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ABSTRACT 

- 

The a-model describing the propagation of the heterotic string in a Calabi- 

Yau background is written down in the Green-Schwarz formulation. This model 

has manifest N=l space-time supersymmetry, however only the SO(2) subgroup 

of the four dimensional Lorentz group is realized linearly. The criteria for the 

existence of the full SO(3,l) L orentz symmetry in this model are studied. These 

requirements turn out to be identical to those obtained by demanding the exis- 

tence of space-time supersymmetry in the Neveu-Schwarz-Ramond formulation 

- of the theory, where the SO(3,l) L orentz symmetry is manifest, but space-time 

supersymmetry is not. The analysis is easily generalized to more general back- 

grounds, which give rise to (2,0) su erconformal field theories on the world sheet. p 

Finally it is shown that if the requirements which give unbroken N=l space-time 

supersymmetry and full SO(3,l) L orentz invariance are satisfied, then the unbro- 

ken gauge group after the compactification of the &3 x J?& heterotic string theory 

on Calabi-Yau spaces iS Es X Es. 

=- 

- 
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1. INTRODUCTION 

-- 

Current interest in string theories has its origin at the discovery of anomaly 

cancellation,[ll subsequent discovery of the heterotic string theory, 121 and the 

- semi-realistic compactification of this theory on Calabi-Yau manifolds PI and 

orbifolds. [4-71 The original motivation for compactifying string theories on 

Calabi-Yau manifolds was to get an effective four dimensional field theory with 

unbroken space-time supersymmetry. The analysis was carried out in the zero 

slope limit of the string theory. With certain simplifying assumptions it was 

shown-that the requirement of unbroken space-time supersymmetry forces the 

background metric to be Ricci-flat and Kahler, and the gauge connection to be 

identified with the spin connection. As an added bonus, it was also found that 

such background fields satisfy the equations of motion of the string theory. This 

was shown by using the equivalence between the equations of motion of the string 

-theory and conformal invariance of the a-model describing the propagation of the 

- string in background fields, [3,8-151 and using the fact that supersymmetric o- 

models on manifolds with Ricci-flat Kahler metric have vanishing &function, at 

least to low orders in the perturbation theory.[16’ Since then more general corn- =- 

pactification schemes with unbroken supersymmetry have been proposed, [17-191 

-. - and it has also been argued, based on an analysis of the effective four dimensional 

field theory, that these compactification schemes are solutions of classical string 

field equations, and also give unbroken space-time supersymmetry, to all orders in 

the a-model perturbation theory. 1171 For compactification on Calabi-Yau man- 

ifolds these arguments have also been shown to be valid non-perturbatively PO1 . 

Other applications of a-models to string theories have been discussed in Refs.[21- 

321. 

-Recent calculations have shown, however, that the P-function for supersym- 

metric a-models on Ricci-flat Kahler background receives non-vanishing contri- 

bution at the four loop order. [33--351 It was then shown[20J361 that it is always 
.._ ” possible to find a (non Ricci-flat) Kahler metric on a Calabi-Yau manifold which 

‘. 
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gives vanishing ,&function for the a-model to all orders in the perturbation the- _ 
ory, and hence is a solution of the string field equations. One may then ask the 

question as to whether such a background also gives unbroken space-time super- 

symmetry to all orders in the a-model perturbation theory. Although general 
- 

- arguments[17’201 indicate that the answer is affirmative, it will be nice to see it 

directly in the a-model. This is the question that we shall address in this paper. 

The free heterotic string may be formulated either in the Neveu-Schwarz- _ 
Ramond (NSR) formulation,‘371 or in the Green-Schwarz (GS) formulation. [381 

In NSR formulation the two dimensional fermions transform in the vector rep- 

resentation of the ten dimensional Lorentz group, whereas in the GS formula- 

tion the two dimensional fermions transform in the spinor representation of the 

_ Lorentz group. The NSR model can be quantized by maintaining the full SO(9,l) 

Lorentz symmetry manifest, but not the space-time supersymmetry. In fact, the 

space-time supersymmetry charge in the covariant formulation of the NSR model 

- has been constructed only recently.[3g’401 The GS model, on the other hand, has . . 
- 

been quantized only in the light-cone gauge, so that only the SO(8) subgroup of 

the- SO(9,l) L orentz group is realized linearly. The space-time supersymmetry, 

however, is manifest in this formulation. 

Both, the NSR and the GS string has been successfully coupled to the mass- -- - 
less background fields. [3’8-10’30-321 However, most of the calculations beyond 

the tree level of the a-model have been done in the NSR formulation for general 

background field configurations. To understand the reason for this we compare 

the NSR and GS model in the light-cone gauge. Taking the background metric 

Gij(X), the antisymmetric tensor field Q(X) and the gauge field AM(X) to lie 

in the transverse directions only, we write down the action for the NSR and the 

GS strings, 

- 
1 s - NSR = ZTrcrl Xad-A” + YX*(W;~(X) - S;*(X))&Xi 

(14 
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1 s - GS =- 2ral , J 
SatY-Sa + ;Sa(Ca”),pSP(w;*(X) - S;*(X))&Xi 

1 P-2) 

- 
In the above equations o’ is the inverse string tension, Aa and Sa are two 

dimensional right-handed Majorana- Weyl fermions transforming in the vector 

and spinor representations of the SO(8) Lorentz group respectively, wrb is the _ 
spin connection constructed from the metric GQ (a,b are tangent space indices), 

Srb is the curl of the anti-symmetric tensor field Bij, Xi are the eight bosonic 

fields, J’ay is the field strength constructed from the gauge field AM, tie are 

the thirty two left-handed Majorana-Weyl fermions transforming in the 32 or 

_ (W)+(W3) P re resentation of the gauge groups SO (32) or SO (16) x SO (16)) TM 

are the generators of the gauge group, and Cab denote generators of SO(8) in the 

spinor representation. The . . . denotes terms which are identical for the two 

formulations. Formally we can show the equivalence of the two theories [41--461 

- by writing down a functional integral involving the fields Xi, qe and Aa or SLY, 

and then for fixed X and $, showing the equivalence between the currents XaXb - 

and iSa(Cab),pSP using the* triality properties of SO(8). However we must *- 

remember that a a-model is specified not only by the background fields, but also 
-- - the renormalization scheme used for describing the quantum theory. Hence before 

we say that the two theories are equivalent, we must specify the renormalization 

scheme for each of the theories. 

In the NSR formulation there is a natural symmetry, namely the (1,0) 

supersymmetry, [3,9,10,47-491 which must be respected by the renormalization 

scheme that we use. In the covariant formulation this symmetry is required 

to show the decoupling of the negative normed states, whereas in the light-cone 

gauge this symmetry is required to show the existence of the residual Lorentz 

symmetry (e.g. for compactification on a six dimensional manifold the (1,0) su- 

perconformal algebra is required to show the existence of the SO(3,l) Lorentz 
.- algebra.) The GS a-model, on the other hand, has no such obvious symmetry. 
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As a result the number of independent dimension two operators in the theory 

is larger than the number of independent background fields (Gij (X), Bij (X) 

and A?(X)), and the description of the theory becomes ambiguous. Presum- 

ably, there is a specific renormalization scheme for which the GS model becomes 

equivalent to the corresponding NSR model with (1,0) supersymmetric renormal- 

ization scheme, but there is no simple way to find out what this renormalization 

scheme is. Due to this reason, most of the study of string propagation in back- 

ground fields have been restricted to the NSR model beyond the tree level of the 

a-model. This has been the the case for the analysis of the conformal invariance of 

the a-model, [gJo1 as well as the analysis of space-time supersymmetry. [39,50,51]* 

In this paper we follow a different approach. We start by writing down the 

- a-model describing the heterotic string theory on a Calabi-Yau manifold in the 

GS formalism.. We then show that there is a specific renormalization scheme in 

which the model has N=l supersymmetry in four dimensions, to all orders in the 

. -a-model perturbation theory, however, only the SO(2) subgroup of the SO(3,l) 
- 

Lorentz group is manifest in this formalism. In this scheme the a-model reduces 

to the sum of a free field theory, and a (2,2) su ers mmetric conformally invariant p y 

theory on a Calabi-Yau manifold. We then try to construct the full SO(3,l) 

Lorentz generators of the model, which satisfy standard commutation relations -- - 
among themselves, as well as the supersymmetry and translation generators. It 

turns out that the existence of these generators is guaranteed if there exists 

a certain unitary operator in this two dimensional superconformal field theory, 

satisfying specific commutation relations with the super-Virasoro generators of 

the theory. In this case the complete set of the SO(3,l) Lorentz generators 

may be constructed in terms of the super-Virasoro generators of the theory and 

this unitary operator U, and may be shown to satisfy the correct commutation 

relations. 

” 

* The GS a-model has been used in Refs.[3,18,19] to analyze the criteria for space-time 
supersymmetry in a given background field by looking at the classical symmetries of the 
a-model. 
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This condition also turns out to be equivalent to the existence of a scalar 

field 4 conjugate to the U(1) part of the (2,0) superconformal current of the 

non-linear a-model such that this current may be expressed as a derivative of 

this scalar field. More precisely, if H(z) is the U(1) current, then it should be 

- expressible as -i,/3a,$, where ed3i$ is a local operator of the theory. Using the 

known operator product of the U(1) current with the other components of the 

superconformal current we may calculate the operator product of 4 with these 

currents, and also with itself. -The generators of the SO(3,l) Lorentz group may 

now be written in terms of this scalar field and other super-conformal currents, 

and their-commutators may be calculated explicitly from the known operator 

product expansions. These operator product expansions, being consequences of 

the (2,0) p su erconformal algebra, are the same as in the free field theory. Since 

there is no anomaly in the Lorentz algebra in the free field case, it follows that 

there is no anomaly in the Lorentz algebra in the interacting theory either. This 

- analysis is easily generalized to more general background fields, which give rise 
- to (2,0) superconformal field theories on the world sheet. 

We may compare this result with the corresponding analysis in the NSR for- - 

mulation where the full SO(3,l) 
Z- 

L orentz symmetry is manifest, but the space-time 

supersymmetry is not. This theory may also be described as the sum of a free 
-- - 

field theory and a (2,2) supersymmetric conformal field theory on a Calabi-Yau 

manifold, although the basic fermionic variables of the theory transform differ- 

ently under the Lorentz group compared to the GS formulation. In this case the 

space-time supersymmetry generators of the theory may be constructed in terms 

of the field 4 if it exists, and may be shown to satisfy the correct commutation 

relations with the other symmetry generators of the theory. Thus from both the 

formalisms the criteria for getting a Lorentz invariant, space-time supersymmet- 

ricltheory seems to be that the U(1) part of the superconformal current may 

be expressed as the derivative of a scalar field satisfying the criteria mentioned 

above. These results also indicate that the GS (with the renormalization scheme 
.- that we are using) and NSR formulations of the theory are equivalent only if the 
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above condition is satisfied. 
-. 

Our analysis may also be applied to determine the unbroken gauge symmetry 

group of the theory after compactification. In the compactification of the Es X &j 

- _ heterotic string theory on a Calabi-Yau manifold only the &3 x SO(10) x U(1) 

part of the symmetry group is manifest in the two dimensional theory. The 

construction of the extra symmetry generators which convert SO (10) x U( 1) to the 

full EC group is very similar to the construction of the supersymmetry generators 

in the NSR formalism, the only difference being that we need to use the (0,2) 

part of the superconformal algebra. The left-right symmetry of the model implies 

that if the left handed U(1) current can be written as the derivative of a scalar 

field satisfying certain constraints, so can be the right-handed U( 1) current which 

_ is a part of the (0,2) superconformal algebra. The extra gauge generators may 

then be constructed in terms of this new scalar field 4, and may be shown to 

satisfy the correct commutation relations with the rest of the generators. 

. In Sec.11 of the paper we review the proof of Lorentz invariance of the heterotic - 
string in flat background in the GS formalism. We also recast the proof in a form 

- so that it is easily generalizable to the case of non-trivial background fields. In 

Sec.111 we show how to construct the Lorentz and supersymmetry generators for 

the heterotic string on a Calabi-Yau background in the GS formalism, assuming -- - 
the existence of the field q5 mentioned before. The construction is also generalized 

to more general models which have (2,0) supersymmetry on the world-sheet. In 

Sec.IV we analyze the unbroken gauge symmetry for the heterotic string com- 

pactified on a Calabi-Yau background, and find that it is Es x Eg, again assuming 

the existence of the scalar field 4. We summarize our result in Sec.V. We also 

give a heuristic argument in this section showing that the heterotic string theory 

compactified on a Calabi-Yau manifold indeed satisfies the criteria for unbroken 

supersymmetry and full Eg x E6 gauge symmetry. 



2. FREE HETEROTIC STRING IN _ 
THE GREEN-SCHWARZ FORMALISM 

In this section we shall analyze the space-time supersymmetry and Lorentz 

- . invariance of the free heterotic string in the GS formalism. Although this analysis - 

has been carried out in the past, we recast the analysis in a form which may be 

easily generalized in the presence of background fields. Also, even though the 

theory has full SO(9,l) L orentz invariance and space-time supersymmetry, we 

shall focus our attention on an SO(3,l) subgroup of the Lorentz group, and a four 

dimensional N=l supersymmetry. These are the subgroups which are expected to 

remain unbroken upon compactification of the theory on a Calabi-Yau manifold. 

Although classically there exists a covariant formulation of the free GS 
- string; [521531 it has been quantized only in the light-cone gauge, where only the 

SO(8) subgroup of the full SO(9,l) L orentz symmetry is manifest. In this gauge 

-the string theory is described in terms of a two dimensional free field theory. 
. 

- The basic variables of the theory are eight bosonic fields Xi transforming in the 

vector(8,) representation of SO(8), eight right-handed Majorana-Weyl fermions 

S” transforming in the spinor*(8,) representation of SO(8), and thirty two left- - --- 

handed Majorana-Weyl fermions +e which are singlets of the Lorentz group, but 

-- - transform in the (16,1)+(1,16) p re resentation of the SO(l6)xSO(16) subgroup 

of the E8 x Es gauge group. (For definiteness we are considering the E8 x E8 

heterotic string theory). The action for the theory is given by,12] 

S=1 
2lra’ s 

d2E(d+X’d-Xi + ;S=YLP + ;$‘t3+$‘) 

where (to, rl) d enote the usual string variables r and cr respectively, and 

- I* = $((O f (1) 
a* = +a0 f al) 

(24 

(2.2) 

We shall now identify the first six directions (i=1,...6) as ‘internal 
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dimensions’. _ The seventh and eighth directions, as well as the light-cone di- 

rections X* will be identified with ordinary Minkowski space. As a result only 

the SO(2) subgroup of the SO(3,l) L orentz group will be manifest in this formal- 

ism. The internal Lorentz group SO(6) has SU(3) xU(1) as its subgroup. Under 
- 

this subgroup X7 and X8 are neutral, whereas X’ (i=1,...6) transform as, 

3(2) + 3(-2) 

where the U(1) charge has been denoted in the bracket. Thus Xi (i=1,...6) may 

be split into three complex coordinates Xr and their complex conjugates (X’) 

which transform in the 3 and 3 representation of the SU(3) group respectively. 

Also we define, 

!: xe = $(X7 + 2-X8) 
xe = $x7 - iX8) (2.3) 

X* and Xe carry charges 1 and -1 respectively under the SO(2) subgroup of the _ 

four dimensional Lorentz group, whereas X’, X’ are neutral under this group. 

In the following discussion SO(2) will always denote the subgroup of the SO(3,l) 

-- 

-- - Lorentz group, and U(1) will denote the subgroup of the ‘internal’ SO(6) group. 

Let us now turn to the spinor representation. Under the SU(3) xU(1) xSO(2) 

group, the spinor representation decomposes as, 

3(-l, $, + q1, -f) + 1(3,$) + l(-3, -3) 

where the U(1) xSO(2) h g h c ar es ave been denoted in the bracket. We shall call 

these fields S’, SF, Se and Se respectively. We have used the same set of indices 

to denote the X’s and the S’s since they transform in the same way under the 

‘internal’ SU(3) group. Note however that the X and the S fields do not carry 
.- .- 

the same U(l)xSO(2) charges. 
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_ Finally let us turn to the left handed fermions tie. We pick up an SO(6) sub- 

group of SO(16)xSO(16) such that q!~~ (f?=7,...32) are singlets under this group, 

and tiL (e=1,...6) transform in the vector representation of SO(6). Under an 

SU(3) subgroup of SO(6) th ese fields transform as (3+3). Let us denote them 
- 

- by $J’ and $’ respectively. We have used the same index r for $J’ and X’, in 

anticipation of the identification of the background spin and gauge connection 

for compactification on a Calabi-Yau manifold. 

.-. In terms of the new fields we may write the action given in (2.1) as, 

s = so + Sl 

So = ; /- d2E(d+XBd-Xi + a+xia-x8 + iS”a-9 + f 2 $%+$+) 
L=7 

3 1 - S1 = c ; / d2[(a+Xrtl-X’ + ~+X’C~-X’ + iS’cY_S’ + iqm+l#b’) 
r=l 

(2.4 

(2.5) 

(2.6) 

where we have set a’ to be 8. The reason for splitting up the action in this 

form is that when we introduce background fields, the fields involved in the 
-- - action So wil remain free fields, while those involved in the action Sr will become 

interacting. Thus in forming the space-time supersymmetry and the Lorentz 

generators of the theory we shall try to avoid using the fields X’, S’, $’ and 

their complex conjugates explicitly. Instead we shall use only the symmetry 

generators of the theory which are expected to remain symmetries of the theory 

even in the presence of the background fields. 

The symmetries which turn out to be useful for this purpose are the (2,0) 

sqerconformal symmetries which the action Sr posseses. The (2,0) supersym- 

metry changes X’ to S’ and X’ to S’ respectively. Although the action Sr de- 

scribes a left-right symmetric model and hence describes a (2,2) superconformal 
.- 

field theory, we shall not need to use the left-handed superconformal generators 
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for our analysis. The useful generators are L,, L,, Gz and Hn, satisfying the 

(anti-)commutation relations: 

[LL,] = (m - n)i,+, + i(m3 - m)6,,-, 
[i,, Ln] = [ii,, G;] = [i,, Hn] = 0 

[L, Ln] = (m - +Ln+n + i(m3 - m&n,-, 

{Gk,G,} = A+,.+ k(m - n)H,+, + :(m2 - :)&l-n 

[Hrn, G;] = G;,, 

- [KmG,] = -G,+, 

[L&L] = --nHm+ 

(2.7) 

[J&G:] = (T - n)G&+n 
[Lm,GJ = (y - n)G;+, 
[Hm, &] = %mS,,-, 
{G;,G;t} = {G,,G,} = 0 

where, 

c=6 (2.8) -- 

-- - 
In order to express the superconformal generators in terms of the fundamental 

fields of the theory, we use the mode expansion, 

X’ = g+pr7 + f c $-+-2in(i+o) + &,;e-2in(r-a)] 

n#O 
cm 

- 

sr = C s;e-2in(r+u) 

n=-03 
ccl 

n=-09 

(2.9) 

with similar expressions for X’, S’, +‘. Note that TJ’ may satisfy either periodic 
- 

or anti-periodic boundary conditions in O, here we have taken it to be periodic 
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for definiteness. The various oscillators in (2.9) satisfy the (anti)commutation 

relations: 

[zr,p’] = [z’,p’] = ibr8 

br,, ai] = [&A, &;f] = dm,-n6rs, m # 0 - 
(S&, Si) = Sm,-nS’” 

(2.10) - 

All other (anti-)commutatorsvanish. In terms of these oscillators the generators 

of the superconformal algebra may be expressed as, 

L, =:a',-,aL:+(n- 5):SL+S::+i6m,o 

;: 
G;t, = S;-,a’, 

G,=S' ' m-n%. 

. 
- Hm =: Sk-,S;: 

(2.11) 

where sum over repeated indices is implied, and, 

-- - al; = &; = frp’ (2.12) 

Using Eqs.(2.10) and (2.11) we may explicitly verify the commutation relations 

(2.7). 

It will be nice if we can express the Lorentz and supersymmetry generators 

of the theory in terms of the generators of the superconformal algebra. It turns 

out, however, that we need two more sets of operators involving the fields X’ 

anJ S’ for this purpose. They are, 

,; 

_. .- (2.13) 
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These operators may be expressed as, _ 

Qp = {Go+,Pp) 

- 
&p = {G;,Pp) 

where, 

p = $pfsr ssst _ 
t’ 6 m n -m n+p 

(2.14) 

(2.15) 

Commutation relations of Pn, .Fn with various generators of the superconformal 

algebra are, 

-- - 

[hn,P,] = [im,P,] = 0 

[Lm, Pn] = (T - n)Pm+n 

{Gi,Pn} = Qm+n 

{G&y Pn} = 0 

[Hm,Pn] = -3Pm+n 

[Lm,pn] = (y - n)fs,+n 

{Gk, Pn} = 0 

{Gk, pn} = Qm+n 

[Hm, pn] = 3Fm+n 

(2.16) 

- 

Commutation relations of Qm, Qm with various generators of the supercon- 

formal algebra may be derived using Eqs.(2.14), (2.16) and the Jacobi identity. 
_- .- 

They are, 
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[Lm,Qn] = [Lm,Qn] = 0 

[Lm,Qn] = (m - n)Qm+n 

[GL, Qn] = 0 

[GG, Qn] = (2m - n)Pm+n 

[Hrn, Qn] = -2Qm+n 

[Lm, On] = (m - n)Qm+n 

[G$,‘Qn] = (2m - n)Fm+n 

[Hm, On]= 2Qm+n 

Finally we also need the anticommutator, 

{Po~FcI) = -(iHi + C H-mHm) 
m>O 

from which we can derive, 

i&O, &o] =[ C (L-mHm + H-ALm + GI,G& - GzmG,) 
.m>O 

-- - 
+ (LO - $Ho + +(G;G,+ - G;GJ] 

(2.17) 

(2.18) 

(2.19) 

This completes the list of all the commutation relations that we need to know 

for our analysis. We now introduce the oscillators in the theory described by SO: 

- 
(2.20) 

n=-ca 
ca 

n=-co 



- 

: 
:-, 

Xi and Se have similar expansions. The (anti)commutation relations are, 

[ze,pi] = [zi,pe] = i 

be,, CY!] = [&k, &El = V.&,-n 

{Sk9 si} = bm,-n 

{T&j +!I = 6,,-nb’” 

(2.21) fi 

all other (anti)commutators being zero. Since the fields involved in the action 

SO remain free fields even in the presence of background fields, we may use these 

fields explicitly in the construction of the Lorentz and supersymmetry generators 

of the theory. It is however convenient to introduce the following operators, 

iU$) =.&* _ $.+l(n- !C):+$e _ q/s . m n n* 2 m n n’ 

LC$ =.Q* _ ,i.+rnm ?.l).si- s* . m n n- 2 * m n n: 

(2.22) 

Finally we introduce the light-cone coordinates Z* and their conjugate vari- 

ables ~3, satisfying the commutation relations, 

[s-,p+] = [s+,p-] = i (2.23) 
- 

We are now ready to write down the Lorentz generators J@, Je* and Ji*, 

as well as the four component supersymmetry generators Ka (a=1,...4). They 

are given by, 

O”l 
Jei =,epi-,ipe -iC~(~8nae,-cre_n~8,+~8_nse,-~~niyBR) 

n=l 

i - -- 
2 

(-&“,$i - S:,S;) + ;(S,“S[ - S$,“)) + ;Ho 

n=l 

(2.24) 

(2.25) 
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Jth = .ip+ _ .+# 

J*- =&- 
- n=l 

- i(p+)-' C{ ;(dnLn 
[ 

O"l 
- L-n&t) + i(hs,in - L-n&z) 

n=l 

LF) &* ) 
n n 

1 

- i(dnHn + H-nafJ + (GT,SfZ - S!.,G~)} - ~CY~HO + G,Si + QO I ~-. 
(2127) 

(2.26) 

Ji- = .&- O"l - 
- S-pi - i(p+)-’ C ;(cYB_,Ln 

n=l 

- 

i(p+)-l f&$ 

[ . n=l 
- 

+ fr(dnHn + H-nai) + ( I!I G ,Si - S!,G;t)} + #Ho + G,+Sij + &o 1 
(2.28) - z- 

-- - 

- 

K’ = (p+) f (S,” + S[) 

K2 = i(p+)i(S! - 27,“) (2.30) 

K3 = (p+)-- (G,+ + G, + S~cx8, + S$Y”-,) : 

K4 = i(p+)-$(GO+ - G, + S’~CY!, - S~CLn) 

(2.31) 

(2.32) 

These expressions reduce to. the standard ones 12,331 once they are expressed in 

terms of the component fields. Using the commutation relations (2.7), (2.17), 
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(2.19) and (2.21) one may verify that Jp” and Ka satisfy the standard commu- 

tation relations, 

{K=, Kb} = 2(~~7’)=~p’* 
- 

[Jpv, Ka] = -t[r’, y”]“aK’ 

[JPu,JPx] = -i[JPxplyP - JuxqLQ' - J~P~ux +JYP~pX] 

if the mass-shell conditions 

$p+p- - (Lip) + Lo - ;, = ap+p- - (Ltp) + Lo - ;, = 0 

(2.33) 

_ are satisfied. Here qp are the four dimensional r-matrices. This is not a new 

result. What-is new is that the derivation of Eqs.(2.33) does not require the 

use of the commutation relations between the Xr, S’, $J’, and their complex 

conjugate fields, instead it only relies on the superconformal algebra (2.7), and 
- 

the commutation relations involving Qo, Qo. 

We shall now show that Pm, Pm may be expressed almost entirely in terms 

of the superconformal generators of the theory,* from which the commutation 

-- - relations (2.16) and (2.18) f 11 o ow directly. Since all commutation relations in- 

volving Qm’s may be derived from the ones involving Pm’s, it follows then that 

all the commutation relations that we need for proving Lorentz and space-time 

supersymmetry are consequences of the (2,0) su erconformal algebra. In order p 

to illustrate this construction it is convenient to euclideanize the two dimensional 

space, introduce complex variables z = t~~(r+~~), H = e2(7-i0), and define, 

- (2.35) 

* This construction has been used by Dixon et. al. 141 for the construct& of the spin 
operators in terms of the superconformal generators on an orbifold. 
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In terms of these fields the action (2.6) may be written as, 

1 - 
7r J 

d2z(d,Xr&X’ + a,X’&Xr + i,?‘dagr + i@a,$) (2.36) 

- - We now define 

P(Z) G CPmZ -m-4 = ~‘(@2(@3(~) 

m 

H(z) E 2 H,z-~-~ = c ?(z)ir(z) 
(2.37) 

m r 

We shall now show that P(z) may be expressed almost completely in terms 

of the generators Hm. Let us bosonize the fields ,!?, ,? as, 

s AiF Ar -. 

A- 
y -: ,-W: 

(2.38) 

- where 4’ is a free right moving scalar field. The U(1) current generated by H 

may be expressed in terms of the fields 4’ as, 

r 

where $(= -$ C 4’) is a free right moving scalar field. Then, 

C~‘=i(C(-~)Hm~-~+Holnz)fC86 

r m#O r 

f- 

(2.39) 

(2.40) 

where 4; denotes the center of mass coordinate of the field 4’. Then, 

- P(z) -:C~~~“:-:CJ~~):_:C,~(C kH,z-” _ Holnz+ d3i$o): (2.41) 
m#O 

The normal ordering in the above expression is done with respect to the oscillators 
,_ .- 

Hm, or equivalently with respect to the oscillators of the field 4. ~$0 is the center 
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of mass coordinate of the field 4, and is the conjugate variable to the center of 

mass momentum &HO. We choose the normal ordering prescription in such a 

way that all the terms involving 40 is to the left of all the terms involving HO. 

Defining the operator, 

U = ezp(d3iq50) (2.42) - 

Eqn. (2.41) may be written as, 

~_. 
P(Z) - U: ezp( c 

- m#O 
Ho lnz): (2.43) 

The operator U satisfies the following commutation relations ‘with the super- 

- Virasoro generators, 

ULmU-’ = Lm + Hm + i&,,o 

. . UGLU-l = G;+, 
- 

UG,U-’ = Ggml 

UHmU-’ = Hm + i&,0 

(2.44) 

-- - Thus P(z) and so all the Pm’s are expressed in terms of the oscillators Hm and 

the operator U. We may now calculate the commutators involving the Pm’s in 

terms of commutators involving the Hm’s and U and verify (2.16) and (2.18). 

Thus we see that the existence of the (2,0) superconformal algebra with cor- 

rect central charge (c=6) and the existence of the operator U satisfying the 

commutation relations (2.44) is sufficient to construct the Lorentz and the su- 

persymmetry generators of the theory. In the next section we shall use this result 

to discuss the space-time supersymmetry and Lorentz invariance of the heterotic 

st&g theory compactified on a Calabi-Yau manifold. 
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4 

3. HETEROTIC STRING THEORY .a 
ON A CALABI-YAU BACKGROUND 

In this section we shall discuss Lorentz and supersymmetry invariance for 

- - the heterotic string theory compactified on a Calabi-Yau background. We start 

by writing down the action for the heterotic string theory in the presence of the 

background metric Gij(z) and gauge field A?(s) in the GS formalism in the 

light-cone gauge, [VO--321 _ 

~-. 

S = i 
J 

d2[[Gij(X)d+Xid-Xi + iS’aa-Sa - fs~(Cab),pSP,iab(X)a-Xi 

+ ;$“a+$” + $e(TM)&kA~(.x)d+xi - ~F,“a(x)~e(~M)tk~kS’X(Cab),psP] 
(3.1) 

where again we have set cy’ to be $. 

It is knowhl3’1g1 that if we identify the gauge connection with the spin con- 

nection, and set the background metric to be Ricci-flat and Kahler (e.g. if the 
- 

holonomy group is SU(3)), th en the above action looks identical to that of the 

NSR model, and has (2,2) supersymmetry. This is due to the fact that under 

the SU(3) subgroup both the spinor and the vector representations of SO(8) 

transform-in the same way. Hence the term iS”(Cab),pSP looks identical to the 
-. - 

term XQXb that we would have gotten in the NSR formalism, if we replace the 

components S * Se, S’ and S’ by A*, Xi, A’ and A’ respectively. The problem, , 

however, is that the background metric, which gives vanishing p-function in the 

NSR formalism, is not Ricci-flat, and so does not have SU(3) holonomy. The 

action (3.1) with such a background has extra terms proportional to the U(1) 

part of the spin connection which does not look like the corresponding terms in 

the NSR formalism, and hence the model looses (2,2) supersymmetry. 

i( 

- It turns out that there is a simple solution to this problem. It was pointed out 

in Ref.[36] that although the physical background metric is not Ricci-flat, from 

the point of view of the two dimensional a-model we may still take the back- 
,. .- 

ground metric to be Ricci flat, and compensate for this by adding higher order 
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counterterms in the perturbation theory. This gives rise to the same physical the- 

ory as the one formulated on a non-Ricci flat background, only the calculational 

scheme is somewhat different. The renormalization prescription that we shall 

use to define the theory given by the action (3.1) is the following. We start from 

- a Ricci flat background for which the theory reduces to a (2,2) supersymmetric 

model, and then choose the higher order counterterms according to the prescrip- 

tion of Ref. [36], which gives a conformally invariant theory. Alternatively we can 

start from a non Ricci-flat background so that the classical theory described by 

the action (1.1) d oes not have (2,2) supersymmetry, and then choose the higher 

order counterterms in such a way so as to cancel the unwanted terms, and restore 

(2,2) supersymmetry, as well as conformal invariance at the quantum level.* 

In the presence of a Ricci-flat Kahler metric with gauge connection identified 

with the spin connection, the action (3.1) reduces to, 

s = so + s; (3.2) 

- 
where SO has been given in (2.5) and, 

S; = ; 
/ [ 

d2E G,,-(d+X’d-X” + d+X”a-X’) + ;G,,-(SbaS’. 

+ rtruS”Sud~Xt + S’d-S” + r,~~srs”a-x” 

+ gPa+?y + rtru?pt)Pa+xt + y!Jra+$!J3 + r,s&rl)Pa+X’) 
(3.3) 

- Rrgt%SrS”$tt,b” 1 
- Here I’ is the Christoffel symbol, and R the Riemann tensor constructed from 

the metric GrF. (3.3) describes a (2,2) supersymmetric, conformally invariant 

* Note that we are not claiming to have proved at this stage that this renormalization scheme 
for the GS model is equivalent to maintaining (2,2) su p erconformal invariance in the NSR 
model. Certainly the supersymmetry in the GS model (which is part of the space-time 

- supersymmetry) is very different from the world sheet supersymmetry in the NSR model. 
The Lorentz generators look completely different when expressed in terms of the GS and 
the NSR fermions, even when the background has SU(3) holonomy. We expect, however, 
that if we are able to construct a Lorentz and supersymmetry invariant string theory using 
this prescription, then this theory will be identical to the corresponding theory in the NSR 
formulation. 
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.A a-model with the renormalization prescription given in Ref.[36]. As a result, the 

a-model posseses a (2,2) superconformal algebra whose (2,0) part is identical to 

that given in Eq.(2.7). Although no general proof has been given that the central 

charge c of this model has the value 6, it has been verified to be so to four loop 
- 

- order. ls4] We assume here that it does not get renormalized in higher loop orders 

in the perturbation theory. If we further assume that there exists an operator U 

in the theory satisfying the co-mmutation relations given in Eq.(2.44), we have all 

the necessary ingredients to construct the Lorentz and supersymmetry generators 

of the theory. We define them exactly as in Eqs.(2.24-2.33) with Qm and Pm 

defined through Eqs.(2.14) and (2.43) respectively. Since the superconformal 

algebra remains the same in the interacting case, so is the algebra of Lorentz and 

- supersymmetry generators, thereby showing that the theory has SO(3,l) Lorentz 

invariance, as-well as N=l space-time supersymmetry. 

The criteria for the existence of the operator U may also be replaced by the . 
- 

existence of a scalar field 4 such that the U(1) current H(z) may be expressed as 

in Eq.(2.39), and P(z) = ed3i# is a local operator in the theory. As we can see 

from Eq.(2.40), all the fourier components of r$, except ~$0 are defined in terms 

of the oscillators Hm. The operator U essentially defines ~$0. Using Eq.(2.39) 
-. - 

we may write down the operator product of 4(z) with itself, as well as all the 

superconformal currents. To see this let us write the operator product of H(z) 

with the superconformal currents, 

- G+(z)H(w) - --&G+(z) 

G-(z)H(w) - -LG-(z) 
W--z 

mww - (z “,,z 

(34 
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from which we get, 

- G+b+e4 d3 - 2 In (Z - w)G+(z) 

G--(44(4 - --$ln(z - w)G-(z) 

H(z)q@) - -iJ3& 
._ ~_. 

4(4&4 - - ln (w - 4 

(3.5) 

The operator P(z) may now he expressed in terms of the field 4(z) using 

_ Eqs.(2.41), and its operator product with itself, as well as with various com- 

ponents of the superconformal current may be calculated using Eqs.(3.5). Since 

these operator products will be identical to the ones in the free field theory, it 

follows that the commutators (2.16) and (2.18) remain unchanged from the free 
. . 

- field result. This, in turn, implies that there is no anomaly in the Lorentz and 

supersymmetry algebra. 

We now compare our result with the result of the analysis in the NSR >- 

formalism13g’50’511 . Let us first briefly recall the construction of the supersymme- -- - 
try generators in the absence of any background fields. The ten Majorana-Weyl 

fermions X1 , . ..AIO are first grouped into five complex fermions A”, A%, (a=1,...5) 

and then bosonized as, 

The supersymmetry generators of the full ten dimensional theory are then given 

by, - 

e-+tle;(i-pf(2...f(5) 
P-7) 

__ _ where 7 is a bosonized ghost field. 
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If we identify the first six directions as internal directions, then the generators 

of a four dimensional N=l supersymmetry transformation are given by, 

(3.8) 
- 

Upon compactification, the fields Xr, X’ (15 r 53) becomes interacting, the 

action for these fields being identical to (3.3) with S’, SF replaced by X’, X’ (or, 

in the bosonized version, 4’ replaced by cr). The problem of constructing the 

supersymmetry generators in the theory is to find the analog of the operator 

c~(~‘+~2+~‘-3) in the interacting theory, which satisfy the same operator product 

expansion with itself, and the superconformal currents, as in the free theory. As 

can be easily seen, the term in the exponent is precisely $; times the analog of 

the field 4. We may then construct the supersymmetry generators in the inter- 

acting theory by replacing the term e$(t’+t2+t3) by eCqo. Hence the existence of 

.the field 4 in the (2,2) su ers p y mmetric a-model on a Calabi-Yau manifold also 

guarantees that the corresponding NSR formulation of the theory has N=l space- 

time supersymmetry. * In this case the supersymmetry current will be local only 

with respect to those vertex operators which survive the GSO projection. 

As can. be easily seen, our analysis trivially generalizes to the case where 

the background fields are such as to give a (2,0) superconformal field theory 

involving the fields Xr, S’, $J’ and their complex conjugates. The Lorentz and 

supersymmetry generators are constructed in terms of the (2,0) superconformal 

generators, and the operator U, we never needed to use the (0,2) part of the 

superconformal algebra that exists on a Calabi-Yau manifold. This part of the 

algebra, however, will be useful to us in the next section in the discussion of the 

unbroken gauge symmetries of the model. 

-- - 

A Note that although the interacting part of the theory looks identical in the GS and the 
NSR formulation of the theory, the basic fermionic variables in the theory are very different. 
However, the constraint of the existence of the field 4 satisfying the necessary properties 
is a constraint on the particular a-model, irrespective of the interpretation- of the fields 
appearing in the model. Hence the existence of such a field in the theory can be used in 
both, the GS and the NSR formulation. 
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4. GAUGE SYMMETRIES 

The free heterotic string has gauge group Es x Es. Only the SO(16) x SO( 16) 

part of this gauge group is realized linearly, under which the thirty two fermions 

- _ tranform in the (16,1)+(1,16) representation.[21 The other generators of the 

gauge group are constructed in terms of the spin operators of the theory. For 

simplicity let us focus on one of the Es groups. We first combine the sixteen 

fermions +!J~ into eight complex fermions +“, +’ (a=1,...8), and then bosonize 

them to get eight left-moving scalar fields xa: 

where the fields xa are taken to- lie on the fundamental torus of SO(16). The 

- spin operators are given by, 

: ,i c:,, waxa: (4.2) 

where CI= is a weight vector in the spinor representation of SO(16). There are 
-. 128 such operators, which, combined with the 120 generators of SO(16), gives 

the 248 generators of the J?& group. 

Let us now identify an SU(3) subgroup of SO(16) under which the first three 

$“, $a transform as 3 and 3 respectively, while the other components of $J remain 

neutral. We identify $“, $‘i, (a=1,..3) with $J’ and $’ appearing in Eq.(2.6). The 

128 dimensional spinor representation of SO (16) contains 32 singlets of this SU(3) 

group. These transform in the 16+i6 representation of the SO(10) group which 

commutes with this SU(3). Th e corresponding weight vectors are given by, 

a1 = a2 = a3 = ; 

(~1, = Pa, (4 5 a I 8) 
(4.3) 

and, 
- 

where Pa and ,& denote weight vectors for 16 and i6 representations of SO(10) 
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respectively. The corresponding spin operators are, 

- 
and, 

(4.5) 

(4.6) 

Upon introducing the background fields the fields x8 (s=1,..3) will become 

interacting and as a result most of the spin operators given in Eq.(4.2) will cease 

to be-symmetry generators of the theory. However, the operator x1 + x2 + x3 

may be identified to 436, where 4 is the analog of C$ in the left handed sector. 

_ (Then existence of 4 guarantees the existence of 4, due to the left-right symmetry 

of the model.) We may now generalize (4.5) and (4.6) in the interacting theory 

as, 

and, 

(4.8) -- 

-- - 
respectively. The operator product of these operators with the conformal currents 

will be the same as in the free field case, hence they remain symmetry generators 

of the theory. These are the generators which transform in 16+ 16 representation 

of the SO(10) group. Again, these operators will be local only with respect 

to those vertex operators which survive the GSO projection in the left-handed 

sector. 

We may now count the total number of symmetry generators. There are forty 

-fiye generators of SO(10) which g enerate rotations among the ten free fermions 

G7, . ..$16. There is the U(1) generator HO itself. Finally there are thirty two spin 

operators belonging to the 16+16 representation of SO(l0). These together give 
.- 

the seventy eight generators of E 6. There are of course sixteen other free fermions 
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+ +32 17 
. . , . . . with a symmetry group Es that is untouched by compactification. 

Thus the unbroken symmetry group of the theory is Es x EC+ Notice that this 

analysis has been based on the existence of the (2,2) superconformal algebra, 

and the assumption that the U(1) current may be witten as the derivative of a 
- 

local field, and does not directly require the knowledge of background gauge field 

expectation value. 

We conclude this section with the following comment. In the NSR formalism, 

~_. in order to get (2,2) supersymmetric model we had to set the gauge connection 

to be equal to the spin connection. Then, in order to get vanishing p-function 

we had to choose a spin connection which does not have SU(3) holonomy, but 

has U(3) holonomy. One might then think that the gauge connection takes value 

- in a U(3) subgroup of Eg, and hence breaks the Es group to SO(lO)xU(l). It 

turns out, however, that the determination of the unbroken gauge group from this 

analysis is much more subtle. The subtlety lies in an ambiguity introduced by 

. . the renormalization prescription. In the NSR model, two different renormaliza- 
- 

tion prescriptions, each maintaining (1,0) supersymmetry, differ from each other 

by a redefinition of various background fields. [55’561 Let us now compare the 

following two different renormalization schemes. In one scheme, we carry out 

the renormalization without imposing any constraints on the background fields 
-- - 

at the beginning, and choose the renormalization counterterms in such a way 

that it maintains (1,0) supersymmetry, and the gauge fields have standard gauge 

transformation laws. Let us call the background gauge field appearing in this 

scheme Aphys. In the other scheme, we set the gauge connection to be equal to 

the spin connection at the beginning so that we have a (1,l) supersymmetry, 

and carry out the renormalization maintaining this symmetry. Let us denote 

the background gauge field in this scheme by ASuSy. The two different renor- 

-malization schemes may be related to each other’55’561 by a functional relation 

between Aphys and ASuSY. In other words, the theory at a given value of Asusy in 

the second scheme will be identical to the theory at a different value-of Aphys in 
,. .- 

the first scheme, the value being given by a function Aphys(Asusy). (In general 
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the functional relation will involve other background fields as well, we have not 

displayed them explicitly for convenience.) 

- 

Our analysis of conformal invariance tells us that Asusy needs to have U(3) 

holonomy in order to maintain conformal invariance. However, in order to deter- 

mine the unbroken gauge group we need to know Aphys. It is perfectly possible 

that Aphys still has SU(3) h 1 o onomy, and hence gives an unbroken Eg gauge 

group. One may try to determine the vev of Aphys either by direct calculation 

of the p-function of the (1,O) model, or by calculating the effective action for 

the heterotic string from the scattering amplitudes, and solving the equations 

of motion derived from the effective action. Partial results have already been 

obtained. [579581 

- 
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5. CONCLUSION 

In this paper we have analyzed the propagation of the the heterotic string 

theory on a Calabi-Yau background in the Green-Schwarz formulation. The two 
- - dimensional theory describing the string propagation in such a background is the 

sum of a free field theory and a (2,2) supersymmetric conformally invariant g- 

model on the Calabi-Yau manifold. N=l space-time supersymmetry is manifest 

in this formalism, however only the SO(2) subgroup of the full SO(3,l) Lorentz 

group is realized linearly. We find that a sufficient condition for the theory to have 

full SO(3,l) L orentz invariance is that the U(1) part of the (2,0) superconformal 

current of the theory may be expressed as -id38,4 where 4 is a scalar field 

satisfying the constraint that P(i) = ed3i4 is a local operator in the theory. In 

this case we can explicitly construct all the Lorentz generators in terms of the 

field 4, the superconformal currents and some free fields corresponding to the 

_ uncompactified dimensions. The commutators of the Lorentz generators with 
. 

- themselves, as well as with the supersymmetry generators, may be calculated 

only by using the superconformal algebra and some free field commutators, and 

may be shown to be free from any anomaly. 

-- - 
The same constraint on the U(1) current may be obtained from an analysis 

of the Neveu-Schwarz-Ramondformulation of the theory. In this formulation the 

SO(3,l) Lorentz invariance is manifest, but not the space-time supersymmetry. 

The two dimensional field theory describing the string propagation in background 

fields is again the sum of a free field theory and a (2,2) superconformal o-model 

on the Calabi-Yau manifold. If the U(1) part of the (2,0) superconformal current 

satisfies the constraint mentioned above, the space-time supersymmetry gener- 

ators of the theory may be constructed in terms of the field 4 and some other 

free fields, and may be shown to satisfy the correct commutation relation among - 
themselves, as well as with the Lorentz generators. 

. 
Thus our analysis determines a sufficient condition for obtaining a Lorentz in- 

variant, space-time supersymmetric theory by string compactification on Calabi- 
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.I. Yau manifolds. Since only the (2,0) part of the full (2,2) superconformal algebra 

is relevant for our analysis, our result easily generalizes to more general class 

of manifolds which give rise to (2,0) su p erconformal field theories on the world 

sheet. On the other hand, the (0,2) part of the superconformal algebra is relevant 
- 

for discussing gauge symmetries of the compactified theory. Since the model is 

left-right symmetric, the U(1) part of the (0,2) superconformal current may be 

written as the derivative of a scalar field 4, if the U(1) part of the (2,0) super- 

conformal current satisfies a similar condition. It turns out that the generators 
~_ 

of the full Es x Eg group may then be constructed in terms of the field 4, the 

(0,2) superconformal currents, and some free fields, and may be shown to satisfy 

the correct commutation relations. Thus the unbroken gauge symmetry in this 

theory is ES x E6. 

It remains to be seen whether superconformal field theories on Calabi-Yau 

manifolds satisfy the criteria derived in this paper. It may be possible to prove 

this *in general following the line of arguments presented in Ref.[17]. On the 

other hand this may also be investigated in the perturbation theory. The current 

P(i), being conserved (azP(z) = 0), g enerates a symmetry transformation of the 

theory, which, to lowest order, is given by, 

This is a symmetry of the classical a-model described by the action (3.3) if the 

background has SU(3) holonomy. In order to guarantee the existence of the 

current P(z), some generalization of this symmetry must be maintained in the 

perturbation theory. A particularly interesting question would be to study what 

happens at the three loop order, since the requirement of the vanishing of the 

p-function forces us to choose a metric which has U(3) holonomy at order CY’~. 

(e, equivalently, forces us to choose a finite counterterm at the three loop order 

which does not respect the symmetry (5.1)). 

A closely related question would be to study how the local U(1) symmetry 
. 

generated by H( z is maintained in the perturbation theory. This symmetry ) 
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- 

suffers from an anomaly proportional to the Ricci tensor at one loop order. Thus, 

taking the background to be non Ricci-flat produces an apparent anomaly. On the 

other hand, (2,2) supersymmetry and conformal invariance guarantees that this 

local U(1) y s mmetry cannot be anomalous, since it is part of the superconformal 

- algebra. Hence at the four loop order, the U(1) anomaly must receive some new 

contribution, which cancels the term proportional to the Ricci tensor. Since the z- 

dependent part of the operator P(z) is constructed solely in terms of the operator 

H(z), we believe that a detailed understanding of the symmetry generated by H 

will also throw some light on the symmetry generated by P. 

In-order to illustrate this point we shall now give a heuristic argument showing 

that the criteria mentioned above are indeed satisfied by the theories considered 

_ here. Let us introduce vielbein fields e:, e:, and the fields Sa(= e;S’), S’“, T,P and 

T+!J~. Expressed in terms of these fields, the action (3.3) naturally splits into a free 

part given by the action (2.6), and an interacting part which does not contain 

any derivatives of S or T,LJ. We may now go into the hamiltonian formalism and . 
- 

bosonize the fields 9, ,!!?a in the interaction picture as PI 

. [Sal1 - [: ei+“:lI 

[S”lI N [: e-‘fql 
(5.2) -- 

-- - 

where [+=I1 (a=I,..3) d enote free right moving scalar fields, and the subscript I 

indicates that we are working in the interaction picture. The o and r components 

of the U(1) current H are given by, (we are now working in the usual o, r 

coordinate system with Minkowski signature), 

- 

- 
since in the interaction picture q5 is a free right moving scalar field. If Hint is the 
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1; interaction hamiltonian, and U(r) is the matrix, 

U(T) = T ezp(-i/i Hint(T’)dT’) 

0 
- 

where T denotes time ordering. Then the currents Hr and H,, are given in the 

Heisenberg picture as, 

Hr = Hg N -2, (U(7) [ c ,a(T,c7)] 
I 

u-l(T)) F-4 

H7 in Eq.15.4) may be expressed as, 

HT - -i& (U(T) [c da] U-‘(T)) + U(T) [Ha, c +“] U-‘(T) (5.5) 
I I 

Since H describes a conserved current, a,H, -arHT = 0. Using Eq.(5.4) and 

the equations of motion of [d”lz th e conservation equation becomes, 

(5.6) 

In general the commutator [Hint(r), C +“(~,a)] will be given by a local operator - --- 

at (a,~). Eq.(5.6) t 11 e s us that this operator is independent of 0. The only such 

-. - operator in the theory is the identity operator. Thus we get, 

[Hi,&), c @hd] = c (5.7) 

where c is a constant. Assuming, for simplicity, that c vanishes, we get, 

from Eq.(5.5). Th is shows that the current H may be expressed as in Eq.(2.39) 

-with 4 given by, $U[ C 4’1 IU-1. The operator P(z) is given by eabcSaSbSc, 

as can be seen by re-fermionizing the bosonic variables @, and hence is a local 

operator in the theory. A non-zero c in Eq.(5.7) will give an extra c-dependent 
_. .- 

phase in the definition of P. 
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4 ‘. 

Notice that in this derivation we have never used the criteria for SU(3) holon- 

- 

omy. However, if we try to calculate Hint explicitly, and evaluate the commuta- 

tors (5.6) or (5.7), we shall get a term proportional to the Ricci tensor. This, of 

course, is a reflection of the U(1) anomaly. There must be some subtle quantum 

- effects (which may come from the dynamics of the fields X or $) which makes 

the commutator (5.6) vanish, since (2,0) su p erconformal invariance guarantees 

a conserved U(1) current. The argument that we have presented here uses only 

this fact to establish the existence of the field 4. Since our argument is based 

on the (2,0) superconformal invariance only, it can be extended to more general 

a-models with (2,0) superconformal invariance. 
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