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ABSTRACT

It is frequently useful to construct dual descriptions of theories containing

antisymmetric tensor fields by introducing a new potential whose curl gives the

dual field strength, thereby interchanging field equations with Bianchi identities.

We describe a general procedure for constructing actions containing both potentials

at the same time, such that the dual relationship of the field strengths arises

as an equation of motion. The price for doing this is the sacrifice of manifest

Lorentz invariance or general coordinate invariance, though both symmetries can

be realized nonetheless. There are various examples of global symmetries that

have been realized as symmetries of field equations but not actions. These can

be elevated to symmetries of the action by our method. The main example that

we focus on is the low-energy effective action description of the heterotic string

theory compactified on a six-torus to four dimensions. We show that the SL(2,R)

symmetry, whose SL(2,Z) subgroup has been conjectured to be an exact symmetry

of the full string theory, can be realized on the action in a way that brings out a

remarkable similarity to the target space duality symmetry O(6,22). Our analysis

indicates that SL(2,Z) symmetry may arise naturally in a dual formulation of the

theory.
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1. Introduction

Montonen and Olive [1] conjectured in 1977 that some theories with a sponta-

neously broken gauge symmetry possess a duality symmetry that interchanges elec-

trically charged elementary particles with magnetically charged t’ Hooft–Polyakov

monopoles. Such a symmetry would relate strong coupling to weak coupling, since

it sends the coupling constant to its inverse. Later analysis showed that among four-

dimensional field theories the best candidate for realizing the Montonen–Olive dual-

ity conjecture is the globally supersymmetric N = 4 Yang–Mills–Higgs system [2].

A similar duality conjecture for ten dimensions that would relate strong coupling

in string theory to weak coupling in five-brane theory was made in refs.[3 − 6] .

Apparently unrelated work, at about the same time as the Montonen–Olive

conjecture, showed that many extended supergravity theories in four dimensions

have global non-compact symmetries [7] [8]. Some of these symmetries were real-

ized as symmetries of the action, whereas others were only demonstrated to be

symmetries of the equations of motion. In particular, many of these theories con-

tain an SU(1,1) symmetry (or, equivalently, an SL(2,R) symmetry), which is a

symmetry of the equations of motion only.

Ref.[9] investigated dimensional reduction of the bosonic sector of N = 1 super-

gravity theory in ten dimensions, coupled to a set of abelian gauge field supermul-

tiplets, to four dimensions. The resulting action describes the bosonic part of the

low-energy effective field theory for the heterotic string theory compactified on a

six-dimensional torus at a generic point in the moduli space, where all non-abelian

symmetries are broken. The action of this theory has a manifest global O(6,22)

symmetry. A discrete O(6,22;Z) subgroup of this, which is a symmetry of the

Narain lattice [10] [11], can be shown to be an exact symmetry of the compactified

string theory at each order of the string loop perturbation expansion.

This dimensionally reduced theory also turns out to have a hidden SL(2,R)

symmetry,[12 − 14] which is only a symmetry of the equations of motion and not

of the action. Part of this symmetry is broken by the instanton corrections in string
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theory. It was conjectured in refs.[13][14] that the remaining subgroup, which turns

out to be the discrete group SL(2,Z), may be an exact symmetry of the heterotic

string theory compactified on a six-dimensional torus. (This suggestion was origi-

nally made in the context of a generic four-dimensional string theory by Ibáñez et.

al.[15] based on the analysis of the scalar sector of these theories.) It was argued

in ref.[13] that since the elementary strings can be regarded as soliton solutions in

this effective field theory [16] [17], SL(2,Z) invariance of the effective field theory

may be all that is required to establish SL(2,Z) invariance of the full string theory.

Further support for SL(2,Z) symmetry in toroidally compactified heterotic string

theory was provided by noting that the spectrum of electric and magnetic charges,

and also the known part of the mass spectrum of the supersymmetric states in this

theory, are all consistent with the proposed SL(2,Z) symmetry [18] [19].

Although SL(2,R)×O(6,22) appears as a symmetry of the classical equations of

motion of the low-energy effective action, the two factors seem to be on a somewhat

different footing: O(6,22) is a symmetry of the effective action, whereas SL(2,R) is

only a symmetry of the equations of motion. Also, the discrete subgroup O(6,22;Z)

is a symmetry of the string spectrum at the string tree level, but the discrete sub-

group SL(2,Z) is certainly not a symmetry of tree level string theory (though it

could be a symmetry of the full non-perturbative string theory), since it inter-

changes string states with ’t Hooft–Polyakov-type monopole solutions.

One of the main purposes of this paper is to reformulate the theory in such a

way that, at least in the context of low-energy effective field theory, the O(6,22)

and SL(2,R) symmetries appear on a more or less equal footing. In particular,

we shall rewrite the dimensionally reduced action in such a way that both the

O(6,22) and the SL(2,R) transformations appear as symmetries of the action, and

not just of the equations of motion. The price that must be paid for this is manifest

general coordinate invariance of the action, though the action does have general

coordinate invariance. The way this works is that the action is invariant under a

symmetry that reduces to the usual general coordinate transformations when cer-

tain auxiliary fields are eliminated by their equations of motion. Actually, spatial
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reparametrization invariance remains manifest.

We start in sect.2 with a very simple system that illustrates the key new fea-

ture of our construction, namely, free Maxwell theory. In the usual formulation,

the equations of motion of Maxwell theory (without sources) are symmetric under

the duality transformation ~E → ~B, ~B → −~E, but the action is not. We show

that by introducing appropriate auxiliary fields it is possible to make this duality a

manifest symmetry of the action. Although this process sacrifices manifest Lorentz

invariance, the action is invariant under a certain set of transformations that re-

duce to the usual Lorentz transformations when the auxiliary fields are eliminated

by their equations of motion. We show how to couple this theory to gravity and

to make it supersymmetric while maintaining manifest duality symmetry. Gener-

alizations to higher dimensions and other systems are discussed briefly.

In sect.3 the formalism developed in sect.2 is used to write down an action that

is equivalent to the action of the dimensionally reduced D = 10 N = 1 supergravity

theory, but which has manifest O(6,22) and SL(2,R) invariance. In this form of

the action, the fields that transform under SL(2,R) and O(6,22) are treated quite

symmetrically. In this sense, SL(2,R) and O(6,22) appear to be on equal footing.

This action is not manifestly general coordinate invariant, but (as above) it does

have general coordinate invariance nevertheless.

When the auxiliary fields of the SL(2,R)×O(6,22) invariant action are elimi-

nated by their equations of motion, the original action of ref.[9] is recovered. In

the special case where the various four-dimensional fields that originate as compo-

nents of U(1)16 gauge fields in ten dimensions are set to zero, there is no preferred

choice as to which fields should be regarded as auxiliary. In particular, choosing a

different set of fields in the manifestly SL(2,R)×O(6,22) invariant formulation to

be the auxiliary fields, and eliminating them by their equations of motion, gives

rise to a manifestly SL(2,R) and general coordinate invariant formulation of the

theory (at the sacrifice of manifest O(6,22) symmetry).

Although this analysis puts SL(2,R) and O(6,22) symmetry on a very symmet-
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ric footing from the point of view of the four-dimensional effective field theory, the

O(6,22) invariant formulation of the theory could be regarded as more fundamen-

tal, since it is the formulation that appears naturally in the dimensional reduction

of the N = 1 supergravity theory from ten to four dimensions. However, in sect.4

we remove this asymmetry by showing that it is the SL(2,R) and general coordinate

invariant (but not manifestly O(6,22) invariant) formulation that arises naturally

in the dimensional reduction of the dual formulation of the N = 1 supergravity

theory in ten dimensions based on a six-form potential with a seven-form field

strength. Since the fields in this dual formulation couple more naturally to the

five-brane [4], we speculate that the SL(2,Z) symmetry may have a more natural

realization in the theory of five-branes. In particular, we show that when expressed

in terms of the natural variables of the five-brane theory, the complex field that

transforms under the SL(2,Z) symmetry takes a form very similar to the fields that

transformed under the target space duality symmetry, expressed in terms of the

natural variables of the string theory.

Sect. 5 gives a summary of our results and some comments. In particular,

we comment on a possible reformulation of the N = 1 supergravity action in ten

dimensions, which, upon dimensional reduction, would give the manifestly SL(2,R)

invariant form of the effective action even when the U(1)16 gauge fields in ten

dimensions are included in the theory.

The appendix contains part of the analysis involved in the dimensional reduc-

tion of the dual formulation of D = 10 N = 1 supergravity theory.
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2. Duality Invariant Einstein–Maxwell Action

In this section we discuss the construction of an action that is equivalent to the

usual Einstein–Maxwell action, but is manifestly invariant under a duality symme-

try that reduces to the usual ~E → ~B, ~B → −~E symmetry when the auxiliary fields

of the theory are eliminated by their equations of motion. The method that we use

is very similar to one introduced by Henneaux and Teitelboim to solve the problem

of constructing an action for the self-dual (2q + 1)-form field strength in 4q + 2

dimensions [20]. In the special case of two dimensions, it was discovered indepen-

dently by Floreanini and Jackiw [21] and used by Tseytlin for the construction of

a manifestly duality invariant scalar field theory in two dimensions [22]. In each of

these papers, the key ingredient was to give up manifest Lorentz invariance of the

action. This will also be the key ingredient in our construction. One of the main

differences between the analysis of the papers mentioned above and our analysis is

the dimensionality of space-time; whereas the analysis of the previous papers are

applicable in 2, 6, 10, . . . dimansions, our analysis will be in 4 dimensions. How-

ever, at the end of this section we shall discuss the generalization of our analysis

to any dimension. We also clarify the relationship between our results and those

of ref.[20].

This section will be divided into five subsections. In subsection 2.1, we present

an action in four dimensions, which has manifest duality symmetry and is equiv-

alent to free Maxwell theory. The action reduces to Maxwell’s action when the

auxiliary fields are eliminated by their equations of motion. Although this ac-

tion is not manifestly Lorentz invariant, we shall show that the action is, in fact,

invariant under a set of transformations that reduce to the standard Lorentz trans-

formations when the auxiliary fields are eliminated by their equations of motion.

In subsection 2.2 we show how to couple this theory to gravity while preserving

manifest duality symmetry. This gives rise to a theory that is not manifestly in-

variant under general coordinate transformations, but is invariant under a set of

transformations that reduce to the usual general coordinate transformations when
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the auxiliary fields are eliminated by their equations of motion. Furthermore, the

action reduces to the usual Maxwell action in curved space-time when the auxiliary

fields are eliminated by their equations of motion. In subsection 2.3 the construc-

tion is generalized to a field theory of p-form fields in 2p + 2 dimensions for any

integer p, and the relationship between our action and that of ref.[20] is discussed.

In subsection 2.4, the construction of subsection 2.1 is generalized to the field the-

ory of m-form fields in d dimensions for any m and d, and the action is written in

a form in which the original field, and the dual (d −m − 2)-form field appear on

an equivalent footing. Finally, in subsection 2.5 we show how to supersymmetrize

our version of Maxwell’s action (as described in subsection 2.1), while preserving

manifest duality symmetry.

2.1. Duality Invariant Action

The basic idea of our construction is to introduce independent gauge fields

for the electromagnetic field strength and its dual. The fact that the two field

strengths are the duals of one another is then arranged to be a consequence of the

equations of motion. Accordingly, the basic field variables of our action are a pair

of gauge fields A
(α)
µ (0 ≤ µ ≤ 3, 1 ≤ α ≤ 2). We begin with flat space-time. The

appropriate action is then

S = −1

2

∫

d4x
(

B(α)iLαβE
(β)
i +B(α)iB(α)i

)

, (2.1)

where

E
(α)
i = ∂0A

(α)
i − ∂iA

(α)
0 , B(α)i = ǫijk∂jA

(α)
k 1 ≤ i, j, k ≤ 3 (2.2)

and

L =

(

0 1

−1 0

)

. (2.3)

This action has the following gauge invariances

δA
(α)
0 = Ψ(α), δA

(α)
i = ∂iΛ

(α). (2.4)
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Using the gauge transformation parameter Ψ(α), we can set

A
(α)
0 = 0. (2.5)

Since A
(α)
0 only appears as part of a total derivative in the action, no equations of

motion are lost. (This is to be contrasted with choosing A0 = 0 gauge in the usual

formulation of Maxwell theory.) The equation of motion of the field A
(2)
i now gives

ǫijk∂j(B
(2)k − E

(1)
k ) = 0. (2.6)

Since this does not involve any time derivative of A
(2)
i , we can treat A

(2)
i as an

auxiliary field, and eliminate it from the action (2.1) by using eq.(2.6). Eq.(2.6)

gives

B(2)k = E
(1)
k + ∂kφ (2.7)

for some φ. Using the freedom associated with the gauge transformation parameter

Λ(1), we can set φ = 0, so that eq.(2.7) reduces to

B(2)k = E
(1)
k . (2.8)

Substituting the value of B(2)k given in eq.(2.8) into the action (2.1), we get back

the usual Maxwell action for the field A
(1)
µ

−1

2

∫

d4x(B(1)iB(1)i − E
(1)
i E

(1)
i ) (2.9)

in the gauge A
(1)
0 = 0. The Gauss’s law constraint, ∂iE

(1)
i = 0, is a consequence

of the Bianchi identity for B(2)k in eq. (2.8). Note that (2.1) is first order in time

derivatives, and therefore it is well-suited to a Hamiltonian analysis.
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We now return to the original action S given in eq.(2.1) and study its symme-

tries. First of all we note that this action is manifestly invariant under the duality

symmetry

A
(α)
µ → LαβA

(β)
µ , (2.10)

which implies the transformation

(

B(1)i

E
(1)
i

)

→ L
(

B(1)i

E
(1)
i

)

(2.11)

when we use the equation of motion (2.8) ofA
(2)
i . Note that in the usual formulation

of Maxwell’s theory, the duality transformation is a highly non-local transformation

on the vector potential. In contrast, here it is a local transformation on the fields

A
(α)
µ .

The action given in eq.(2.1) is manifestly invariant under rotations, but not

manifestly invariant under Lorentz boosts. Nevertheless, it can be checked easily

that the action is invariant under the following transformation in the A
(α)
0 = 0

gauge:

δA
(α)
i = x0vk∂kA

(α)
i + ~v.~xLαβǫ

ijk∂jA
(β)
k , (2.12)

where ~v is an arbitrary constant three-dimensional vector. Furthermore, if we use

the equations of motion (2.8), the above transformation reduces to

δA
(1)
i = x0vk∂kA

(1)
i + ~v.~x∂0A

(1)
i , (2.13)

which is the usual Lorentz transformation law of the field A
(1)
i in the A

(1)
0 = 0

gauge.
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2.2. Coupling to Gravity

We shall now generalize the action (2.1) to curved space-time in such a way

that when the fields A
(2)
µ are eliminated using their equations of motion, we recover

the Maxwell action for the field A
(1)
µ in curved space-time

−1

4

∫

d4x
√
−ggµρgνσF

(1)
µν F

(1)
ρσ . (2.14)

In order to do this, we start with the most general form of the action that is first

order in time derivatives, invariant under the duality transformation (2.10), and

invariant under the gauge transformations (2.4). This is given by

Sg = −1

2

∫

d4x
[

B(α)iLαβE
(β)
i + tijB

(α)iB(α)j + uijB
(α)iLαβB

(β)j
]

. (2.15)

Here tij and uij are unknown coefficients that are determined by first eliminating

the fields A
(2)
i from the action (2.15) by using their equations of motion, and then

demanding that the resulting action is identical to the action (2.14). It turns out

that this procedure determines the coefficients tij and uij uniquely. The final action

obtained this way is given by

Sg = −1

2

∫

d4x
[

B(α)iLαβE
(β)
i − gij√−gg00

B(α)iB(α)j + ǫijk
g0k

g00
B(α)iLαβB

(β)j
]

.

(2.16)

Here, as in eq. (2.14),
√−g =

√

− det(gµν) and gµν is the inverse of gµν , the

ordinary four-dimensional metric. These conventions are retained even when space

and time components are enumerated separately. By rewriting this formula in

terms of F
(α)
ij instead ofB(α)k general coordinate invariance in the spatial directions

becomes manifest.

The action Sg is manifestly invariant under the duality transformation (2.10)

and the gauge transformations (2.4). Although Sg is not manifestly invariant
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under general coordinate transformations, it can be shown to be invariant under

the following transformation:

δA
(α)
i = ξj∂jA

(α)
i +(∂iξ

j)A
(α)
j + ξ0

{

− gij√−gg00
LαβB

(β)j − g0k

g00
ǫijkB(α)j

}

. (2.17)

To see the connection between this transformation and the usual general coordinate

transformation, we eliminate A
(2)
i using its equation of motion. In the A

(α)
0 = 0

gauge, the A
(2)
i equation of motion is given by

ǫijk∂j

{

E
(1)
k +

gkj√−gg00
B(2)j + ǫklm g

0m

g00
B(1)l

}

= 0. (2.18)

Choosing the gauge transformation parameter Λ(1) appropriately, this equation

can be integrated to the form

E
(1)
k +

gkj√−gg00
B(2)j + ǫklm g

0m

g00
B(1)l = 0. (2.19)

If we now substitute the expression for A
(2)
i obtained from eq.(2.19) into the ex-

pression for δA
(1)
i given in eq.(2.17), we get

δA
(1)
i = ξj∂jA

(1)
i + (∂iξ

j)A
(1)
j + ξ0∂0A

(1)
i . (2.20)

This is the standard general coordinate transformation law of a vector under an

infinitesimal coordinate transformation xµ → xµ + ξµ in the A
(1)
0 = 0 gauge.

2.3. Generalization to p-form Fields in 2p+ 2 Dimensions

In 2p + 2 dimensions, we start with a pair of p-form gauge potentials A
(α)
µ1...µp

12



(0 ≤ µk ≤ 2p+ 1, 1 ≤ α ≤ 2), and define

E
(α)
i1...ip

=∂0A
(α)
i1...ip

− (−1)p∂[i1A
(α)
i2...ip]0

,

B(α)i1...ip =
1

p!
ǫi1...ipj1...jp+1∂j1A

(α)
j2...jp+1

,
1 ≤ ik, jk ≤ 2p+ 1 (2.21)

and

L(p) =

(

0 1

(−1)p 0

)

. (2.22)

In terms of these quantities, the generalization of the action (2.1) is given by

S = − 1

2.p!

∫

d2p+2x[B(α)i1...ipL(p)
αβE

(β)
i1...ip

+B(α)i1...ipB(α)i1...ip]. (2.23)

This action is invariant under the gauge transformations

δA
(α)
0i1...ip−1

= Ψ
(α)
i1...ip−1

, δA
(α)
i1...ip

= ∂[i1Λ
(α)
i2...ip]

, (2.24)

the duality transformation

A
(α)
µ1...µp → L(p)

αβA
(β)
µ1...µp , (2.25)

and the ‘Lorentz transformation’

δA
(α)
i1...ip

= x0vj∂jA
(α)
i1...ip

+ (−1)p+1~v.~xL(p)
αβB

(β)i1...ip . (2.26)

Using the gauge transformation parameter Ψ(α) we can set the gauge A
(α)
0i1...ip−1

= 0.

If we now eliminate the fields A
(2)
i1...ip

using their equations of motion, we recover

the standard action for a (p+ 1)-form field strength in 2p+ 2 dimensions

− 1

2.(p+ 1)!

∫

d2p+2xF
(1)
µ1...µp+1F

(1)
ν1...νp+1η

µ1ν1 . . . ηµp+1νp+1, (2.27)

where

F
(1)
µ1...µp+1 = ∂[µ1

A
(1)
µ2...µp+1]

. (2.28)

Also, in this case the Lorentz transformation law of A
(1)
i1...ip

takes the standard form

in the A
(1)
0i1...ip−1

= 0 gauge.
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For p even, the matrix L(p)
αβ can be diagonalized to the form Diag(1,−1). The

action (2.23) then describes the direct sum of two decoupled theories. One of them

is described by the action of a self-dual (p+1)-form field strength as written down

in ref.[20], the other is described by the action of an anti-self-dual (p+1)-form field

strength.

Coupling this theory to gravity involves a straightforward generalization of

eq.(2.16). The corresponding action is given by

Sg = − 1

2.p!

∫

d2p+2x
[

B(α)i1...ipL(p)
αβE

(β)
i1...ip

−
gi1j1 . . . gipjp√−gg00

B(α)i1...ipB(α)j1...jp

+
1

p!
ǫi1...ipj1...jpk g

0k

g00
B(α)i1...ipL(p)

αβB
(β)j1...jp

]

.

(2.29)

This is invariant under the ‘general coordinate transformation’

δA
(α)
i1...ip

=ξj∂jA
(α)
i1...ip

+ (−1)p−1(∂[i1ξ
j)A

(α)
i2...ip]j

+ ξ0
[

(−1)p
gi1j1 . . . gipjp√−gg00

L(p)
αβB

(β)j1...jp − g0k

g00
∂[kA

(α)
i1...ip]

] (2.30)

If we eliminate A
(2)
i1...ip

from the action (2.29) by its equation of motion, we get

back the covariantized form of the action (2.27). Also, in this case the general

coordinate transformation law of the field A
(1)
i1...ip

reduces to the standard form in

the A
(1)
0i1...ip−1

= 0 gauge. Finally, if we diagonalize the matrix L(p), we get back

the sum of the action of a self-dual (p+1)-form field strength and an anti-self-dual

(p+ 1)-form field strength in curved space-time, as written down in ref.[20].

2.4. m-form Fields in d Dimensions

Let us consider next the free field theory of an m-form field Aµ1...µm
in d

dimensions. The corresponding field strength is

Fµ1...µm+1 = ∂[µ1
Aµ2...µm+1], 0 ≤ µl ≤ d− 1. (2.31)
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The equations of motion and the Bianchi identities are

ηµ1ρ1∂ρ1Fµ1...µm+1 = 0, εµ1...µm+2ν1...νd−m−2∂µ1Fµ2...µm+2 = 0. (2.32)

We can dualize this theory by introducing a dual (d − 2 − m)-form potential,

Bν1...νd−m−2 , and the corresponding field strength,

Gν1...νd−m−1 = ∂[ν1
Bν2...νd−m−1]

, (2.33)

such that

ηµ1ρ1 . . . ηµm+1ρm+1Fρ1...ρm+1 =
1

(d−m− 1)!
εµ1...µm+1ν1...νd−m−1Gν1...νd−m−1 . (2.34)

It is easy to check that the equations of motion of F correspond to Bianchi identities

ofG and vice versa. Examples of such pairs of dual fields are a scalar and a two-form

field in four dimensions, a two-form field and a six-form field in ten dimensions,

etc.

Normally, the action of such a theory is written either in terms of the original

field A or the dual field B, but not both. We shall now write down a form of the

action in which A and B appear on an equal footing. Consider the action

S0 =
1

m!(d −m− 1)!
ǫi1...imj1...jd−m−1F0i1...imGj1...jd−m−1

+
1

2 · (m+ 1)!
Fi1...im+1Fi1...im+1

+
1

2 · (d−m− 1)!
Gi1...id−m−1Gi1...id−m−1 ,

1 ≤ il, jl ≤ d.

(2.35)

The action (2.35) is invariant under the following gauge transformations:

δA0i1...im−1 =Ψ
(1)
i1...im−1

, δB0i1...id−m−3 = Ψ
(2)
i1...id−m−3

δAi1...im =∂[i1Λ
(1)
i2...im], δBi1...id−m−2 = ∂[i1Λ

(2)
i2...id−m−2]

(2.36)
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Using the gauge transformation parameters Ψ(1), Ψ(2) we can set the gauge

A0i1...im−1 = 0, B0i1...id−m−3 = 0. (2.37)

Finally, with the help of the gauge transformation parameters Λ(1) and Λ(2), the

equations of motion derived from the action (2.35) can be shown to be precisely

those given in eq.(2.34). Also, if we eliminate either the A or the B fields from the

action (2.35) by their equations of motion, we get back the standard free action

for the other field.

In many cases, the free equations (2.34) get modified by the addition of a

Chern-Simons term to the field strength. The duality relations (2.34) then get

modified to

ηµ1ρ1 . . . ηµm+1ρm+1(Fρ1...ρm+1+Ωρ1...ρm+1) =
1

(d−m− 1)!
εµ1...µm+1ν1...νd−m−1Gν1...νd−m−1 ,

(2.38)

where Ω is an m + 1 form.
⋆

We now ask the question: Is it possible to modify

the action (2.35) in such a way that the corresponding equations of motion are the

modified eqs.(2.38)? The answer to this question is yes. We simply need to add

the term

S1 =
1

(m+ 1)!
Fi1...im+1Ωi1...im+1

+
1

m!

1

(d−m− 1)!
ǫi1...imj1...jd−m−1Ω0i1...imGj1...jd−m−1

(2.39)

to the action S0 given in eq.(2.35).

⋆ Note that although the addition of Ω to F seems to destroy the symmetry between F and
G, we could have added the dual of Ω to G with the same effect.
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2.5. Supersymmetrization of the Duality-Invariant Maxwell Ac-

tion

We shall now discuss how to supersymmetrize the duality-invariant Maxwell

action while preserving manifest duality invariance. Since we are using a formalism

that is not manifestly Lorentz invariant, we can use two-component spinors instead

of four-component spinors for describing the fermionic fields in this theory. We

know that the supersymmetry partner of a vector field in four dimensions should

be a Majorana spinor. Such a field can be represented by a pair of complex two-

component spinors ψ(α) (1 ≤ α ≤ 2) satisfying the condition
†

ψ(α)∗ = σ2Lαβψ
(β). (2.40)

Here σi are the standard Pauli matrices. They act on the implicit spinor index of

ψ(α). The full action is now given by

S =

∫

d4x
[

− 1

2
(B(α)iLαβE

(β)
i +B(α)iB(α)i)

+ iψ(α)†∂0ψ
(α) − ψ(α)†Lαβσk∂kψ

(β)
]

.

(2.41)

This action is invariant under the following supersymmetry transformations:

δψ(α) =
1

2
(LαβσkB

(β)kǫ− σkB
(α)kσ2ǫ

∗)

δA
(α)
i =iψ(α)†σiǫ− iψ(β)†Lαβσiσ2ǫ

∗,

(2.42)

where ǫ is an arbitrary two-component complex spinor.

In order to see that the action (2.41) and the transformation laws (2.42) reduce

to the standard action and supersymmetry transformation laws in four dimensions

† These are essentially the same thing as what is often described as two-component spinors
with dotted and undotted indices. The notation used here is much more natural in the
present context.
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when we eliminate the auxiliary fields A
(2)
i by their equations of motion, we intro-

duce four-component spinors

ψ =

(

ψ(1)

ψ(2)

)

(2.43)

η = i

(

σ2ǫ
∗

ǫ

)

(2.44)

and the four-dimensional matrices γµ such that

γ0γi =

(

0 −iσi

iσi 0

)

. (2.45)

In terms of these quantities, the fermion bilinear term in eq.(2.41) may be written

as

−iψ̄γ · ∂ψ. (2.46)

Also, using eq.(2.8) the supersymmetry transformation laws given in eq.(2.42) may

be rewritten as

δA
(1)
i = iψ̄γiη, δψ =

1

4
γµγνF

µνη, (2.47)

which are the standard supersymmetry transformation laws in four dimensions.

Finally, from eqs.(2.40), (2.43) and (2.44) we see that ψ and η satisfy the Majorana

condition

ψ∗ = iγ0γ2ψ, η∗ = iγ0γ2η. (2.48)

Since the fermi terms in eq.(2.41) have been shown to agree with the standard

formula for the kinetic term of a spinor, they can be coupled to gravity, thereby
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achieving general coordinate invariance and local Lorentz invariance, in the stan-

dard way, namely

∫

d4x
√
−g
[

ieµ0ψ
(α)†Dµψ

(α) − eµkψ
(α)†LαβσkDµψ

(β)
]

. (2.49)

where Dµ denotes the covariant derivative involving the spin connection. The

coupling to supergravity can then be worked out by standard methods.

3. Low-Energy Effective Action in String

Theory with Manifest SL(2,R) Symmetry

The low-energy effective action describing heterotic string theory compactified

on a six-dimensional torus at a generic point in the moduli space is given by [9] [18]

∫

d4x
√
−g
[

R − 1

2(λ2)2
gµν∂µλ∂ν λ̄− λ2

4
F a

µν(LML)abF
bµν

+
λ1

4
F a

µνLabF̃
bµν +

1

8
gµνTr(∂µML∂νML)

]

,

(3.1)

where Aa
µ (1 ≤ a ≤ 28) are a set of 28 abelian gauge fields and

F a
µν = ∂µA

a
ν − ∂νA

a
µ, F̃ aµν =

1

2
(
√
−g)−1ǫµνρσF a

ρσ. (3.2)

λ = λ1 + iλ2 (3.3)

is a complex scalar field,

L =







0 I6 0

I6 0 0

0 0 −I16






, (3.4)

and M is a 28×28 matrix-valued scalar field satisfying the constraints

MT = M, MTLM = L. (3.5)
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The action (3.1) is manifestly invariant under an O(6,22) transformation

M → ΩTMΩ, Aa
µ → ΩT

abA
b
µ (3.6)

where Ω is a 28 × 28 matrix satisfying

ΩTLΩ = L. (3.7)

The equations of motion derived from the action (3.1) have a further SL(2,R)

symmetry [8] [12] [13] [14], given by

λ→ aλ+ b

cλ+ d
, F a

µν → cλ2(ML)abF̃
b
µν + (cλ1 + d)F a

µν , ad− bc = 1. (3.8)

The action (3.1), however, is not invariant under this SL(2,R) transformation.

More specifically, the terms involving the gauge fields are not invariant; the other

terms are invariant.

In subsection (3.1) we shall show that, using the formalism of the previous

section, we can write down a manifestly SL(2,R)×O(6,22) invariant action, which

is equivalent to the action (3.1). The price that we’ll have to pay is again manifest

general coordinate invariance of the action. We shall also see that SL(2,R) and

O(6,22) transformations appear in a symmetric manner in the resulting action. The

analysis of this subsection raises the question whether it is possible to write down

a third form of the action in which SL(2,R) and general coordinate invariance of

the action are manifest, but O(6,22) appears only as a symmetry of the equations

of motion. In subsection (3.2) we show that this is possible for a restricted class of

field configurations—the configurations for which all four-dimensional fields arising

out of dimensional reduction of ten dimensional U(1)16 gauge fields are set to zero.
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3.1. Manifestly SL(2,R)×O(6,22) invariant action

We shall carry out the construction of a manifestly SL(2,R)×O(6,22) invariant

action in three steps. In the first step we shall show how to generalize the action

(2.1) to the case of multicomponent gauge fields. As we shall see, this will auto-

matically introduce the matrix M appearing in eq.(3.1) and satisfying (3.5) into

the action. In the second step, we shall show how to couple the action (2.1) to

the complex field λ transforming as in eq.(3.8) in an SL(2,R) invariant manner.

Finally, in the third step, we shall combine steps 1 and 2, as well as the result

of the last section, to couple the gauge fields to the matrix-valued field M , the

complex field λ, and the metric gµν in an SL(2,R) invariant fashion.

Step 1. We consider generalization of the action (2.1) to multicomponent gauge

fields A
(a,α)
µ . The general form of the action consistent with the requirement of du-

ality symmetry (2.10), gauge invariance (2.4), rotational invariance, and invariance

under the parity transformation A
(a,α)
i (x0, ~x) → (−1)αA

(a,α)
i (x0,−~x), is given by

⋆

SP,Q = −1

2

∫

d4x[B(a,α)iLαβQabE
(b,β)
i +B(a,α)iPabB

(b,α)i], (3.9)

where Q is a space-time independent matrix, P is a space-time dependent matrix

(in general), and

B(a,α)i = ǫijk∂jA
(a,α)
k , E

(a,α)
i = ∂0A

(a,α)
i − ∂iA

(a,α)
0 . (3.10)

Since only the symmetric parts of Q and P contribute to the action, we can choose

these matrices to be symmetric without any loss of generality. Also, using the

freedom of a linear redefinition of the gauge fields, A
(a,α)
i → SabA

(b,α)
i , where S is

a space-time independent matrix, we can ensure that the matrix Q has eigenvalues

⋆ We assume that the matrices P , Q etc. are inert under these symmetries. Otherwise more
general possibilities may arise.
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±1, so that Q2 = I. If we now eliminate the fields A
(a,2)
i from the action (3.9)

using their equations of motion, we get the action

−1

2

∫

d4x[B(a,1)iPabB
(b,1)i − E

(a,1)
i (QP−1Q)abE

(b,1)
i ]. (3.11)

This action is manifestly Lorentz invariant provided

QP−1Q = P. (3.12)

Comparing eqs.(3.11), (3.12), with (3.1), (3.5) in the background gµν = ηµν , λ = i,

we see that we need the identification

Q = L, P = LML. (3.13)

The action (3.9) is not manifestly Lorentz invariant. But it is invariant under

hidden Lorentz transformations, which are direct generalizations of the Lorentz

transformation laws (2.12). Since these transformation laws can always be derived

from the general coordinate transformation laws of the final action that we shall

write down, we shall not write down the Lorentz transformation laws of the fields

A
(a,α)
i explicitly here.

Step 2. We now go back to the action (2.1) and try to couple the complex field λ to

this action in an SL(2,R) invariant fashion. In order to do this, we first introduce

a matrix

M(λ) =
1

λ2

(

1 λ1

λ1 |λ|2

)

, (3.14)

satisfying,

MT = M, MLMT = L (3.15)

Under the SL(2,R) transformation (3.8) of the field λ, the matrix M transforms
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in a simple manner,

M → ωTMω, (3.16)

where

ω =

(

d b

c a

)

. (3.17)

An SL(2,R) invariant coupling of the action (2.1) to the field λ may now be written

down as follows:

Sλ = −1

2

∫

d4x[B(α)iLαβE
(β)
i +B(α)i(LTML)αβB

(β)i]. (3.18)

Using the relation

ωLωT = L, (3.19)

one can easily see that the action (3.18) is invariant under the transformation (3.16)

on M, together with the transformation

A
(α)
i → (ωT )αβA

(β)
i . (3.20)

After eliminating the fields A
(2)
i using their equations of motion, we get the action

−1

4

∫

d4x(λ2F
(1)
µν F

(1)
ρσ − λ1F

(1)
µν F̃

(1)
ρσ )ηµρηνσ. (3.21)

The gauge field dependent part of the action (3.1) in flat background, and for

M = I, L = I, is precisely 22 copies of this action. Also, the duality transformation

(3.20) takes precisely the form of eq.(3.8) with M = L = I after we eliminate A
(2)
i

from these transformation laws using their equations of motion. The gauge fields

A
(2)
µ may be identified with the dual vector potentials introduced by Kallosh and

Ortin [23].

Again, the action (3.18) has a hidden Lorentz invariance. But we shall not

write down the Lorentz transformation laws of the gauge fields explicitly here.
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Step 3. We shall now combine eqs.(2.16), (3.18) and (3.9) together, for the identi-

fication given in eq.(3.13), to obtain the manifestly SL(2,R) invariant coupling of

the gauge fields A
(a,α)
µ to the fields M , λ and gµν . The resulting action is

Sλ,M,g = −1

2

∫

d4x
[

B(a,α)iLαβLabE
(b,β)
i + ǫijk

g0k

g00
B(a,α)iLαβLabB

(b,β)j

− gij√−gg00
B(a,α)i(LTML)αβ(LML)abB

(b,β)j
]

.

(3.22)

If we eliminate the fields A
(a,2)
i from this action using their equations of motion,

we get back the gauge field dependent part of the action (3.1)

−1

4

∫

d4x
√
−g[λ2F

(a,1)
µν (LML)abF

(b,1)µν − λ1F
(a,1)
µν LabF̃

(b,1)µν ]. (3.23)

The action (3.22) is manifestly invariant under the O(6,22) transformation

given in eqs.(3.7) and the SL(2,R) transformation given in eqs.(3.16), (3.20). It

is not manifestly invariant under general coordinate transformations. However, it

can be checked that it is invariant under the transformation

δA
(a,α)
i =ξj∂jA

(a,α)
i + (∂iξ

j)A
(a,α)
j

− ξ0
{ gij√−gg00

(ML)αβ(ML)abB
(b,β)j +

g0k

g00
ǫijkB(a,α)j

}

,
(3.24)

which generalizes (2.17) and reduces to the usual general coordinate transformation

law of the field A
(a,1)
i in the A

(a,1)
0 = 0 gauge when the fields A

(a,2)
i are eliminated

by their equations of motion.

In terms of the matrix M, the λ field kinetic term appearing in eq.(3.1) can

also be written in a manifestly SL(2,R) invariant form:

1

2(λ2)2
gµν∂µλ∂ν λ̄ =

1

4
gµνtr(∂µML∂νML). (3.25)
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Thus the full action (3.1) may be replaced by

S =

∫

d4x
[√

−g
{

R− 1

4
gµνtr(∂µML∂νML) +

1

8
gµνTr(∂µML∂νML)

}

− 1

2

{

B(a,α)iLαβLabE
(b,β)
i + ǫijk

g0k

g00
B(a,α)iLαβLabB

(b,β)j

− gij√−gg00
B(a,α)i(LTML)αβ(LML)abB

(b,β)j
}]

(3.26)

In the above equation Tr denotes trace over the indices a, b and tr denotes trace

over the indices α, β. Note that the matrices M,L and M,L appear quite sym-

metrically in the expression for S.

In three dimensions both SL(2,R) and O(6,22) become part of a larger symme-

try group O(8,24) [24]. This provides further evidence that SL(2,R) and O(6,22)

should play identical roles in the full string theory.

3.2. Action With Manifest SL(2,R) and General Coordinate In-

variance

We have seen that starting with the action (3.26) and eliminating the auxiliary

fields A
(a,2)
i by their equations of motion gave the manifestly O(6, 22) and general

coordinate invariant action (3.1). Note, however, that in the action (3.26) the

various fields A
(a,α)
µ appear symmetrically, and hence it is a matter of choice which

subset of these fields we treat as auxiliary fields. If we choose the subset of auxiliary

fields to be invariant under O(6,22) transformations, then we would expect the

final action to be manifestly invariant under O(6,22) transformations, as was the

case in going from the action (3.26) to (3.1). But the same argument shows that

if we choose the set of auxiliary fields in such a way that the set is invariant

under SL(2,R) transformations, then the resulting action should be manifestly

SL(2,R) invariant, but not manifestly O(6,22) invariant. This naturally gives rise

to the question as to whether it is possible to get a manifestly SL(2,R) and general

coordinate invariant action following this procedure.

25



We shall now show that it is possible to obtain such an action provided we

set all the fields arising from the dimensional reduction of ten-dimensional gauge

fields to zero. In terms of the fields appearing in eq.(3.1) this means that we now

take the gauge fields to have 12 components instead of 28 components, L to be the

12×12 matrix

L =

(

0 I6

I6 0

)

, (3.27)

and M to be a 12×12 matrix-valued field satisfying the same constraints (3.5) with

respect to the new L. Such a matrix M can be parametrized as

M =

(

Ĝ−1 Ĝ−1B̂

−B̂Ĝ−1 Ĝ− B̂Ĝ−1B̂

)

, (3.28)

where Ĝ and B̂ are 6×6 symmetric and antisymmetric matrices, respectively, which

can be identified with the internal components of the ten-dimensional metric and

antisymmetric tensor fields, respectively. The O(6,6)×SL(2,R) invariant form of

the action is given by eq.(3.26) with the indices a, b running from 1 to 12.

We now start from eq.(3.26) and eliminate the fields A
(m+6,α)
i (1 ≤ m ≤ 6,

1 ≤ α ≤ 2) by their equations of motion.
⋆

With appropriate choice of gauge, these

equations can be brought to the form:

gijB
(m+6,α)j = −

√
−gg00Ĝmn(MLT )αβ

{

E
(n,β)
i + ǫijk

g0k

g00
B(n,β)j

}

− gijB̂mnB
(n,α)j .

(3.29)

Here i, j, k are spatial indices, and m,n are indices denoting the six internal direc-

tions. If we now substitute this back into the action (3.26), we get an action of the

⋆ Note that this is an SL(2,R) invariant set.
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form:
∫

d4x
√
−g
[

R− 1

4
gµνtr(∂µML∂νML) +

1

8
gµνTr(∂µML∂νML)

− 1

4
F

(m,α)
µν Ĝmn(LTML)αβF

(n,β)
ρσ gµρgνσ − 1

4
F

(m,α)
µν B̂mnLαβF̃

(n,β)
ρσ gµρgνσ

]

.

(3.30)

This action is manifestly SL(2,R) and Lorentz invariant, but not manifestly O(6,6)

invariant. However, since the equations of motion derived from this action are iden-

tical to those derived from the action (3.26), we can conclude that these equations

of motion are also O(6,6) invariant.

4. Manifestly SL(2,R) Invariant Effective Action from

Dimensional Reduction of N = 1 D = 10 Supergravity Theory

In the previous section we have given a formulation of the low-energy effective

action in heterotic string theory that is manifestly SL(2,R) and O(6,22) invariant,

but not manifestly general coordinate invariant. We have also shown that in the

special case where all the components of the ten-dimensional gauge fields are set

to zero, we can get a manifestly SL(2,R) and general coordinate invariant action

by sacrificing O(6,22) invariance. This analysis puts the O(6,22) and SL(2,R) sym-

metry on an equal footing from the point of view of the four-dimensional effective

field theory. However, it is the manifestly O(6,22) and general coordinate invari-

ant form of the action that arises naturally in the dimensional reduction of the

N = 1 supergravity theory in ten dimensions. From this point of view, the O(6,22)

symmetry of the action might appear to be more fundamental than the SL(2,R)

symmetry. In this section we shall get rid of this asymmetry by showing that

it is the SL(2,R) invariant action (3.30) that arises naturally in the dimensional

reduction of another ten-dimensional theory—the dual formulation of the N = 1

D = 10 supergravity theory [25].

Before we can write down the field content and action of this ten-dimensional

theory, we must describe our notation. We shall denote ten-dimensional coordi-

nates by zM (0 ≤ M ≤ 9), whereas ym (4 ≤ m ≤ 9) and xµ (0 ≤ µ ≤ 3) will
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denote the internal and space-time coordinates, respectively. The superscript (10)

will denote fields that appear naturally in the ten-dimensional theory; the fields

which are more natural from the point of view of four-dimensional theory will not

carry this superscript. The subscript S will denote the metric which couples natu-

rally to the string (the one that appears in the world-sheet action). Finally, since

the fields appearing in the dual formulation of the N = 1 D = 10 supergravity

theory couple naturally to the five-brane [3] [4], it is also convenient to introduce

a new metric that couples naturally to the five-brane; we shall denote this one by

the subscript F .

In the absence of ten-dimensional gauge fields, the only bosonic fields in the

dual formulation of the N = 1 supergravity theory in 10 dimensions are the metric

G
(10)
FMN , the dilaton Φ(10) and the 6-form field A(10)

M1...M6
. The bosonic part of the

action may be written as [5]

S =

∫

d10z

√

− detG
(10)
F eΦ

(10)/3(R
(10)
F

− 1

2.7!
G

(10)M1N1

F . . . G
(10)M7N7

F K
(10)
M1...M7

K
(10)
N1...N7

),

(4.1)

where

K
(10)
M1...M7

= ∂[M1
A(10)

M2...M7]
. (4.2)

The string metric G
(10)
SMN is related to the five-brane metric metric G

(10)
FMN through

the relation [5]

G
(10)
FMN = e−Φ(10)/3G

(10)
SMN . (4.3)

In terms of the metric G
(10)
SMN , the first term in the action (4.1) may be written

as [5]

S1 ≡
∫

d10z

√

− detG
(10)
F eΦ

(10)/3R
(10)
F

=

∫

d10z

√

− detG
(10)
S e−Φ(10)

(R
(10)
S +G

(10)MN
S ∂MΦ(10)∂NΦ(10)).

(4.4)

Dimensional reduction of this term to four dimensions was already carried out in
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ref.[9], so we just state the results here. We define [9] [13]

Ĝmn =G
(10)
Smn, Cm

µ = ĜmnG
(10)
Snµ, GSµν = G

(10)
Sµν −G

(10)
SmµG

(10)
SnνĜ

mn

Φ =Φ(10) − 1

2
ln det Ĝ, λ2 = e−Φ, gµν = e−ΦGSµν .

(4.5)

In the above equations Ĝmn denotes the matrix inverse of Ĝmn. If we take the

various fields to be independent of the internal coordinates, and normalize
∫

d6y

to 1, we get the following form of the dimensionally reduced action:

S1 =

∫

d4x
√
−g[R− 1

2(λ2)2
gµν∂µλ2∂νλ2 +

1

4
gµνTr(∂µĜ∂νĜ

−1)

− 1

4
λ2Ĝmng

µρgνσF
(C)m
µν F

(C)n
ρσ ],

(4.6)

where

F
(C)m
µν = ∂µC

m
ν − ∂νC

m
µ . (4.7)

We now need to carry out the dimensional reduction of the second term in the

action (4.1). This has been carried out in detail in the appendix; here we only

quote the result. The final result agrees with the action (3.30), provided we make

the identifications

λ1 =
1

6!
ǫm1...m6A(10)

m1...m6

A
(m,1)
µ = Cm

µ

A
(m,2)
µ =

1

5!
ǫmm2...m6(A(10)

µm2...m6 − Cn
µA

(10)
nm2...m6)

(4.8)

and B̂m1m2 to the duals of the antisymmetric tensor fields

B(m1m2)
νρ =

1

4!
ǫm1...m6A(10)

νρm3...m6

− [(λ1C
m1
ν Cm2

ρ +
1

2
Dm1

ν Cm2
ρ − 1

2
Dm1

ρ Cm2
ν ) − (m1 ↔ m2)].

(4.9)

This analysis shows that the SL(2,R) invariance appears naturally in the di-

mensional reduction of the dual form of the N = 1 supergravity theory in ten di-

mensions. Since the fields appearing in this form of the supergravity theory couple
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naturally to the five-brane, this prompts us to speculate that the SL(2,R) trans-

formation plays the same role in the theory of five-branes as the O(6,22) transfor-

mation in the theory of strings. The conjecture that the discrete SL(2,Z) subgroup

of SL(2,R) is an exact symmetry of string theory [15] [13] [18] [14] [19] suggests

that it is an exact symmetry of the five-brane spectrum and interactions, with the

Kaluza-Klein modes and the five-brane winding modes getting interchanged under

the duality transformation. In order to test this conjecture, however, it would be

helpful to know the full spectrum of the five-brane theory.

The similarity between the usual R → 1/R duality transformation and the

coupling constant duality transformation may be made more explicit by expressing

the complex field λ in terms of the variables of the dual theory. If we define

ĜFmn = G
(10)
Fmn, (4.10)

then from eqs.(4.3), (4.5) we get

det ĜF = e−2Φ(10)

det Ĝ = e−2Φ. (4.11)

This gives

λ2 =

√

det ĜF . (4.12)

Combining with the first of eqs.(4.8) this gives

λ ≡ λ1 + iλ2 = A(10)
1...6 + i

√

det ĜF . (4.13)

This expression is remarkably similar to the expression for the complex field that

transforms in a similar fashion under the usual target space SL(2,Z) duality for

heterotic string compactified on a two torus:

T = B
(10)
12 + i

√

det Ĝ. (4.14)

Our proposal fits in naturally with the observation [6] that the roles of the

σ-model loop expansion parameter and the string loop expansion parameter get
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interchanged in going from the string description of the theory to the five-brane

description. Another related observation was made in ref.[26], where it was found

that the magnetic monopole solutions in four-dimensional heterotic string theory,

which are crucial for the SL(2,Z) invariance of the spectrum, may be constructed by

wrapping the five-brane soliton solutions in this theory around the six-dimensional

torus.

5. Summary and Discussion

In this paper we have shown that the low-energy effective action of toroidally

compactified heterotic string theory can be written in a form that exhibits man-

ifest O(6,22)×SL(2,R) symmetry. The resulting action is not manifestly general

coordinate invariant, but does possess a symmetry that reduces to the standard

general coordinate transformation laws when the auxiliary fields are eliminated by

their equations of motion. We have also been able to get a manifestly SL(2,R) and

general coordinate invariant effective action for a restricted class of field configu-

rations in which all four-dimensional fields arising from the dimensional reduction

of the U(1)16 gauge fields in ten dimensions are set to zero. This SL(2,R) and

general coordinate invariant form of the action was shown to originate from the

dimensional reduction of the dual formulation of the N = 1 supergravity theory in

ten dimensions without the gauge fields.

The analysis of this paper shows that the O(6,22) and SL(2,R) symmetries

appear on an equal footing from the point of view of four-dimensional effective field

theory. Since the discrete subgroup O(6,22;Z) is known to be an exact symmetry

of (perturbative) string theory, this increases our confidence in the conjecture that

the discrete SL(2,Z) subgroup of SL(2,R) might also be an exact symmetry of the

theory. However, since SL(2,R) arises naturally in the dual formulation of the ten-

dimensional supergravity theory, to have the SL(2,Z) symmetry manifest, we may

need to go to a dual formulation of the theory—perhaps the theory of five-branes.
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One of the unsatisfactory features of our analysis has been that we had to ignore

the U(1)16 gauge fields in ten dimensions to see an SL(2,R) invariant action come

out of dimensional reduction of a ten-dimensional theory. However, since from the

four-dimensional point of view we know that a manifestly SL(2,R) invariant action

of the theory exists, one would suspect that there should be some formulation of

the N = 1 supergravity theory in ten dimensions coupled to abelian gauge fields,

which, upon dimensional reduction, gives rise to a manifestly SL(2,R) invariant

action. Such an action would probably provide a good starting point for the search

for an alternative formulation of the theory in which the SL(2,Z) symmetry of the

spectrum is manifest.

The analysis of sect.(2.4) already provides a clue as to what this new formu-

lation of the ten-dimensional supergravity theory might be. From the analysis

of sect.3, we have seen that the action with manifest SL(2,R) symmetry requires

doubling of at least those gauge field components that arise from the U(1)16 gauge

fields in ten dimensions. (For the gauge fields that arise from the ten-dimensional

metric and the antisymmetric tensor fields, we can avoid the doubling, and at the

same time, maintain manifest SL(2,R) invariance, by following the same procedure

that took us from eq.(3.26) to eq.(3.30).) This would mean that we must have dou-

bling of gauge fields in ten dimensions also. This, in turn, can be implemented by

following the procedure given in sect.(2.4). Besides the 16 U(1) gauge fields AI
M ,

we shall now also have 16 7-form fields ÃI
M1...M7

. Upon dimensional reduction,

the fields AI
M gives rise to scalars AI

m and vectors AI
µ. The fields Ã give rise to

vectors ÃI
1...6µ, which provides the necessary doubling of the 16 U(1) gauge fields in

four dimensions. It also gives rise to antisymmetric tensor fields Ãm1...m5µν , which

are dual to the scalar fields AI
m in the sense of sect.2.4. Thus the scalar fields

AI
m (which form part of the matrix M) now appear in the formalism of sect.2.4.

Although this destroys manifest O(6,22) symmetry, it does not destroy manifest

SL(2,R) symmetry, since the fields AI
m (and hence also their duals) are SL(2,R)

neutral. Finally, there are also p-form fields with p ≥ 3 which appear from the

dimensional reduction of the fields Ã, but in four dimensions these fields have no
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dynamics.

The question that one needs to address is whether there is a formulation of

N = 1 supergravity theory coupled to abelian gauge fields that naturally incorpo-

rates the action (2.35) for gauge fields in ten dimensions. The analysis of sect.2.5

provides a first step towards this formulation. If there is such a formalism, then

the next question to ask would be if this formulation of the supergravity theory

arises naturally from some other fundamental theory, possibly the five-brane, or

some generalization.

Our discussion has focussed on generic points in moduli space, where all the

gauge symmetries of the low-energy effective action are abelian. It would be nice

to extend our analysis to deal with non-abelian gauge groups. This is a challenging

problem, whose solution should be very enlightening. Finally, let us remark that

the tools that we have introduced can be used to construct several theories that

have been sought unsuccessfully in the past. One example is a reformulation of

N=8 D=4 supergravity with the noncompact E7,7 global symmetry realized as a

symmetry of the action. In the usual formulation this symmetry rotates abelian

gauge field strengths into their duals, just as in the case of SL(2,R) symmetry that

we have presented. Another example is the construction of an action for type IIB

supergravity in ten dimensions. Here the problem is the presence of a four-form

potential with a self-dual five-form field strength. As we have seen, this can also

be described by an action that sacrifices manifest covariance.

Acknowledgements: We would like to thank M. Duff, J. Harvey, C. Hull, A. Stro-

minger and P. Townsend for useful discussions.

33



APPENDIX

In this appendix we shall discuss the dimensional reduction of the second term

in the action (4.1). We define the following four-dimensional fields in terms of the

components of the six-form potential A(10) in ten dimensions:

λ1 =
1

6!
ǫm1...m6A(10)

m1...m6

Dm1
µ =

1

5!
ǫm1...m6(A(10)

µm2...m6 − Cm
µ A(10)

mm2...m6)

B(m1m2)
νρ =

1

4!
ǫm1...m6A(10)

νρm3...m6

− [(λ1C
m1
ν Cm2

ρ +
1

2
Dm1

ν Cm2
ρ − 1

2
Dm1

ρ Cm2
ν ) − (m1 ↔ m2)]

Cm1m2m3
νρσ =

1

3!
ǫm1...m6A(10)

νρσm4...m6.

(A.1)

In terms of these fields, we define four-dimensional field strengths as follows:

F
(D)m
µν = ∂µDm

ν − ∂νDm
µ (A.2)

K̂m1m2
µνρ =

[

∂µBm1m2
νρ − 1

2

{

(Cm2
ρ F

(D)m1
µν + Dm2

ρ F
(C)m1
µν ) − (m1 ↔ m2)

}]

+ cyclic permutations of µ, ν, ρ
(A.3)

and

Km1m2m3
µνρσ =[∂µCm1m2m3

νρσ + (−1)P · cyclic permutations of µ, ν, ρ, σ]

− [(Cm3
σ K̂m1m2

µνρ + cyclic permutations of m1, m2, m3)

+ (−1)P · cyclic permutations of µ, ν, ρ, σ]

− [{Cm3
σ Cm2

ρ (F
(D)m1
µν + λ1F

(C)m1
µν )

+ (−1)P · all permutations of m1, m2, m3}

+ (−1)P · inequivalent permutations of µ, ν, ρ, σ]

− [(Cm3
σ Cm2

ρ Cm1
ν ∂µλ1 + (−1)P · all permutations of m1, m2, m3)

+ (−1)P · cyclic permutations of µ, ν, ρ, σ].
(A.4)

In terms of these field strengths, the second term of the action (4.1) may be written
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as

S2 ≡
∫ √

− detG
(10)
F eΦ

(10)/3(− 1

2 · 7!
)G

(10)M1N1

F . . . G
(10)M7N7

F K
(10)
M1...M7

K
(10)
N1...N7

= −
∫ √

−g
[ 1

2(λ2)2
gµν∂µλ1∂νλ1

+
1

4λ2
Ĝm1m2g

µρgνσ(F
(D)m1
µν + λ1F

(C)m1
µν )(F

(D)m2
ρσ + λ1F

(C)m2
ρσ )

+
1

2 · 2! · 3!
Ĝm1n1Ĝm2n2g

µ1ν1 . . . gµ3ν3K̂m1m2
µ1µ2µ3

K̂n1n2
ν1ν2ν3

+
λ2

2 · 3! · 4!
Ĝm1n1 . . . Ĝm3n3g

µ1ν1 . . . gµ4ν4Km1...m3
µ1...µ4

Kn1...n3
ν1...ν4

]

.

(A.5)

We would like to compare the sum of the actions given in eqs.(4.6) and (A.5)

with the action given in eq.(3.30). In order to do this, we need to dualize the three-

and four-form field strengths K̂m1m2
µ1µ2µ3

and Km1...m3
µ1...µ4

. We start with the four-form

field strength. The equation of motion of the field Cm1m2m3
ν2ν3ν4

is given by

∂ν1 [λ2
√
−gĜm1n1 . . . Ĝm3n3g

µ1ν1 . . . gµ4ν4Km1...m3
µ1...µ4

] = 0. (A.6)

Since Km1...m3
µ1...µ4

is antisymmetric in µ1, . . . µ4, we may write

λ2
√
−gĜm1n1 . . . Ĝm3n3g

µ1ν1 . . . gµ4ν4Km1...m3
µ1...µ4

= ǫν1...ν4Hn1n2n3 (A.7)

for some Hn1n2n3 . Eq.(A.6) then gives,

∂νHn1n2n3 = 0, (A.8)

showing that Hn1n2n3 is a constant. Comparison with the original formulation

of the theory shows that Hmnp denotes the components of the three-form field

strength in the internal directions, and hence are quantized [27]. Furthermore, in

the original formulation of the theory these constants were set to zero; hence if we
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want to describe the same field configurations, we must set these constants to zero

in this theory as well. This gives

Km1m2m3
µ1...µ4

= 0. (A.9)

Let us now turn to the Bm1m2
ν2ν3

equations of motion.
⋆

This is given by

∂ν1(
√
−gĜm1n1Ĝm2n2g

µ1ν1 . . . gµ3ν3K̂m1m2
µ1µ2µ3

) = 0. (A.10)

This gives

√
−gĜm1n1Ĝm2n2g

µ1ν1 . . . gµ3ν3K̂m1m2
µ1µ2µ3

= ǫν1ν2ν3σ∂σB̂n1n2 (A.11)

for some B̂n1n2 . The Bianchi identity for the field strength K̂m1m2
µνρ

ǫµνρσ∂σK̂
m1m2
µνρ = −3

2
ǫµνρσ(F

(C)m1
ρσ F

(D)m2
µν − F

(C)m2
ρσ F

(D)m1
µν ), (A.12)

as derived from eq.(A.3), gives rise to the following equation of motion for the field

B̂m1m2

∂σ(
√
−ggσρĜm1n1Ĝm2n2∂ρB̂n1n2) =

1

4
ǫµνρσ(F

(C)m1
ρσ F

(D)m2
µν − F

(C)m2
ρσ F

(D)m1
µν ).

(A.13)

It can be checked easily that the contributions to all the equations of motion and

Bianchi identities derived from the term involving K̂m1m2
µ1µ2µ3

in the action (A.5) are

⋆ Although we are carrying out this dualization in order to compare the dimensionally reduced
action to the action (3.30), SL(2,R) invariance of the dimensionally reduced action can be
seen without this dualization, in the same way that in the usual scheme O(6,22) symmetry
of the action can be seen without dualizing the Bµν field.
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identical to the ones derived from the action

−
∫

d4x
√
−g
[1

4
Ĝm1n1Ĝm2n2gµν∂µB̂m1m2∂νB̂n1n2

+
1

2
B̂m1m2F

(C)m1
µν F̃

(D)m2
ρσ gµρgνσ

]

.

(A.14)

Combining eqs.(4.6), (A.5), (A.9) and (A.14) we get the final form of the action:

S =

∫

d4x
√
−g
[

R− 1

2(λ2)2
gµν∂µλ∂ν λ̄

+
1

4
gµν∂µĜmn∂νĜ

mn − 1

4
gµνĜm1m2Ĝn1n2∂µB̂m1n1∂νB̂m2n2

− 1

4λ2
Ĝm1m2g

µρgνσ{|λ|2F (C)m1
µν F

(C)m2
ρσ

+ 2λ1F
(C)m1
µν F

(D)m2
ρσ + F

(D)m1
µν F

(D)m2
ρσ }

− 1

2
B̂m1m2F

(C)m1
µν F̃

(D)m2
ρσ gµρgνσ

]

.

(A.15)

This action is identical to to the one given in eq.(3.30), provided that we identify the

vector fields A
(m,1)
µ , A

(m,2)
µ appearing in eq.(3.30) with Cm

µ and Dm
µ , respectively.
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