26) the
various fields A,(f’a) appear symmetrically, and hence it is a matter of choice which
subset of these fields we treat as auxiliary fields. If we choose the subset of auxiliary
fields to be invariant under O(6,22) transformations, then we would expect the
final action to be manifestly invariant under O(6,22) transformations, as was the
case in going from the action (3.26) to (3.1). But the same argument shows that
if we choose the set of auxiliary fields in such a way that the set is invariant
under SL(2,R) transformations, then the resulting action should be manifestly
SL(2,R) invariant, but not manifestly O(6,22) invariant. This naturally gives rise
to the question as to whether it is possible to get a manifestly SL(2,R) and general

coordinate invariant action following this procedure.
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We shall now show that it is possible to obtain such an action provided we
set all the fields arising from the dimensional reduction of ten-dimensional gauge
fields to zero. In terms of the fields appearing in eq.(3.1) this means that we now

take the gauge fields to have 12 components instead of 28 components, L to be the

N 3.97
\s o)’ (3.27)

and M to be a 12x12 matrix-valued field satisfying the same constraints (3.5) with

12x12 matrix

respect to the new L. Such a matrix M can be parametrized as

Gt G1B
M — " R (3.28)
—BG™! G-BG'B

where G and B are 6x6 symmetric and antisymmetric matrices, respectively, which
can be identified with the internal components of the ten-dimensional metric and
antisymmetric tensor fields, respectively. The O(6,6)xSL(2,R) invariant form of
the action is given by eq.(3.26) with the indices a, b running from 1 to 12.

We now start from eq.(3.26) and eliminate the fields A£m+6’a) (1 <m <6,

1 < o <2) by their equations of motion.” With appropriate choice of gauge, these

equations can be brought to the form:

)

6,0)j 00/ T (n8) , kg '
i BMH60T = /g 0G (ML )aﬁ{E P e @B("’ﬁ)j} (3.29)

— i B B,

Here 4, j, k are spatial indices, and m,n are indices denoting the six internal direc-

tions. If we now substitute this back into the action (3.26), we get an action of the

* Note that this is an SL(2,R) invariant set.

26



form:

/d4x\/—g [R — ig”l’tr(au./\/lﬁﬁy./\/lﬁ) + ég“"Tr(&uML&,ML)

1 A 1 A -
— _F ) G (LT ML) oo F ge g — ZF;SWanﬁagF,Sﬁ%”pg” .

4
(3.30)
This action is manifestly SL(2,R) and Lorentz invariant, but not manifestly O(6,6)
invariant. However, since the equations of motion derived from this action are iden-
tical to those derived from the action (3.26), we can conclude that these equations

of motion are also O(6,6) invariant.

4. Manifestly SL(2,R) Invariant Effective Action from
Dimensional Reduction of N =1 D = 10 Supergravity Theory

In the previous section we have given a formulation of the low-energy effective
action in heterotic string theory that is manifestly SL(2,R) and O(6,22) invariant,
but not manifestly general coordinate invariant. We have also shown that in the
special case where all the components of the ten-dimensional gauge fields are set
to zero, we can get a manifestly SL(2,R) and general coordinate invariant action
by sacrificing O(6,22) invariance. This analysis puts the O(6,22) and SL(2,R) sym-
metry on an equal footing from the point of view of the four-dimensional effective
field theory. However, it is the manifestly O(6,22) and general coordinate invari-
ant form of the action that arises naturally in the dimensional reduction of the
N = 1 supergravity theory in ten dimensions. From this point of view, the O(6,22)
symmetry of the action might appear to be more fundamental than the SL(2,R)
symmetry. In this section we shall get rid of this asymmetry by showing that
it is the SL(2,R) invariant action (3.30) that arises naturally in the dimensional
reduction of another ten-dimensional theory—the dual formulation of the N =1

D = 10 supergravity theory [25].

Before we can write down the field content and action of this ten-dimensional
theory, we must describe our notation. We shall denote ten-dimensional coordi-

nates by zM (0 < M < 9), whereas y™ (4 < m < 9) and 2# (0 < p < 3) will
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denote the internal and space-time coordinates, respectively. The superscript (10)

will denote fields that appear naturally in the ten-dimensional theory; the fields
which are more natural from the point of view of four-dimensional theory will not
carry this superscript. The subscript g will denote the metric which couples natu-
rally to the string (the one that appears in the world-sheet action). Finally, since
the fields appearing in the dual formulation of the N = 1 D = 10 supergravity
theory couple naturally to the five-brane [3] [4], it is also convenient to introduce
a new metric that couples naturally to the five-brane; we shall denote this one by

the subscript f.

In the absence of ten-dimensional gauge fields, the only bosonic fields in the
dual formulation of the N = 1 supergravity theory in 10 dimensions are the metric
G%]?}N, the dilaton ®(10) and the 6-form field AE&,?) - The bosonic part of the
action may be written as [5]

S = /dlozv — det Ggo)eq)(w)/:g(ﬁ’go)

(4.1)
1 o 10) M+ N7 ,-(10 10
— 5O G RGO ).
where

The string metric ng?/[)  is related to the five-brane metric metric Ggg} n through
the relation [5]
10 —@10 10
GO0 = e B0 (4.3)
In terms of the metric Gg]\%\,, the first term in the action (4.1) may be written

as [5]

S = / dloz\/ — det Ggo)eq)(w)/?’li’go)
— / 024/~ det GYVe ™ (RYY + 6§ M N gy 0010 95 0 (10)),

Dimensional reduction of this term to four dimensions was already carried out in

(4.4)
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ref.[9], so we just state the results here. We define [9] [13]

o =G0, O = GG, G =G G, GG

1 (4.5)
o =010 5 Indet G, A= gu=eC5u.

In the above equations G™ denotes the matrix inverse of @mn. If we take the
various fields to be independent of the internal coordinates, and normalize [ dSy

to 1, we get the following form of the dimensionally reduced action:

/ d*z/—=g|R — ——59" 0 X002 + — ! 9" Tr(0,Go,G7Y)

1 ( 2) D¢ (4.6)
- Z)\zémng”png;Ey )me(g)n]’
where
™ = a,0m — a0 (4.7)

We now need to carry out the dimensional reduction of the second term in the
action (4.1). This has been carried out in detail in the appendix; here we only
quote the result. The final result agrees with the action (3.30), provided we make

the identifications

_ L nyme 4(10)
)\1 = &6 Aml...mg

m 1
A,EL %) = _Emmzl"mG(Agg)g...mg CnAgzm)g mg)

and By,,m, to the duals of the antisymmetric tensor fields

B(m1m2) _ ieml...mgA(lo)

vp Al Vpms...me

(4.9)
1 1
— (MO Oy 4+ 5D Oy = 5D O = (my = my).

This analysis shows that the SL(2,R) invariance appears naturally in the di-
mensional reduction of the dual form of the N = 1 supergravity theory in ten di-

mensions. Since the fields appearing in this form of the supergravity theory couple
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naturally to the five-brane, this prompts us to speculate that the SL(2,R) trans-
formation plays the same role in the theory of five-branes as the O(6,22) transfor-
mation in the theory of strings. The conjecture that the discrete SL(2,Z) subgroup
of SL(2,R) is an exact symmetry of string theory [15] [13] [18] [14] [19] suggests
that it is an exact symmetry of the five-brane spectrum and interactions, with the
Kaluza-Klein modes and the five-brane winding modes getting interchanged under
the duality transformation. In order to test this conjecture, however, it would be

helpful to know the full spectrum of the five-brane theory.

The similarity between the usual R — 1/R duality transformation and the
coupling constant duality transformation may be made more explicit by expressing

the complex field A in terms of the variables of the dual theory. If we define

Gan = Gggl)n, (410)
then from eqs.(4.3), (4.5) we get
det G = e 22" det G = 722, (4.11)

This gives

Ay = \/det Gp. (4.12)

Combining with the first of eqs.(4.8) this gives

A=A +idg = AU i/ det G (4.13)

This expression is remarkably similar to the expression for the complex field that
transforms in a similar fashion under the usual target space SL(2,Z) duality for

heterotic string compactified on a two torus:

7 = B +iVdet G. (4.14)

Our proposal fits in naturally with the observation [6] that the roles of the

o-model loop expansion parameter and the string loop expansion parameter get
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interchanged in going from the string description of the theory to the five-brane
description. Another related observation was made in ref.[26], where it was found
that the magnetic monopole solutions in four-dimensional heterotic string theory,
which are crucial for the SL(2,Z) invariance of the spectrum, may be constructed by
wrapping the five-brane soliton solutions in this theory around the six-dimensional

torus.

5. Summary and Discussion

In this paper we have shown that the low-energy effective action of toroidally
compactified heterotic string theory can be written in a form that exhibits man-
ifest 0(6,22)xSL(2,R) symmetry. The resulting action is not manifestly general
coordinate invariant, but does possess a symmetry that reduces to the standard
general coordinate transformation laws when the auxiliary fields are eliminated by
their equations of motion. We have also been able to get a manifestly SL(2,R) and
general coordinate invariant effective action for a restricted class of field configu-
rations in which all four-dimensional fields arising from the dimensional reduction
of the U(1)!6 gauge fields in ten dimensions are set to zero. This SL(2,R) and
general coordinate invariant form of the action was shown to originate from the
dimensional reduction of the dual formulation of the N = 1 supergravity theory in

ten dimensions without the gauge fields.

The analysis of this paper shows that the O(6,22) and SL(2,R) symmetries
appear on an equal footing from the point of view of four-dimensional effective field
theory. Since the discrete subgroup 0(6,22;Z) is known to be an exact symmetry
of (perturbative) string theory, this increases our confidence in the conjecture that
the discrete SL(2,Z) subgroup of SL(2,R) might also be an exact symmetry of the
theory. However, since SL(2,R) arises naturally in the dual formulation of the ten-
dimensional supergravity theory, to have the SL(2,Z) symmetry manifest, we may

need to go to a dual formulation of the theory—perhaps the theory of five-branes.
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One of the unsatisfactory features of our analysis has been that we had to ignore
the U(1)1% gauge fields in ten dimensions to see an SL(2,R) invariant action come
out of dimensional reduction of a ten-dimensional theory. However, since from the
four-dimensional point of view we know that a manifestly SL(2,R) invariant action
of the theory exists, one would suspect that there should be some formulation of
the N = 1 supergravity theory in ten dimensions coupled to abelian gauge fields,
which, upon dimensional reduction, gives rise to a manifestly SL(2,R) invariant
action. Such an action would probably provide a good starting point for the search
for an alternative formulation of the theory in which the SL(2,Z) symmetry of the

spectrum is manifest.

The analysis of sect.(2.4) already provides a clue as to what this new formu-
lation of the ten-dimensional supergravity theory might be. From the analysis
of sect.3, we have seen that the action with manifest SL(2,R) symmetry requires
doubling of at least those gauge field components that arise from the U(1)1% gauge
fields in ten dimensions. (For the gauge fields that arise from the ten-dimensional
metric and the antisymmetric tensor fields, we can avoid the doubling, and at the
same time, maintain manifest SL(2,R) invariance, by following the same procedure
that took us from eq.(3.26) to eq.(3.30).) This would mean that we must have dou-
bling of gauge fields in ten dimensions also. This, in turn, can be implemented by
following the procedure given in sect.(2.4). Besides the 16 U(1) gauge fields Af,,
we shall now also have 16 7-form fields fl{\/h M, Upon dimensional reduction,
the fields Af, gives rise to scalars Al and vectors Aﬁ. The fields A give rise to
vectors fl{”ﬁu, which provides the necessary doubling of the 16 U(1) gauge fields in
four dimensions. It also gives rise to antisymmetric tensor fields Ay, . s, Which
are dual to the scalar fields Al in the sense of sect.2.4. Thus the scalar fields
Aﬁq (which form part of the matrix M) now appear in the formalism of sect.2.4.
Although this destroys manifest O(6,22) symmetry, it does not destroy manifest
SL(2,R) symmetry, since the fields A/, (and hence also their duals) are SL(2,R)
neutral. Finally, there are also p-form fields with p > 3 which appear from the

dimensional reduction of the fields A, but in four dimensions these fields have no
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dynamics.

The question that one needs to address is whether there is a formulation of
N = 1 supergravity theory coupled to abelian gauge fields that naturally incorpo-
rates the action (2.35) for gauge fields in ten dimensions. The analysis of sect.2.5
provides a first step towards this formulation. If there is such a formalism, then
the next question to ask would be if this formulation of the supergravity theory
arises naturally from some other fundamental theory, possibly the five-brane, or

some generalization.

Our discussion has focussed on generic points in moduli space, where all the
gauge symmetries of the low-energy effective action are abelian. It would be nice
to extend our analysis to deal with non-abelian gauge groups. This is a challenging
problem, whose solution should be very enlightening. Finally, let us remark that
the tools that we have introduced can be used to construct several theories that
have been sought unsuccessfully in the past. One example is a reformulation of
N=8 D=4 supergravity with the noncompact E77 global symmetry realized as a
symmetry of the action. In the usual formulation this symmetry rotates abelian
gauge field strengths into their duals, just as in the case of SL(2,R) symmetry that
we have presented. Another example is the construction of an action for type IIB
supergravity in ten dimensions. Here the problem is the presence of a four-form
potential with a self-dual five-form field strength. As we have seen, this can also

be described by an action that sacrifices manifest covariance.

Acknowledgements: We would like to thank M. Duff, J. Harvey, C. Hull, A. Stro-

minger and P. Townsend for useful discussions.
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APPENDIX

In this appendix we shall discuss the dimensional reduction of the second term
in the action (4.1). We define the following four-dimensional fields in terms of the

components of the six-form potential A0 in ten dimensions:

)\1 = (:jll e mﬁAni?) me
Dyt = 2™ (AL m — O AN )
L (A1)
(OO 4+ 5D — SDRRCD) — (my < )]
ey = Lm0,

In terms of these fields, we define four-dimensional field strengths as follows:

E™ = 0,00 — 0,07 (A.2)

mimse mM11M2 1 mao (D)ml ma2 (C)ml
Kuup _[auBup o 5{(011 Fw + Dp Fup ™) = (my < mQ)H (A.3)

+ cyclic permutations of p, v, p

and

Kivpo " =[0uChpy ™ + (= DT . cyclic permutations of y, v, p, o]

(C’m3KZZ}pm2 + cyclic permutations of mj, mg, ms)

_|_

DT . cyclic permutations of p, v, p, o

{Cmacmz( ,Ey)ml-l—)\ F/Ey)”h)

) - inequivalent permutations of pu, v, p, o]

-1

(=

-1

+ (=1)7 - all permutations of my, mg, ms3}

+ (=

— (GO O + (— DT . all permutations of my, ma, ms)
(=

) - cyclic permutations of p, v, p, o).

+

(A.4)

In terms of these field strengths, the second term of the action (4.1) may be written
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as

. 10) (10 1 10) M1 N, 10) M+ N7 (10 10
52:/\/—detG% B (G LGN R K
== [Valay
D)

1 A 1 1
n @Gmlngﬂﬂgwwﬁy)m + MES™ (DM 4y FOM2)

29” 8 )\18 )\1

1 A A
J5R% H3V3 7MiM nin2
2 2' G sznzg i . g KplllugngI/llljzllg
AQ . .
1% V. m m n n
- 2.31.4!Gml”1”'Gma%gu1 e g R |

(A.5)

We would like to compare the sum of the actions given in eqs.(4.6) and (A.5)
with the action given in eq.(3.30). In order to do this, we need to dualize the three-

and four-form field strengths K™ and Kti®. We start with the four-form

field strength. The equation of ris;f;n of the ﬁeld Coomal™ is given by
Oy, [Ag\/_Gmlm o Grans g™ LG = 0. (A.6)
Since K- Is antisymmetric in g, ... g4, we may write
Mo/ =9Cmins - - Gmans g™t . LGP = € Hy gy (A.7)
for some Hy pyns- Eq.(A.6) then gives,
Oy Hp nons =0, (A.8)

showing that Hy,p,n, is a constant. Comparison with the original formulation
of the theory shows that H,,, denotes the components of the three-form field
strength in the internal directions, and hence are quantized [27]. Furthermore, in

the original formulation of the theory these constants were set to zero; hence if we
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want to describe the same field configurations, we must set these constants to zero

in this theory as well. This gives

K = 0. (A.9)

Let us now turn to the B}}"* equations of motion. This is given by

O, (v _gémﬂn émznzgmul - -gmuakmiglis) = 0. (A.10)
This gives
Y% _gémnu sznzgmyl .- .gHBVBf(ZZLTﬁg = EUIVQUBUaaang (A-ll)

for some By,,,. The Bianchi identity for the field strength Kﬁlpmz

7 , R = e (RO ED™ - O ED™ (A1)

as derived from eq.(A.3), gives rise to the following equation of motion for the field

A

Bm1m2

A A - 1
0y (vV—gg"PG™MM G20, B, ) = EE“VPU(F,EE)W Fp(f)mz _ Fp(g)szp(Lg)ml)-
(A.13)
It can be checked easily that the contributions to all the equations of motion and

Bianchi identities derived from the term involving f(ﬂ}lﬁgﬁ in the action (A.5) are

* Although we are carrying out this dualization in order to compare the dimensionally reduced
action to the action (3.30), SL(2,R) invariance of the dimensionally reduced action can be
seen without this dualization, in the same way that in the usual scheme O(6,22) symmetry
of the action can be seen without dualizing the B,,, field.
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identical to the ones derived from the action

14 N A .
- / d4x /—_g [ZGmlm Gm2n2gm/8uBm1mg aUBnlnz
(A.14)

+ = By F\S ™ BRI ge g

N | —

Combining eqgs.(4.6), (A.5), (A.9) and (A.14) we get the final form of the action:

1 _
e 4 - — ———g"
5 /d w9 a2 A
1 A A Ly : ; :
+ Zguyaqunaqun o igumelmQGnﬂmﬁﬂBmlnl 81/Bm2n2
1 4
= g Gmmag 9" (AP EL™ E™

+ oM B piPme . p(D)ms p(D)may
]- - C 1 ~(D o
- _Bmlsz;SJ/ )m Fp(a )m2gupg1/ :
(A.15)
This action is identical to to the one given in eq.(3.30), provided that we identify the

vector fields ALm’l), Al(jm’z) appearing in eq.(3.30) with C}/* and D", respectively.
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