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ABSTRACT

Given two conformal field theories related to each other by a marginal pertur-
bation, and string field theories constructed around such backgrounds, we show
how to construct explicit redefinition of string fields which relate these two string
field theories. The analysis is carried out completely for quadratic and cubic terms
in the action. Although a general proof of existence of field redefinitions which re-
late higher point vertices is not given, specific examples are discussed. Equivalence
of string field theories formulated around two conformal field theories which are not
close to each other, but are related to each other by a series of marginal deforma-
tions, is also discussed. The analysis can also be applied to study the equivalence

of different formulation of string field theories around the same background.
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1. INTRODUCTION

A complete formulation of closed bosonic string field theory has been given in
the last few years in terms of non-polynomial interactions [1] [2] (see also ref.[3]),
and quantization of this string field theory has also been carried out [4 — 8] . Such
a field theory can be formulated not only in the background of flat space-time,
but also in the background of any arbitrary conformal field theory [9] following
the formulation of refs.[10][11]. The natural question to ask is whether the string
field theory is background independent, i.e. given the string field theory action
around two different conformal field theory backgrounds, whether we can find a

redefinition of string fields which relates these two actions.

The question was partially answered in two previous papers [12] [13]. In these
papers we studied the relationship between string field theories formulated around
two neighbouring conformal field theories, — CFT and CFT”, — related by a
marginal perturbation. Let ¥ and U denote the string fields corresponding to
string field theories formulated around CFT and CFT” respectively, and S(¥) and
S() be the corresponding string field theory actions. It was shown in ref.[12] that
there is a classical solution W,; of the equations of motion (0S/0V¥) = 0 such that
if we define W = ¥ — ¥, and S(¥) = S(¥) — S(¥,), then the kinetic operator
of S() is related to the kinetic operator of S(¥) by a similarity transformation.
Furthermore, the linearized form of the gauge transformation of ¥ is also related
to that of U by the same similarity transformation. The analysis was carried out to
the first order in the perturbation which relates CFT and CFT”. In other words,
ref.[12] established the equivalence between the quadratic terms in the actions
S(¥) and S(F). On the other hand, in ref.[13] we analyzed the physical S-matrix
elements in the two theories described by the actions S(¥) and S(¥), and showed
that they are the same. The analysis was carried out for all three point amplitudes

and all N-point tachyonic amplitudes.

In this paper, we shall show with the help of the results of refs.[12] and [13]

that one can construct explicit redefinition of string fields which converts the action



S(¥) to S(¥), and hence to S(¥). The analysis is carried out completely for the
cubic vertices in the two theories, using a method similar to the one used in ref.[14].
(The analysis for the quadratic terms was already done in ref.[12]). We also discuss
some specific features that appear in the analysis of the higher order vertices, and
show, in special cases, how explicit field redefinitions may be found which relate
the vertices in S(¥) and S(¥). But a general proof of equivalence of these two

vertices is not given.

Assuming that a complete set of field redefinitions can be found which relate
S(U) and S(¥) to first order in the perturbation parameter ), one can ask if
the analysis can be extended beyond first order in A and hence can be used to
relate string field theories around backgrounds that are not necessarily close to
each other but can be obtained from each other by a series of marginal deforma-
tions. Intuitively it is clear that the string field theories constructed around two
such backgrounds will also be related by field redefinition, which can be built by
combining successive field redefinitions which relate two nearby conformal field
theories. We give a general algorithm for finding these finite field redefinitions in

terms of the infinitesimal ones.

The plan of the paper is as follows. Sect.2 contains a precise formulation of
the problem that we are going to study, as well as its relationship with the work of
ref.[12]. In sect.3 we prove the existence of field redefinitions that relate the cubic
vertices of these two theories, and also give the general algorithm for constructing
these field redefinitions. Sect.4 contains a discussion of the corresponding analysis
for higher point vertices. Sect.5 deals with the case where the two conformal field
theories are not necessarily close. We also use the result of this section to construct
the classical solution in string field theory representing the perturbed conformal
field theory to second order in the perturbation parameter. We conclude in sect.6
with a discussion of our results and some comments. The three appendices contain

some of the technical results needed in the analysis of sects. 3, 4 and 5.



2. FORMULATION OF THE PROBLEM

We begin this section with a precise formulation of the problem that we want
to solve. Let CFT and CFT” be two different conformal field theories, both with
central charge 26, and hence both providing consistent background for the formu-
lation of string theory. Let |¥) and |¥) denote string fields for the string field
theories formulated around CFT and CFT” respectively, and S(¥) and S(¥) be
the actions of the corresponding string field theories. In order to prove background
independence of string field theory, one needs to find a functional relationship of

the form W = f(¥) such that,

S(f(¥)) = S(¥) + constant (2.1)

Let us denote by CFTG (CFTG”) the combined conformal field theory of the ghost
system and CFT (CFT”). If H (H) denote the complete Hilbert space of CFTG
(CFTG"), and Ly, Ly (L, f:n) denote the total Virasoro generators of CFTG
(CFTG"), then by |¥) (by |¥)) is an arbitrary state in H (H) with ghost number 2
and annihilated by by and Ly = Lo — L (f)g = Log— l:LO). Then the actions S(W)

and S(¥) are given by,

1 B > gN—2
S(W) = S(wIQuty [¥) + Y L () 22)
N=3 '
and
ST Lo~ =y OO9N_2~N//
S(9) = S(IQpty 19)" + 3 L {0V (23)
N=3 '
with the gauge invariance,
A
by O|¥) = Qpby [A) + ) m[‘l’ A (2.4)
N=3 '
~ ~ ~ > gN_2 = N_9 %
by O10) = Qpby [A) + ) m[‘l’ A (2.5)
N=3 ’

where by |A) (by |A)) are states of ghost number 1 in H (F) annihilated by by



and Ly (Lg). Qp (Qp) is the nilpotent BRST operator acting in H (#), and (/)
((])") denote the BPZ inner product [15] in CFTG (CFTG”). Thus the operators
Ln, Qp (Ln, Qp) etc. have appropriate hermiticity properties with respect to
the inner product (|) ((|)”) but not with respect to the inner product (|} ({|)).
[A1...Ay] and {A;... Ay} = (=1)FT1(A|[As ... Ay]) denote multilinear maps
from N-fold tensor product of ‘H to H and C respectively, and are constructed
in terms of correlation functions in CFTG [10] [1] [2] [9] [12] [13]. Here ny denotes
the ghost number of the state |A;). Similarly, [A;... Ay]” and {A;... Ay}’ =
(—1)m (A |[Ay ... Ay]")" denote multilinear maps from N-fold tensor product
of H to H and C respectively, and are constructed in terms of correlation functions

in CFTG".

Let us introduce a basis of states |®,,) in the subspace H,, of H of ghost
number 7, and annihilated by b, and L, . Similarly, let @nr> be a basis of states
in the subspace H,, of H of ghost number n and annihilated by by and Eg . Then

we may write,

by () = by o) (2.6)

by 10) =D dr|Pay) (2.7)

It was shown in ref.[12] that the operators L. Em in H may be represented in the
Hilbert space H and vice versa, that is, there is a natural isomorphism between
the Hilbert spaces H and H. Let us denote the image of |<i>n7r) in ‘H under
this isomorphism also by |®,,). Then |®,,) and |®,,) are related by a linear

transformation of the form:

Z Vi@, ) (2.8)

* This was done at finite value of the regulator which controls the short distance singularities.
In our analysis we shall keep the regulator finite throughout our analysis, and set it to zero
only at the very end. For a coordinate independent description see ref.[16].



We can now expand b, | V) as,
by W) =D dylda,) (2.9)
where 1), and ¢! are related by,
U= VY, (2.10)

Using eqs.(2.2), (2.3), (2.7) and (2.9) we may express S(¥) and S(¥) as,

00 1 N
S(W) =Y mAﬁl..).rN@bil by (2.11)
N=2
- N -
S(v) = Z mAﬁl..).rN@bn Py (2.12)
N=2
where,
AR, = (@1, |Qpcy | o) (2.13)
AN = N2 (g Bo) (g Pory)} for N >3 (2.14)
2 & Sy~ "
ATsz - <(I)2,7'1|QBCQ ‘(I)2,r2> (215)
AN = N2 (g Bor) (g Bory)}! for N >3 (2.16)

We now seek the following form of functional relationship between 1)/, and Uy
0, v 1 (v-1) - -
o= (VI =¥ + Y SR (2.17)
N=1"""~

which satisfies eq.(2.1). Here wq(ao) and Sﬁé\i_?N are some constants. Without any

loss of generality we can choose SV=1 to be symmetric in its last N indices.



Proof of background independence of string field theory now reduces to showing
the existence of appropriate @by(,o) and Sﬁﬁ‘& satisfying eq.(2.1). In order that the
term linear in ¢ on the left hand side of eq.(2.1) vanishes, by [¥(0)) =3 ¢7€0) |Dg,)

must be a solution of the classical equations of motion derived from the action S(¥).

Let us define,
szr = w;' - ?%(«0), b6|@> = Z@Er|é27r> (2'18)

Using this, we may express eq.(2.11) as

N (2.19)

where,
20 GM+N- 2 (O M2 ~
r1 7'N = Z (M — )) (co q)2r1)---(06q)2,rw)}
M:2
QN{(CO Py n)- (¢ , rw)}/ for N >3
A~ M 2 ~ ~
AR, — (o, Qac B2 + 3 ar =oY@ B2 ) B2}
M=3 '
= <¢27T1|QBCE|¢27T2>
(2.20)
where,
F o 9 0)\ M—2
{Ar. AyY =) m{(qﬂ NM=24, . Ay} (2.21)
M=2 ’
A = gM? 0)\M—2
Qpby |A) = Qpby |A) + m[(\p( )\ M=2 4] (2.22)
M=3 ’
and,
o M—2 v
(A ... An]' = Z wONM=24,  AN] (2.23)
2

Detailed properties of Qp, [A;1...Ay]" and {A4;... Ay}’ have been analyzed in



ref.[9]. Identifying the constant in eq.(2.1) with S(¥(9)) we can now express this

equation as,

A ~

S(0) = S(I) (2.24)

with eq.(2.17) taking the form:

. 1 -
¢ = Z F rs1 SN¢81' -¢3N (225>

N=1

Using eqs.(2.12), (2.19), (2.24) and (2.25) we get,

ARdlars =A% (S Siadars + SitaShatrs + SixtaSizhirs)

. (2.27)
+ Ss(?7)~1 Sgg’z‘g Sgg’z‘g Ag??SQSS
and more generally,
~(N 1 - N1 No—1 Nyp—1
A7("1..).'I'N - Z W <AL(G?)S“S€(,17‘11T)]\71 SLEQTQ(ngl)...T(NlJF]\b) P Sugnr(Nfz\fn+1)---7ﬂN
{n,N1,..., Nnp}
nzz,NizLE N;=N
+ All permutations of rq.. .TN>
(2.28)

We shall consider the case where CFT and CFT” are related to each other by
an exactly marginal perturbation. Also, in this section, we shall work to first order
in the perturbation parameter \. For definiteness, we take CFT to be a direct sum
of a theory of some free scalar fields (one of which is time-like) and an internal
conformal field theory; and take the marginal operator that relates CFT to CFT”
to be a dimension (1, 1) operator ¢ in this internal conformal field theory. It was

shown in ref.[12] that if the two dimensional action for CFT” is obtained by adding



a term of the form —\ [ d?2¢(z, 2) to the two dimensional action of CFT, then
¥ is given by,

2\
7180 = Y2 (2.29)

It was also shown that to order A, there is an operator S (called S in ref.[12])
which acts on states annihilated by by and L, = Eg , and relates the BRST charge
Qp of CFTG” to Qp defined in eq.(2.22) through the relation:

Qp =SQpS™! (2.30)
Furthermore, S preserves the inner product between states:

(§@1cy [SP2) = (P1]cy [P2)" (2.31)
where |®1) and |®g) are any two states annihilated by by and L. Taking the ma-
trix elements of both sides of eq.(2.30) between the states S|®a,, ) and ¢y S|®a,),
and using eq.(2.31), we get,

(8P, |cg QBISP2r,) = (Por, |cg Qp|Par,)" (2.32)
Thus, if we define Sﬁg) through the relation,
Slba,) = S| (2.33)
r
then, using egs.(2.15) and (2.20), eq.(2.32) may be written in the form:
AR, S0, 880), = AR, (2:34)

This is precisely eq.(2.26). Thus we see that S§9) defined in eq.(2.33) provides a
solution to eq.(2.26).



In the next sections we shall show how to obtain solutions of eqgs.(2.27) and
also discuss some general features of the other equations (2.28). For our analysis

it will be more convenient to define v, as,

Uy = (SO Lejg (2.35)

Then the action S(¥) given in eq.(2.19) may be expressed as,

. a _ 1 ~(oy - — 01 - _ _
S(8) = S(9) = SAD G+ Y A o (2:36)
N=3
where,
AN =50 O AN for N> 3 (2.37)

The relation (2.25) now takes the form:

oo 1 B
Gr =+ Y S Sa ot (2:38)
N=2

where,
Sty =SS (SO for N> 2 (2.39)

s

Eqgs.(2.27) and (2.28) may now be writtten as,

AR vy = ARy + (A2, 8y + AR Sy + A5 ) (2.40)
and,
i) gV 1 1(M)
AT‘l...TN _A’/‘l...TN + Z n'(M . n>' HZ NZ' <AT1..‘7‘]\17”81...S7L

n,M,Nq,...Nn,
2<M<N,1<n<M,N; >2, anJrZ N;=N

S(N1 1) a(N2—1) S(N n—1)
X S1IT(M—n+1)---T(M—n+Np )~ 82T (M —n+Ny+1)---T(M—n+Nj+Ng) * SnT(N—Np+1)---TN

+ All permutations of rq .. .TN>
(2.41)

Before we conclude this section, we shall write down the gauge symmetries

of the action S(¥). The action S(¥) is known to have a gauge symmetry of the

10



form [9]

©  N-2
— 2 A g A N—
by 0(10)) = Qpby |A) + > m[‘l’N 2A) (2.42)
N=3 ’
If we define,
by [T) = | ®2,) = S0y | ) (2.43)
then eqgs.(2.42) and (2.30) gives,
T = n - QN_2 1rgN=2A1
by O[T = Qpby |A) + Y ms— [N =24 (2.44)
N=3 ’
where,
I8) = ST 1A) = 37 Ald,) (2.45)

Eq.(2.44), together with the relations (2.43) and (2.45) give the gauge symme-
tries of the action S(W¥) given in eq.(2.36). Note that the kinetic terms and the
linearized gauge transformations have the same form for S(¥) and S(¥). This fact

will be useful to us in the later analysis.

3. ANALYSIS OF CUBIC TERMS IN THE ACTION

(1)

In this section we shall show that it is possible to choose suitable 58,1«17«2 (or,
equivalently, gg}zm) so as to satisfy eq.(2.27) (or, equivalently, eq.(2.40)). We
shall choose to work with the quantities 53(71,37«2 and eq.(2.40), since the various
equations we shall encounter during this analysis take a more compact form in
terms of these variables. To begin with, we divide the basis states {|®,,)} into

three sets: physical states {®,, 1)}, unphysical states {|®,q,)}, and pure gauge

11



states {®, ., ,)}, satisfying the relations [13]:

Qp|®nk,) =0
S g | B, ) #Qpby|s) for any {ay, } and any |s) (3.1)
k’rl
QB aa,|Pna,) # 0 for any {aa,} (3.2)
|(§n7an71> = C?B|(i)n—1,an,1> (3.3)

We shall further group the BRST invariant basis states {|®,, 1, )} and {|®y.q, )}
into a single group, and denote this by {|<i>n7un)}. We shall now study eq.(2.40) for
different choices of the indices r1, 9 and r3, and show that it is possible to choose

5(1)

srr!

such that eq.(2.40) is satisfied for all possible values of the indices 71, ro and

r3.
Case I. All three indices correspond to unphysical states

In this case, let us choose,

|(i)277“1> = |(i)27042>a |é27T2> = |é2752>> |(i)277“3> = |(i)2;yz> (34)

Since A = <<i>27r|6~2305|<i>275) is non-vanishing only when |®g,) and |®g ) are
(2)

unphysical states, the only non-vanishing components of A are of the form A o

We may now express eq.(2.40) as,

i _ 4

o2 B2y2 a2 fB2y2

L A® g

~(2 =(1
+ (A7 s B262° 520027y

7(2) a1
0202 6283272 +A(722525§2L2g2) (35)

From eq.(3.2) and the definition of A it is clear that the matrix /1532)52 does not

have any left or right eigenvector with zero eigenvalue. Hence it is an invertible

12



matrix” Let M,, 3, be this inverse. Eq.(3.5) may then be satisfied by choosing,

al(l 1 (3 (3 1
SC(YZ)ﬂz’W - §M0¢252 (Af(52)5272 o A((52)5272 + nggﬂz) (3'6)

(1)

where Ly, Bava is an arbitrary tensor which is symmetric in 35 and 7 and satisfies:

o

O e F LS.+ I =0 (3.7)

Bay202 Yoz B2

In particular, we may take LM to be 0, but eq.(3.7) represents the most general
solution of eq.(3.5). As we shall see later in this section, L(}) needs to be ad-
justed appropriately in order to ensure that the coefficients S™) do not have any

discontinuity as a function of the momenta of various external states.

Case II. One of the indices corresponds to a BRST invariant state, others

correspond to unphysical states

Since eq.(2.40) is completely symmetric in the indices 71, ro and 73, we may,

without any loss of generality, choose:

|é27T1> = |(i)27u2>a |é27T2> = |(i)27062>> |(i)277“3> = |é2,ﬂ2> (38)
Eq.(2.40) then takes the form:

Al(z)az»% - Ai)m@ + (Afz)t& Stgl)mﬂz + A»(6’22)52 S gzum) (3'9)

This equation may be solved by choosing,

s g 1 ~(3) ~(3) )
Ssapiats = Ssatian = 5Mb202 (A — Avmiags T Losfiga) (3.10)
where L' is an arbitrary tensor, satisfying,
(1) /(1) .
Lazﬁzuz + Lﬂga2u2 =0 (311)

Case III. Two of the indices correspond to BRST invariant states, the

* Although fl((i)m is an infinite dimensional matrix, it is block diagonal in the basis which

are chosen to be L and the momentum eigenstates, with each block a finite dimensional
matrix. Thus the results for finite dimensional matrices can be applied here.

13



third one corresponds to an unphysical state

In this case we choose,

|(i)277“1> = |é27ﬂ2>’ |(i)277“2> = |é27V2>a |é27T3> = |é27a2> (3'12)
Eq.(2.40) now takes the form:

AS;)WOQ = A,S?Vgag + 121(2) 5,(1) (3.13)

202" 62 pav2

which can be satisfied by choosing,

S(l) = M52Oé2 (At(l?)z)uwz - Ag?;)muz) (3'14)

dapiav2

Case IV. All three indices correspond to BRST invariant states

In this case, we choose,
[Por) = [Poy)s Do) = |P2,s),  [Pary) = [Par,) (3.15)
and eq.(2.40) takes the form:
A = A, (3.16)

Note that the coefficients S have dropped out of this equation. Hence this
equation cannot be satisfied by adjusting S™), it must be satisfied identically. We
shall now show that this is indeed the case. First let us consider the case where at
least one of the states |®g ,,,), |P2,,) and |®2 ) correspond to a pure gauge state.
Without any loss of generality we can take this to be the state |é27u2>- Thus we
take,

[P2.) = |P2,00) = QB[ P11 (3.17)

We shall now show that for this choice of |®s ,,,), both, the left and the right hand

side of eq.(3.16) vanish as a consequence of gauge invariance. This is intuitively

14



obvious, since it involves on-shell three point amplitudes involving external pure
gauge states; but we shall go through the proof in some detail, since it will be
useful to derive a similar result in the next section. Let {(&D%A} denote a basis of

states conjugate to |§>n7r), satisfying,

(B6 | Pps)” = by (3.18)

Expanding the gauge transformation parameter |A) given in eq.(2.5) as,

by 1A) =D Aoy [@10,) (3.19)
we may express eq.(2.5) as
- > 1 -
5¢r = Z ﬁ m131 SN¢81- '¢3N)\Oé1 (3-20)
N=0
where,
Biah = (85,1Qp|P10,)" = (85, ]2.0,)" = bra (3.21)
and,

BiNsrsn = gV (5, 1[(co Brsy) - - (cg Broy ) (g Pra)]") for N>1  (3.22)

Invariance of the action (2.12) under the infinitesimal transformation given in

eq.(3.20) gives,

AR, B, =0 (3.23)
(ADB&or, + ADBE ) + AL BRL =0 (3.24)
(Ag)ségx)lrgrg + Ag)sgs(,zy)lrgm + Ag‘ggégi)lrﬂ'z) + A.(Sfjlt')l”l'z?"ggf(yg)l (3 25)
_'_ (Agz’j‘)ﬂ“z Bga)ﬂ“g + Ag?“i’/‘g B‘ga)ﬂ“z _'_ Agilrg‘égéé)lrl) = O
etc. Let us now choose the indices r; and 79 in eq.(3.24) such that,
|(i)2,7‘1> = |(i)2,l/2>7 |(i)2,7‘2> = ‘&)2,7'2> (3'26>

In this case A,(Z)S and Agl vanish since @27,,2 |@B =0= @2772 \QB. Using eq.(3.21)

15



we may now bring eq.(3.24) into the form:
AP 0 =0 (3.27)

In an exactly similar way the gauge transformation (2.44) may be expressed in

component form as,

6 = 3 BN o Do e (3.28)

B, =(®5,|Qp|®1.0,)" = B2,

p(N)

~ ~ ~ ~ (3.29)
Brafsi...sn :9N< g7r|8_1[(058|q)2781>) e (058|¢278N>)(668|¢17a1>)]/>//

The gauge invariance of the action S(W) given in eq.(2.36) under the transformation
(3.28) gives an equation identical to eq.(3.24) with B and A®) replaced by B()

and A®) respectively. Choosing the various external states as in eq.(3.26) we get,

Arser =0 (3.30)

Thus we see that eq.(3.16) is satisfied trivially when at least one of the external
states is of the pure gauge type. Hence we need to verify this equation when all
the external states are physical. In this case the left hand side of the equation
is proportional to the physical three point amplitude calculated in the string field
theory formulated around CFT”. On the other hand, the right hand side of the
equation is proportional to the physical three point amplitude calculated from the
action S(¥), or, equivalently, S(¥), which is related to S(¥) by a linear field
redefinition. The equality of these two amplitudes was proved in complete detail
in ref.[13]. Hence we reach the conclusion that eq.(3.16) is satisfied identically,
thereby proving that it is possible to satisfy eq.(2.40) (and hence eq.(2.27)) by
appropriately adjusting the coefficients S().

16



Continuity of $(¥, S(1) as functions of external momenta

The equations (3.6), (3.10) and (3.14), which determine the components 5&12)“
for different choices of the external states r, s, appear to be drastically different.
This may be the cause of some alarm, since, if we choose a basis of states for a given
momentum, and vary the momentum continuously, then some of the unphysical
states in the basis for generic values of the momentum may become BRST invariant
states for some special values of the momentum. Egs.(3.6), (3.10) and (3.14)
would then seem to indicate that the components of S™) change discontinuously
at these special values of momenta. To be more concrete, let us consider the case
when all the space-like flat directions have been compactified and have discrete
momenta/winding number, so that the only continuous index is the momentum
associated with the time like directions. Let us denote this by k. If we consider
the set of states in H with a fixed value of k?, then, for generic k¥, all the states
have Eg' # 0, and hence can be divided into pure gauge and unphysical states.
In this case we can choose the basis of unphysical and pure gauge states in such
a way that as we vary k° continuously, the unphysical states change smoothly
into unphysical states, and pure gauge states change smoothly into pure gauge
states. This continues till we reach some special values of k% (say k) for which
ig' = ( states appear in the basis, so that the basis may contain physical states.
In this case, the basis of states may be so chosen that as we approach k¥ from
a neighbouring value of k°, some of the unphysical states in the basis become
physical, the rest remains unphysical; similarly some of the pure gauge states in

the basis become physical, the rest remains pure gauge.* As a result, the coefficients

* Note that the usual choice of gauge, bar = 0, is not a good gauge choice for a general
analysis, since the basis of physical, unphysical, and pure gauge states in this gauge collapses
at LY =0 (k° = £?). In particular, at k° = k2, new unphysical states may appear which do
not satisfy the bg‘ = 0 gauge condition. In other words, if we choose a basis of unphysical
and pure gauge states for k% # kO, then it is not true that in the k° — £ limit the set of
unphysical (pure gauge) states divide themselves into unphysical (pure gauge) and physical
states.

There, is, however, one case in which b(‘f = 0 is a good gauge choice; this is when at
k® = kY the only L& = 0 state that appears is a tachyonic physical state. In this case,
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S™) determined from egs.(3.6), (3.10) and (3.14) may jump discontinuously as the
momentum £ associated with one of the external states approach kY. We shall now
show that such a situation may be avoided by a judicious choice of the quantities

LMW and L'M appearing in eqs.(3.6) and (3.10) respectively.

Let us start with eq.(3.6) and assume that the momentum associated with the
state |®.-,) approaches £, and also that in this limit the state |®3,,) approaches

. . a(1)
27lé0)>. In this case eq.(3.6) gives a value of Sazﬁzlgo)' If

we want this value to agree with the answer given in eq.(3.10), we must demand

that,

a specific physical state |(i>

o _po Lo e 3 )
Lazléomg - Lagﬂglgn = 2(A52gzl§°) Aazﬁzléo)) + 2L52ﬂ2l§0) (3.31)

On the other hand, if the momentum associated with the state |<f>27a2> approaches
kY, the matrix (P 4,|Q BCy |(i>2752>” acquires a zero eigenvalue with eigenvector

vs, =0 Thus the corresponding eigenvalue of M, has a pole. In order that

5210
S™) given in eq.(3.6) is finite in this limit, we must have,

L0 (@

léo)agﬂg o léo)azﬂg

’g’)) ) (3.32)

azfs
We may now ask if egs.(3.31) and (3.32) are compatible with the constraint (3.7)

that L(Y) must satisfy. From these two equations we get,

L(l) —I—L(l) o —I—L(l) _ B(L/(l)

/(1)
52[é0)62 P62l lgo)ﬂztsz N 5252120) L ) (333)

B2 52120)

The right hand side of eq.(3.33) vanishes identically by eq.(3.11). Hence eqs.(3.31)
and (3.32) are compatible with eq.(3.7).

in the Eg — 0 limit, an unphysical state gets converted to a physical state, without any
other rearrangement of the basis. The examples that will be considered in sect.4 are all of
this type, hence the bar = 0 gauge choice in that section will not cause any problem in our
analysis.

This also indicates that in order to extend our analysis of N-point vertices in sect.4 and
that in ref.[13] beyond the tachyonic states, it may be more convenient to choose a gauge
other than b = 0.
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Next we consider eq.(3.10) and take the limit when the momentum associated
with the state |(i>27 3,) approaches the critical value k0. Let us suppose that in this

limit the state |§>27ﬂ2> approaches the physical state |®. ). In this case eq.(3.10)

. a(1
gives us a value of .S (1)
52/J,2l

2,15
- In order that this value agree with that obtained from
2

eq.(3.14), we must have,

oo =A% A% (3.34)

sl aslf” s aslf”

On the other hand, if in eq.(3.10) we take the momentum associated with the state
|<i>2752) approach k2, then, in order that S (1) approaches a finite value as k° — KO,

we must demand,

L/(l)

1(3 13
e = A0 s = A0 ) (3.35)

2B N lg))uzﬂz
We now see that eqs.(3.34) and (3.35) satisfy the constraint (3.11):

F A4S N S 0 (3.36)

18 oo al®ps

Finally, note that in eq.(3.14), if we let the momentum associated with the state

|§>2752) approach k:go), then, in order that S

5 is finite in this limit, we must
24212

have,
~(3 (3
Az(;o)mm - Al((o)) =0 (3.37)

which is part of the consistency condition given in eq.(3.16).

Similar remark also holds for the components Sﬁg). Writing Sﬁg) =1+ AKS;) +
O()\?), we may express eq.(2.26) as,

AY 4D ANk AP + kD AR) + o) (3.38)
whose solution is given by,
A = a5 (A2, — A 0

2) (0)
a252 - 2 202 5252 5252 + L(; ﬂz) (339)
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NK ), = Moy, (AD), — A ) (3.40)

where L(©) is a tensor satisfying,

7©

o232

+19 —0 (3.41)

Baoe2

In addition, eq.(2.30) (which, combined with eq.(2.31) is more restrictive than
eq.(2.26)) gives a further constraint on K(©);

MK = (85, 1(Qp — QB)|®10,)" (3.42)

(Note that here flgLQ =0, but Ag§L2 ~ A.) As before, if the momentum k" asso-
ciated with the state |® 5,) approaches k?, then, in order that eq.(3.39) smoothly
approaches eq.(3.40), we must have,

0 7(2 (2
L((SQ?;O) - A((h;;o) - Af;;éo) (3.43)

On the other hand, if the momentum k° associated with the state |<i>27a2> ap-
proaches k2, then, in order that the right hand side of eq.(3.39) is finite in this

limit, we must have,

1©

g = (A0, —Ad.) (3.44)

15 s 15 s

From eqgs.(3.43) and (3.44) we get,
LW+ 10— (3.45)
209 2 2

as is required by eq.(3.41).

Finally, if we take the momentum &% of the state |®5 4,) in eq.(3.40) to approach
kO, then, in order that the right hand side of this equation is finite in this limit,

we must have,

2 e _
Ao, —Aw =0 (3.46)

This equation was shown to be satisfied identically in ref.[12].
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These examples illustrate, how, by adjusting the parameters L(®), L() and
L'D | we may maintain the continuity of the solutions S(©) and S0 as function of

the momenta A of various external states.
Note that in eq.(3.40), by taking the limit where the momentum £° associated
with the state |(i>27a2) approaches k£, we can evaluate K ((%)

I )M2.
expression for Kl((?)g is obtained from eq.(3.42), but it is easy to check that this
2 Q1

(An independent

agrees with the expression for Kl(((‘))) obtained from eq.(3.40) by taking k° —
2

)a
k0 limit and setting |é27u2> = |§>27a11).) On the other hand, an expression for
Kl(é?g , as found in ref.[13] (eq.(3.60)) from the analysis of three and higher point
functions. Thus we must ensure that these two results agree with each other. A
similar situation arises also in case of S ISLQ by
analysis of four and higher point functions determines the quantities S

we must ensure that this value agrees with the value of 51%2
2 H2V2

As we shall see in the next section,
1 .
koo hence

obtained by taking

the k¥ — kY limit of S (i) where k¥ is the momentum associated with the state

daprav2?
|(I)2,52>’

A general argument showing that this must be the case may be given as follows.
As we have seen, by adjusting LY, L'®) and L) we can ensure that none of the
components of S and SN has any singularity as a function of the momenta
of the external states. Furthermore, the coefficients AN) and AN) appearing in
eqgs.(2.26)-(2.28) are also smooth functions of the momenta of the external states.
Thus if we can find a set of solutions S™) which satisfy eqs.(2.26)-(2.28) for generic
values of the external momenta (k° # £2), and set S™)(k0) = limyo_, 40 S™V) (K0,
then this value of S(™)(k0) must satisfy eqs.(2.26)-(2.28). Since 512222 and Slgnuz
determined in ref.[13] and sect.4 respectively give solutions to egs.(2.26)-(2.28),
they must be compatible with the results obtained by taking the k° — k¥ limit of

S and s , where &Y is the momentum associated with the state |®qs, ).
d2l2 O2 422 ,02

Another set of consistency conditions are obtained by starting from eq.(3.42)

and going to a limit when the state @2,0& = @B@Lal) approaches a physical
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state |<i>2 m(0)> after appropriate normalization. This would happen if in this limit
21102
|®1.q,) reduces to a physical state so that (Qp|®P1,,) vanishes in this limit unless

it is divided by an appropriate normalization factor before we take the limit. A
(0)
kgmgo)

agrees with the answer given in eq.(3.60) of ref.[13]. The analysis of appendix A

consistency condition is then obtained by demanding that K found this way
shows that this is indeed the case. (Since physical states of ghost number 1 appear
only in the zero momentum sector, we need to study only the k = 0 sector for this

analysis.)

There is another related point that we must mention before concluding this
section. In proving the equality of the physical amplitudes calculated from the
actions S(¥) and S(¥), we had assumed in ref.[13] that the physical states are of
the form ¢1¢;|V), where |V) is a dimension (1,1) primary state in CFT”. While
this is true for generic values of momenta (see refs.[17][18] and references therein)
there is a physical state at zero momentum which cannot be expressed in this form.

This is the zero momentum dilaton state, given by,
|D> = (010_1 - 515_1)|0> (3.47)

Since we must show the equality of the two sides of eq.(3.16) for all states, we must
also prove this for the case where one or more of the external states correspond to
the state | D) given in eq.(3.47). We have shown in appendix A that this is indeed
what happens, thereby completing the proof that eq.(3.16) is satisfied for all values

of pa, v9 and 1.
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4. ANALYSIS OF FOUR AND HIGHER
POINT TERMS OF THE ACTION

In this section we shall sketch the analysis of eq.(2.41) for N > 4, but shall
not give a complete proof of existence of solutions to these equations. Let us start
with eq.(2.41) for N = 4. Following the same analysis as in the previous section,
one can show that this equation can be satisfied by adjusting the coefficients S(2)
when at least one of the indices r; correspond to unphysical states. In order to
avoid repetition, we shall not go through the whole analysis, but only consider a

single case as an example. Consider the case,

Do) = [Poys)s Do) = [P200), [Poy) = [Pag,), [Pory) = |P2e)  (4.1)

In this case eq.(2.41) for n = 4 is satisfied if we choose,

(2) 1 i(4) 7(4) i3 a) i3 g i3 o)
55252’72M2 _§M52O‘2 [AOéQﬂQ’YzNz o Aa2ﬂ2’)’2uz o (Asozzﬁz SSV?M + ASO@W Ssﬂgug + ASﬂQ"YQ SSOQMQ
73 & 7(3) a1 73 &
+ A S + A S, + AD)LS 5)
1(2)a() &) () &) g(l) (1) (2)
- ASS’(SsazﬂQSSI’YQ/LQ + 53627253’a2u2 + 5302’7253’[32”2) + L@ﬂgyzm]
(4.2)
where L(()Z)ﬁ2 aia is an arbitrary tensor which is symmetric in f2 and 79 and satisfies

the relation:

2) 2) @
La2ﬂ272u2 + L5272Oé2ﬂ2 + L’ygagﬁgpg =0 (4'3)

Similar analysis can be done for other choices of indices. The only possible
problem comes from the case where all the indices r; correspond to BRST invariant
states, since in this case the terms involving S drop out of eq.(2.41) for N = 4.

More precisely, for the choice,

|(i)2,7‘1> = ‘&)2,ﬂ2>7 |(i)2,7‘2> = ‘&)27112)7 ‘&)2,7’3> = |(i)2,T2>7 |(i)2,7‘4> = ‘&)2702> (4'4)
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eq.(2.41) for N = 4 takes the form:

Afl?l/szUz :Aglz)ljﬂchz + Ag?(gé’(rit)zuzgs(’%gg + gé}l)zTZ‘gg’ll/)gag + gé}ll@gs(’lu)ﬂz)

+ (Ag?2y2g§£-)27-2 _'_ Ag?/l)zagg‘gigTz _'_ Ag?;l,)znggigO'Q + Aglg/)Qngélt)zag (45)
+ Asrr Sspiers + AsoaSisn)

In the last set of terms on the right hand side of eq.(4.5), the sum over s can
be broken up into sum over physical, unphysical, and pure gauge states. Of these,
the sum over pure gauge states vanishes, since, as we have seen in the last section,
f_lgi)yjz vanish for such states. In the second set of terms on the right hand side
of eq.(4.5) the sum over s and s’ can be restricted to unphysical states, since Ay
vanishes for other set of states. Using eq.(3.14), and the fact that M,,s, is the

inverse of Aazﬂz, we may bring eq.(4.5) to the form:

Al(LQ)VzTQUQ - Al(m)VzOQMOéQ QA( 2)7-202 - Al(n)TzOézMOéz 2A( 2)ng2 - Al(Lz)UQOézMazﬁzA(ﬂQ)yQTQ
7(4 71(3 71(3 71(3 1(3 1(3
:[A,Elz)uszdz - A,Elz)loaz Mazﬁz A(ﬁQ)TQUQ - A,Elz)mfm Ma2ﬂ2 A(ﬁQ)VQUQ - A£L2)02042 Mazﬂz A(ﬁQ)VQTQ]

+(/_1(3) 5(1) +/‘1(3) 5(1) +/—1(3) 5(1) +/_1(3) 5(1)

kapove ™~ kooaTo kapoo2 " kavomo kapomo " kaoarn kavato " kapooa

ORI ORI (OO

kavoo2 ™ koot komoo2 " kapave

(4.6)

We shall first show that the above equation can be satisfied when one of the
external states (say |(i)27u2>) is of the form of a pure gauge state. Let us take
1D2,) = [P20,) = QB|P1a)) = Bﬁg‘{@g’r). In this case, in eq.(4.6), all factors
of Agﬁlmmﬂ and ALJZ\QIMTNA are replaced by ASﬁ?,,rN,léﬁg)l and ASﬁ?,,rN,léﬁg)l
respectively. The left hand side of eq.(4.6) then takes the form:

(4 (0
(A7(“V)27'202 - A7(“V)2052 Ma2ﬂ2A(ﬁQ)7-202 - AS“T)QQQMazﬂQA(ﬁQ)VQUQ - A7(“U)20¢2M042ﬂ2A(52)y27-2)B7(“05)1
(4.7)
Choosing 1 = 19, r2 = a9 in eq.(3.24) we get,
—(9) =
A&Q)HQBEQ)OHV + A(VZ)OQT 7('0‘)1 =0 (48)

Using this and similar equations with 5 replaced by 72, o2, and the relation
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;1(2)

o232

Mg,r, = 6ayyss €4.(4.7) may be brought into the form:

A BO L 4® g q®) g 48 ) (4.9)

BaT202™" P21V Bav202™" Baou1 T2 BavaTe ™ Bacr102

On the other hand, choosing r; = a9, 19 = T, r3 = 02 in eq.(3.25), and using the

relations 217(«271 = 217(37)2 = 217(«%)2 =0, we get,

Ao B, + Ao, Blths + Ay Blthry + Al Blioy =0 (410)

Comparing the left hand side of eq.(4.10) with the expression given in eq.(4.9) we
see that they differ from each other only in the fact that the sum over r in eq.(4.10)
runs over all states, whereas the sum over (33 in eq.(4.9) runs over unphysical states
only. Since 1217(«?;)202 etc. vanish by eq.(3.27) if |<i>27r) is a pure gauge state, we see that
the only extra terms on the left hand side of eq.(4.10) involves terms where |®g,.)
corresponds to a physical state. In other words, using eq.(4.10), the expression
(4.9) may be brought into the form:

_A® g 30 a1 36 1) (4.11)

katoo2 " kaouive kavoo2 T ka1 T2 kovoTe T kaaio2

Using a similar analysis, the terms inside the square bracket on the right hand side
of eq.(4.6) may be brought into the form of eq.(4.11) with A®) and BM replaced by
AB) and BW respectively. Finally, the first three terms inside the parantheses in
the right hand side of eq.(4.6) vanish by eq.(3.27) for the choice |®3 ,,,) = [®2.4,)-
The equation (4.6) then takes the form:

A® g Al S a@) §()

kovote " ko102 kovoo2™ kaai1 T kaoaT2 ™ ka1 2

_gM  A® L pm A pI) AB) (4.12)

T Tkaa1va” TkaTao2 koo o “kavaoo kooio2” "kaTove

_gW 468 _pgm 36 _ pA)  306)

kaoive* “kaTo02 koo1m2” “kavaos koo1o2® “kaTovo

Using the consistency condition A® - fl](i) , we see that eq.(4.12) is satisfied

k27'20'2 T20
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if we choose,

s _ph 0 (4.13)

kaoiioo 201102 ko102

)

Q102

Thus we see that eq.(4.6) can be satisfied by appropriately adjusting 515:1
if at least one of the external states is pure gauge. It now remains to analyze
eq.(4.6) for the case where the states |§>2M>, 12.,,), |P2rp) and |, ) are all
physical. We consider two cases separately. First we shall analyze the case where
the external momenta are such that no physical state can appear as intermediate
state either in s, ¢t or u channel. This, in fact, is the generic situation, since for
generic values of external momenta, the states allowed by momentum conservation

as the intermediate states in the s, ¢ and u channel have non-zero Lg’ eigenvalue.
In this case, A A A A® A A®

bopian® Ahapinrst Aharinosr Ahovarsr Akovacs Akpoar, valish for all ko,

and hence the last set of terms on the right hand side of eq.(4.6) vanish. Also, in
(2)

o232

this case, M,,3,, being the inverse of A in the subspace of unphysical states
(which in this case coincides with the subspace of states which are not pure gauge)
may be interpreted as the propagator of the gauge fixed theory, both, for the
theory described by the action S(¢) and the theory described by the action S (@E)
As a result, the left and the right hand side of eq.(4.6) are proportional to the
amputated four point Green’s functions in the theories described by the actions
S(¥) and S(¥) respectively, with BRST invariant external states. Thus in this

case the problem reduces to showing that the on-shell four point functions in the

two theories are identical.

This is precisely the problem that we analyzed in ref.[13], where we proved that
the on-shell amplitudes in these two theories with arbitrary number of tachyonic
external legs are indeed identical Although the proof of this result could not be
extended to the case of arbitrary external states due to some technical difficulties,
we believe that the result does hold for arbitrary external states, particularly in

view of the fact that many of the S-matrix elements involving higher excited states

* In ref.[13] we worked with the action S(¥) instead of S(¥), but since they are related by a
linear field redefinition, they have the same on-shell S-matrix elements.
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in string theory can be determined by studying the S-matrix elements involving

tachyonic states near the poles.

We now turn to the case of special values of momenta, which allow physical
external states to propagate in the s, t or u channel. We shall assume, for simplicity,
that this happens only in one channel, say the psvs — o9 channel, although our
analysis can be easily extended to the case where this happens in more than one
channel simultaneously. Also, in order to avoid technical difficulties similar to
the one that arose in the analysis of ref.[13] for arbitrary external states, we shall
restrict ourselves to the case where all the external states are tachyonic, and the
physical states that appear in the intermediate channel are also tachyonic. In this
case, among the last set of terms on the right hand side of eq.(4.6), only the terms

involving AP and A®

oo i hagar, SULVive, and this equation can be written as,

(4 (3 (3 (3 (3 (3 (3
A/(m)umaz - A;(n)uzoczMoczﬂzA( ) A;(n)Tzozz MazﬁzA( ) A/(m)azaz MazﬁzA( )

BaTaos Bavao2 BavaTo
- [Aglz)l/ﬂzﬂz - Al(l?;)lfzaz Mazﬂzfl(ﬁ?n@ - Al(l?;)maz MQZBQAE;Z)Z/QO'Q - ALS;)WMMO@@AEEQ)VWZ]
=B Sharars + Ao, St
(4.14)
It is shown in appendix B that if AS;)W r, and 14_15,32)72 r, Vanish for all k2, then

the left hand side of eq.(4.14) vanishes. Thus the left hand side of eq.(4.14) must
be of the form:

A s 48wl (4.15)

pavoks “kotooo Too2ks T kapove

for some tensor (. Thus eq.(4.14) may be satisfied by choosing,

S 510 (4.16)

ngzTg k20'27'2

Note that 5(1)

hooary: Which was left undetermined during the analysis of three point
functions, is determined during the analysis of four point functions. The situation

(0)
kalo

were left undetermined in the analysis of two point functions in ref.[12], but were

is analogous to the one encountered in refs.[12][13], where the components S

determined during the analysis of on-shell three point functions in ref.[13].
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Let us now turn to the analysis of five and higher point functions. The relevant
equation to be satisfied is eq.(2.41). The term involving S®V=2) on the right hand

side of this equation is of the form:

(A&f)sggﬁ‘izv + Permutations of r,...7x) (4.17)

Generalizing the analysis for three and four point functions, we see that if at
least one of the indices r; is unphysical, then eq.(2.41) may be satisfied by adjust-
ing 5&&:%)5%1. Thus the only non-trivial constraint comes when all the indices

r1,...rn correspond to BRST invariant states. Let us take,
|(i)277'i> = |é2 M(i)>> 1<:<N (418)
"2

Then eq.(2.41) takes the form:

- _ 1
AN g
T T ST mM’N;HNn n!(M —n)!IT]; Ni!

2§A1<N,1§7L§A1,Ni22,]\1+2 N;—n=N

A(M) g(N—1) G(Nn—1)
X <Aué1)mu§1wn)slmsnsswéMn+1)m#éMn+N1) TP g N TN )
+ All permutations of ,ugl) e ,ugN))
(4.19)

Let us first consider the case where the external momenta are such that no
physical state can propagate in the intermediate channel. In this case, the sum
over all the s;’s in eq.(4.19) may be taken to be over unphysical states only. Since
the analysis of eq.(2.41) for a given value of N determines 5&]2\;:‘?‘)”\,71 in terms
of the coefficients A, A, M, s, and SM=1) for M < N, we can eliminate all the
S’s appearing on the right hand side of eq.(4.19) in terms of A and Mg,p,- The

resulting equation is an expression involving the coefficients AGD) - A(M) anq M, p,.

We shall now give a general argument to show that this equation must be of the
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form,

=(N ~(N
L0 = T o (4.20)

where T is proportional to the amputated Greens function calculated with the prop-
agator ¢M,,s, and vertices iA,(«]l\‘[')‘TN; for definiteness we choose the proportionality
factor in such a way that AY) appears with coefficient unity in the expression for
T'N) Similarly, TV) is proportional to the amputated Green’s function calculated

with the propagator iM,,s, and vertices z'f_lgjl\,[,),m.

Although it should be possible, in principle, to give a detailed combinatoric
proof of eq.(4.20), we shall give an indirect argument here to show that this is
indeed the case. From general arguments based on path integrals (or combinatoric
analysis of diagrams) one can show that if two theories are related by a field
redefinition, then they must have the same on-shell S-matrix elements. Since the
set of equations (4.19) are the only set of constraints required for showing the
equivalence of the theories described by the actions S(¥) and S(¥), they must
include the condition that the on-shell S-matrix elements in the two theories are
identical. This would happen only if the combinarotic factors work out correctly,

so that eq.(4.19) reduces to eq.(4.20).

Once eq.(4.19) is expressed in the form of eq.(4.20), we see that the left and the
right hand sides of this equation vanish identically due to gauge invariance if any
of the external states is of the pure gauge type. Thus we only need to consider the
case when all the external states are physical. Again, the problem was analyzed
in ref.[13], where eq.(4.20) was proved to be true for all tachyonic external states.
The same technical problems that plague the analysis of four point amplitude also
prevents us from proving eq.(4.20) for a general set of external states. But the
result is expected to hold for general external states also in view of the fact that
amplitudes involving tachyonic states in string theory also contain most of the

information about the on-shell amplitudes involving higher excited states.

Finally we turn to the case when one or more intermediate channels admit

physical states propagating in them. We would expect that in this case eq.(4.19)
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(M-1)

may be satisfied by appropriate choice of the coefficients S ks, &S 10 the case of

three and four point functions. We shall not analyze the general case, but illustrate

this through an example. Let us consider eq.(4.19) for N =5, and let us suppose

that physical (L = 0) states can appear in the ugl) ,uéz) — ugg) ,ugl)ugr)) channel.

We may now eliminate S&z)m and S by egs.(3.6), (3.10), (3.14) and analogs of

oarst

eq.(4.2). The final result is of the form:

) ) _76 ]
S S T
=(4) (1) (3) a(2) a(1) (3)
F‘u(3)‘u(4)u(d)k Sk (1) (2) _'_A (1) (2)]{3 (Sk ,U‘(B):U‘(AL),U‘(O) Skza H(3)Ma2ﬂ2Aﬁ :U‘(4) (5)
a(1) ‘(3) a(1) 73)
- Skmw(‘“ MazﬂzAﬁ FOMO Skw BQ MO‘QﬂQAﬁzugS)ué“))
(4.21)

In writing down the above equation, we have used the gauge invariance of three
and four point amplitudes to eliminate terms involving S (2 ) st and S&l)rs We now
consider, as before, only those configurations for which the only LO = ( states
which can propagate in the intermediate state in the ,ugl) Mgz) — ,ugg) ,ugl) ,ug5) chan-
nel are tachyonic. In this case, by going through an analysis similar to the one
discussed in appendix B, one can see that the left hand side of eq.(4.21) vanishes

. (3 = (4 ) )
if A( ) and F( ) . vanish. Hence this has the form:
M@ OFCHOM
Mo "o "2 Mo "y "y T2

A/(z)l)lf/éz)kQZl(f)ﬂ(S) @, +F((z‘))u(4) O, ZSL(U @ (4.22)
Note that we have taken the coefficient of I'®) in eq.(4.22) to be the same tensor
>(1) as the one that appeared in eq.(4.15). This is due to the fact that the coefficient
of the I'® term is expected to be determined solely by the structure of the states
|<I> (1)) |(I> (2)> and the propagator M,,s,, and hence is expected to be equal to
the coefﬁ01ent of the A®) term on the left hand side of eq.(4.14) with appropriate
external indices. Using eq.(4.16) we see that the term involving T in eq.(4.22)

% This is similar to the result of ref.[13] where the coefficient S’,(C 1, Tequired to satisfy the
equality of on-shell N-point amplitudes in the two theories turned out to be independent
of N.
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is identical to the term involving T* on the right hand side of eq.(4.21). Thus
eq.(4.21) may be satisfied by choosing,

(2 a(l (3 (1 73
(5% 0 00 =50 Mg, AD ) = SO M, AY

kaps ko cea i Baps? koo i Bans? s
a(1) 7(3)
_ 3 M, 5, A 4.23
k2052/1é5) a2 ﬁzﬂg))ﬂy) ( )
_v(2)
- 4 5
Raps” S g

The coefficients 52, o 5 and g
kops” Y s

kst pio had not been determined previously.

Hence we can choose these coefficients appropriately so as to satisfy eq.(4.23),
and hence eq.(4.21).

The analysis of this and the previous section leaves the coefficients Egl\i;},)m

completely undetermined. This ambiguity in determining S can be traced to the

fact that a field redefinition of the form

- N . 3 N2 o
0y 1) = b5 9) + A @t 1100 + 3 {mg (AENEY) - 29
N=3

leaves the action S(¥) invariant to order A for any choice of |f(¥)). This induces
a transformation of the coefficients 5’3(5«\1[_71"2\, which is reflected in the ambiguity in

determining the coefficients S&ﬁj}} N

Finally, note that if we want to evaluate the right hand side of eqs.(2.27),
(2.28), using the values of Ss(f\fal_lzw determined in this and the previous sections,
and compare them with the left hand sides of these equations, we need to perform
infinite sum over the indices s;. These sums can be performed using the techniques

of refs.[10][11], as was done in refs.[19].

Thus we have demonstrated in this section, through some specific examples,
how the analysis of sect.3 might be extended to construct appropriate field redefi-
nitions which converts the full classical string field theory action S(¥) formulated
around the conformal field theory CFT to the string field theory action S(¥) for-
mulated around the conformal field theory CFT”.
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5. BACKGROUNDS SEPARATED BY FINITE DISTANCE
AND RELATED BY MARGINAL DEFORMATION

So far we have considered backgrounds which are infinitesimally close to each
other. In this section we shall show how to use the results that we have obtained
so far to relate backgrounds that are not necessarily close to each other, but are
still connected to each other by a series of marginal deformations. An intuitive
undestanding of the resullts of this section may be obtained by noting that if, to
first order in the perturbation parameter A, the string field theories formulated
around CFT and CFT” are related by field redefinition, then the result is also
expected to be valid for finite A, since we can deform CFT to CFT” by marginal

deformation in infinitesimal steps.

To be more specific, let us now consider a one parameter family of allowed
backgrounds, such that any two neighbouring members of the family are related
to each other by a marginal perturbation. Let 7 denote the parameter labelling
these backgrounds. Then, given the conformal field theories at 7 and 7 + d7, the

two dimensional action of these two conformal field theories are related by,
Srasr =S+ )07 [ Pp(s,2) (51)

where ¢(z, Z) is a properly normalized dimension (1,1) primary field. f(7) is some
function of 7 that can be set to 1 by appropriately reparametrizing 7. For simplicity,

we shall assume that this has been done.

Let {|®,,(7))} be an appropriate set of basis states in the conformal field
theory corresponding to a given value of 7, and by |¥(7)) = >, ¥ (7)|P2,(7)) be
the string field. Identifying the conformal field theory corresponding to the point
7 to CFT”, that corresponding to the point 7 + §7 as CFT, and using eqgs.(2.10),
(2.17), we see that 1, (7) and ¢, (7 + 07) are related by a functional relationship of

the form:

v+ 61) = VEO@O 0 + 3 8N () v (652)
N=1"""
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Since 1s(7+ 07) and ¥(7) are expected to differ by an amount of order 7 (which

was called A in the previous sections), we may rewrite eq.(5.2) as,
Us(r 4+ 07) = (1) + 07 Y T Lo (D (7). Al () (5.3)
N=0"""

Note that we have included a 7 dependence in TW) since these coefficients depend
on the correlation functions in the conformal field theory labelled by the parameter

T.

Let 79 be some fixed reference point in the 7 space. We shall now try to show

that there is a field redefinition of the form:

Y1) = 3 B o, 700, (0) -ty () (5.4
N=0"""

which relates the string field theory actions formulated around the points 7 and 7
even when 7 and 7y are not close to each other. Using eqs.(5.4) we get,

o0

1 ng“\?...rN(Ta 0)

N! dr
N=0

Us(T +07) = s(7) = 07 Ur(70) - Pry(0)  (5:9)

On the other hand, replacing ¢, (7) in the right hand side of eq.(5.3) in terms of
{tr,(10)} given in eq.(5.4) we get,

s (T+5T)—¢s( )
— 1
—57’2 N'Tssl sN <]VIZ M1'R817'1 7”M1¢7'1' '¢7'1\/11>

00
1 iy
s MN' SNT(N11+A.A1VIN71+1)"'T(IV11+A.AJWN)wr(M1+mMN71+1) c '¢7'(1\/11+.4.MN)
0 :

(5.6)

33



Comparing eqs.(5.5) and (5.6) we get,

dRS«\? rNTTO Z S| DS (ﬁ

{M;},y  M;=N =l
RM-) . RMn)

S2T(Mq+1)+-T(M1+Ms) SNT(N—Mp+1)---TN

> 817“1 Rgv

(5.7)
These equations, together with the initial condition,
Rg"\i)m\r (7-7 TO)‘T:T() = 5N153r1 (58)

which follows from eq.(5.4), determines Rg]r\? rn (7, 70) for general values of 7 which

are not necessarily close to 7.

In order to see how eq.(5.7) may be used for practical computation, let us

consider a special case, N = 0. This gives,

dR 7' 7'0 Z T331 Sn (0)(7_’ 7_0) N .Rgg)(T, 7_0) (5.9)

From eq.(5.4) we see that R (1,70) gives the value of ¥s(7) corresponding to
the point {1, (79) = 0}. Since the point {t,(79) = 0} describes the background

(0) (

corresponding to the conformal field theory labelled by 79, we see that Rs "’ (7, 7p)

gives us the coordinate of this particular background in the coordinate system
{1s(7)}. In other words,

by |¥) = ZR 7,70)|®2.5(7)) (5.10)

is a solution of the classical equation of motion in string field theory formulated

around the point 7 that describes the background labelled by 7.
(0)(

We shall now derive an expression for Rg "’ (7,7) to order (7 — 79)? by solving

eq.(5.9), and compare this with the results of ref.[19] where a general algorithm
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was given for constructing solutions of the classical equations of motion in string
field theory to all orders in the deformation parameter for (nearly) marginal per-
(0)

turbation. Since for 7 ~ 19, Ry’ o (7 — 7p), and since we are interested only in

the value of Rgo) to order (T — 79)?, we may express eq.(5.9) as,

ngO) (1,70)
dr

= T(r) + T (MR (1) + O((r — 10)?) (5.11)

Let us denote by |¢) the dimension (1,1) primary state in the internal conformal
field theory representing the marginal deformation, and assume, for simplicity, that
c1¢1|e) is the only physical state |q~>27k2> = [Py, (7)) at zero momentum. If we

take s = ko in eq.(5.11), we get,

dR\" (7,
M — k(:g) (7‘) + T;E;)(T)Rﬁo) (7_) + O((T N 7_0)2) (5.12)
T

r

Using eqs.(2.29), (5.2), (5.3), and the fact that ‘/5[7?] = dsr + O(A), we get Tlég) -
V2/g, 79 = Tﬂ(g) = (. This gives,

[\]

R,(fg) (1,70) = %(T —70) + (9((7’ — 7'0)2) (5.13)

We shall now carry out a further reparametrization of 7 such that the right hand

side of eq.(5.13) is exactly given by v2(7 — 79)/g. Thus R,(i) takes the form:

RO (7, 70) = %(T _ (5.14)

Let us now concentrate on the components RE?R and Rgi). From eq.(5.11),

and the fact that T, C(y?) = Tﬁ(,g) = 0, we see that RE?R and Rgi) are of order (7 —

70)%. From eq.(5.10) we see that R&Ol) can be set to zero to order (7 — 79)? by a
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gauge transformation with the parameter —R((yol) |®1.4,(7)). Thus Rgz) are the only

relevant components to be computed. From eq.(5.11) we get,

AR ) plO

—2 — 1) "R + O((T - TO)2> (5.15)

Note that the 7 reparametrization needed to make eq.(5.14) an exact equation is of

the form 7 — 7+ O((7 — 19)?), and hence changes the right hand side of eq.(5.15)

only by a factor of order (7 — 79)2. Using eq.(5.13) and the fact that R,(i) is the
(0)

only non-vanishing component of R, to order (7 — 79), we get,

Ry = f%ng(lz)f (T)(T —70)* + 0((T - 70)3) (5.16)

It thus remains to determine T’ 5(21,12 It has been shown in appendix C that,

1 = - _
T, = —V2{(®5 4,)(cg 11l (e crcal )} (5.17)
Hence the classical solution to order (7 — 79)? may be written as,

oy V2 § 1 - - _ _
bo 1) ==+ ((T —m)arcr|p) — E(T = 70)%|P2,6,){(®5 5,) (cg c121[9)) (cg cxea|0)) }”
+ O((T — 7'0)3)
(5.18)
It can be easily verified that this agrees with the result computed in ref.[19] to this

order up to a gauge transformation and possible reparametrization of o

* The notation for the choice of basis given in ref.[19] is different from the one used here. In
order to translate the result of ref.[19] to the present notation, we must make the replacement
(€ | = (PG, ke | (D6 5 | = (P |, and (®¢ | — (®§ | for all n.

n,kn n,R6—n Mn,0n

6—n,a5-_n n,0n—1 6—n,a6-—n
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6. DISCUSSION

In this paper we have shown that string field theories constructed around two
nearby conformal field theories that are related by marginal perturbation are actu-
ally the same, in the sense that they are related to each other by field redefinition.
Although the result has been proved in complete detail only for the quadratic and
cubic terms in the action, we have shown, by analyzing several special cases, that
the result is likely to be valid even for the quartic and higher order terms in the
action. Finally, we have also shown that the result holds beyond leading order in
the perturbation parameter \; as a result, string field theories formulated around
two different conformal field theories which are not necessarily close to each other
but are still connected to each other by a series of marginal deformations, are also
related to each other through a field redefinition. In this case, the appropriate field

redefinition is found by solving an infinite set of differential equations.

A question that naturally arises at this stage is whether it is possible to formu-
late string field theory in a way where the background independence is manifest.
For open string field theory such a formulation was given in reference [20] where
it was shown that starting from a purely cubic action which is independent of
the background, one can obtain string field theories around different backgrounds
by shifting the field by a classical solution. The action expanded in terms of the
shifted field has a background dependent kinetic term, but a background indepen-
dent interaction term. Such a simple notion of background independence cannot,
however, be implemented in non-polynomial closed string field theory, since, by
the very nature of the non-polynomial interaction, a shift in the string field will

modify all the interaction vertices.

We would like to point out that the analysis of this paper may be applied
not only to study the equivalence of string field theories formulated around two
different backgrounds, but also to study the equivalence of different formulations
of string field theory around the same background. The result of this paper tells

us that if two string field theories have the same kinetic terms, linearized gauge
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invariance, and on-shell S-matrix elements (with special definition of ‘subtracted’
S-matrix elements when physical states can propagate in the intermediate channel),

then they can be related to each other by field redefinition.

Finally, we would like to mention that the analysis of this paper (and that of
refs.[12][13]) have dealt with string field theory at the classical level. A complete
quantum string field theory has been constructed [7] using the Batalin-Vilkovisky
(BV) formalism [21], which requires adding new terms to the string field theory
action at the loop level. A proof of background independence of the complete
quantum string field theory action will then involve showing that the actions of
BV quantized string field theories formulated around different backgrounds are
related to each other by appropriate field redefinitions, after taking into account
the change of path integral measure due to this field redefinition. We hope to

return to this question in the near future.

Acknowledgements: I wish to thank A. Strominger and B. Zwiebach for discussion

during early stages of this work, and S. Mukherji for a critical reading of the

manuscript.

APPENDIX A

In this appendix we shall try to verify eq.(3.16) when one or more of the

external states |®g ,,,), |P2,,), and |®g ) correspond to a zero momentum dilaton
|D> = (016_1 — 515_1)|0> (Al)

and the rest of the physical states are of the form ¢1&|V), |[V) being a dimension

(1,1) primary state in CFT”.

Let us define,

Is(k)) = (crc—1 — cré-1)|k) + clémwja’ild’iﬂk) (A.2)
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The starting point of our analysis will be the identity:

nyky + nyk _ . ~ n _
|s(k)) = (mw - W)qcmﬁloz_ﬂk) - QBn—./“];(ClO‘Z —aaly)[k) (A.3)

where k is an arbitrary momentum satisfying k2 = 0, a/y are the matter oscillators
associated with the flat directions, and n* is any vector. This shows that |s(k))
has the form of ¢¢; |1~/> + pure gauge state. Hence for amplitudes involving such
states, A®) and A®) have the same values. If we now take the k& — 0 limit of such
amplitudes, then, if the £ — 0 limit is smooth, and is identical to the amplitude
for k = 0, this would imply that A®) and A®) have the same values for amplitudes
involving external states of the form (cjc—1—¢1¢-1)|0) —l—clémwjo/ilazl |0). But the
state clémwo/i 1@”110) has the form 0161\‘7), and hence, by following the analysis
of ref.[13] one can see that A®) and A®) have the same values for such external
states. This, in turn, would then imply that AB) and A®) are identical even when

one or more external physical states are of the form (¢jc—1 — ¢1¢-1)]0).

Thus it remains to show that the £ — 0 limit of the amplitudes involving the
state |s(k)) is smooth, both in A®) and A®) and is identical to the corresponding
amplitudes involving |s(0)). For A®) such amplitudes are obtained simply by
taking the three point correlation functions of appropriate vertex operators. The
k — 0 limit of such an amplitude is manifestly smooth. On the other hand, if we

take |®g,,,) = |s(k)), then,

ARy =AR) S S 0) S L0)
—{(c5 S|5(k))) (¢ S|B2n)) (¢ S|B2.r))} (A4)
+{(cp Is(k))) (5 1B2,,)) (e | D2, ) (TD))} + O (M)

The second term on the right hand side of eq.(A.4) has well defined k& — 0 limit
and is identical to the k = 0 answer. The first term, in principle, can have a value
whose k£ — 0 limit does not agree with the & = 0 answer, since it involves the

operator S = 1+ AK 4+ O(A\?). K is determined by the set of eqations discussed in
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ref.[12][13], and the algorithm given there was not manifestly smooth in the &k — 0
limit, since it involved treating the physical, unphysical, and pure gauge states on
a different footing. We shall now demonstrate explicitly that the & — 0 limit of
the operator K is actually smooth. Once this is established, it would imply that
the first term on the right hand side of eq.(A.4) also has smooth k£ — 0 limit that
agrees with the k = 0 result.

Thus we now need to show that the state K|s(k)) reduces, in the k& — 0
limit, to K|s(0)). From the analysis of refs.[12][13] one can see that since |s(k))

" and

is a physical state, only the components of the form (® 4, |c; QpK]|s(k))
(D3 1, |co K|s(k))" are determined. The equation determining (@ 4, [cg QB K |s(k))”
is,

M®o,0.lcy @K |s(k))" = —(Da,0,]c5 AQps(K))" + O(N) (A.5)

where,

(@1]cy AQB|P2) = — V2 (cj |1))(cy crca|e)) (cy | P2))}
@1y ]{ (d=2(2) (=, 2) — dze(2)p(z,2))|[s)  (A)

|2|=e

|¢) being the same state that appeared in eq.(2.29), and € is the short distance
cut-off used to define the correlation functions in CFT” in terms of those in CFT.
Since |s(k)) is a state built by the o/, @”,, and the ghost oscillators on the state
|k), it is clear from eqs.(A.6) that the only states (®4,| for which the right hand
side of eq.(A.5) does not vanish trivially are those built by the of,, a@% and the
ghost oscillators on (| ® (—k|. A simple analysis of BRST cohomology shows that
the number of unphysical states built on (¢| ® (—k| does have a smooth limit as
k — 0 since no new physical state appears at this value of the momentum. Thus

it is possible to choose the basis of unphysical states <<i>27a2| for momentum £ in

such a way that as k£ — 0, these states reduce to the unphysical states in the £ =0

x Note that we are taking the limit keeping k2 = 0 all the time.
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sector. In this case the & — 0 limit of the right hand side of eq.(A.5) agrees with
its k = 0 value. This, in turn, shows that the components <&>27a2|06Q3K|8(k‘)>”
has smooth limit as & — 0, and this limit agrees with the corresponding expression

with |s(k)) replaced by |s(0)).

Let us now analyze the components (®3y,|co K|s(k))”. Using eq.(3.60) of
ref.[13], and eq.(A.3) we see that,

~ _ - nILL o
(P31 |co K (Is(k)" + @p—(craly — aar )|k

k
TONE _ nuky +nuky . .
= 21O @y g oV~ T ey 0

(A7)

The only physical state (®3 1, | for which eq.(A.7) is non-trivial is (—k|®(p|c_1¢_1¢7 .
But the right hand side of eq.(A.7) vanishes for such a state. Using the equation
AK,Qpl = AQp, we get,

~ _ ~ _ nt o
MPs ksl Kls(k))" = —(Pypleg AQp— (10l —eraly) k)" + O(\) (A8

We shall now evaluate A(é37k3|05 K|s(0))"” and compare with the right hand
side of eq.(A.8) in the £ — 0 limit. Using eq.(3.60) of ref.[13] we get,

(P31, lcg Kerera® a1y, |0)"

/
0
=—2 ln(m)(@\c_lé_lcg'cggo(1)01510z516/11m”,|0)” +O(N) (A9)

€
=0(\)
Using eqs.(A.2), (A.8), and (A.9) we see that the k — 0 limit of (@31, |cy K|s(k))”
matches (@3, |cy K|s(0))” to order ), if,
(0] @ (ple—re-1c5 cg K(cie—1 — &16-1)[0)"
1 _ nt _
== 3 m (—k| ® (ple_1e-1¢d ¢ AQBﬂ(clof_tl —aa k) + O\

——1
k—0

- %M ® (ple-1e-rcq e f2(1))e( f2(1)) o (f2(1)) (1 — &1)]0)" + (?/iAl)O)

We now note that the matrix element appearing on the left hand side of eq.(A.10)

has not been determined previously. Hence we can use eq.(A.10) to define this
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matrix element. This, in turn, guarantees that in the £ — 0 limit K|s(k)) reduces
to the state K|s(0)), and hence proves that eq.(3.16) is satisfied even when one
or more of the external states correspond to the zero momentum dilaton state
(c1c—1 — €1€-1)|0).

The result of this appendix may also be interpreted in the following way. Note
that the pure gauge state,

= ~ n
[@2,01) = Qp—r(cr10ty — @1aly) k) (A.11)

reduces to a physical state |(i>2 ) in the k — 0 limit. Our result shows that,
31002

(A.12)

lliir(l)<(i)37k3 |06K|(i)2,a1> = <(i)37k3 ‘C(;K‘(i)gmg))) }k:O

thereby showing that eq.(3.42) can be made compatible with eq.(3.60) of ref.[13].

APPENDIX B

In this appendix we shall analyze the left hand side of eq.(4.14) and show that
it can be brought into the form of eq.(4.15). Using eq.(2.37) and (2.33) and the
fact [12] [13] that when CFT and CFT” differ by a marginal perturbation, then S

has the form:

S=1+\K+0(\?) (B.1)
T(N
Wwe may express Al (12 () 85,
ps
(N) () - ©0) A(N)
_ ~ 0 ~

where Kﬁg) is defined through the relation,

Kldo,) =" KDy ) (B.3)
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i.e.

K\ = (8, K|dy )" (B.4)

Let us define,

Avs = Grn0spy Mays, (B.5)

The left hand side of eq.(4.14) may now be written as,

Atsglg?/)z o2 T A,EL?;)Uzt Ats Ag?/)z T2 ]

AtsAglgj)gaz - Al(i)@tAtsAgi)zTg]
AR (AW — AD B AL, - AR AL, — A B0AD),)

tTo (A% tTov2

A ARy, — AL

HaTot

X 23 23
AtsAngag - A/(Lz)TQt

L :[Aglz)l/zmdz - A(S)

Havat

~(4 (3
- [A/(Lz)VQTQUz - A/(,LQ)I/zt

+ Cyclic permutations of us9, 12, T, 02]

+ A [(A,EL?;)VZTK”I(‘E) A5:‘/21(3)02 + AEL?;)stAStKﬁg)Ag’il@)

th

+ Other pairings of g, v, 79, 0'2] +0O(\?)
(B.6)

We assume that the only physical states that can appear in the psrve — o9
channel are tachyonic. This, in turn, shows that if k£ is the momentum flowing in
this channel, then the corresponding vertex operator e’ has dimension h > 0.
As a result, the only possible LE = 0 states propagating in this channel are of the
form ¢12,e*XO)|V) where |V) is a dimension (1 — h,1 — h) primary state in the
internal conformal field theory. In other words, the only possible LY = 0 states

propagating in this channel are the tachyonic physical states.

This, in turn, implies that if A® d A®

povaky AN AT vanish for all kg, then the

only possible intermediate states |Pg ), D2 5) appearing in eq.(B.6) are the L # 0
states. (We have already assumed that the momenta flowing in the u and ¢ channels
are such that they do not allow f)ar = 0 states to appear as intermediate states in
these channels). We shall now show that the right hand side of eq.(B.6) vanishes
in this case. In the Ear = 0 sector, a basis of unphysical states can be chosen all

of which are annihilated by b] (see, for example, ref.[22]). This gives rise to the
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standard expression for the propagator A,:
Aps = (@5,.b5 0 (Lg) ' 95,4)" (B.7)

Computation of the terms inside the first square bracket in eq.(B.6) then reduces
to the standard computation of a four point function in string field theory defined
by the action S (\if) with physical external states. Standard manipulations given in
ref.[13] then shows that this amplitude is identical to the corresponding amplitude
calculated with the action S(¥). In the analysis of ref.[13] the kinetic term of S()

was split into two pieces:
(U|Qpby W) = (¥[Qpby V) + (V|(Q5 — Qp)by V) (B.8)
The inverse of the first term on the right hand side of eq.(B.8) in the b = 0 gauge,
ie.,
Aps = (05, ]by b5 (Lg) 71 P5,) (B.9)
was taken as the propagator, whereas the second term on the right hand side of

eq.(B.8) was taken as the interaction term. Here {(®% [} is the basis of states

conjugate to {|®z,)} with respect to the inner product (|), i.e.,
<(I)/267r‘&)2,5> = 0rs (BlO)

Thus, by repeating the analysis of ref.[13] one can show that the contribution from
the set of terms inside the first square bracket on the right hand side of eq.(B.6)

takes the form:

S’r('g)g Sgggsgl)sgpg {Afé) - (Ar’t’ - )\Ar’u’Au’s’As’t’)

tu

o o . X (B.11)
< (AG)L AL, + AR AR, + AL AT} + o00?)
where,
)\Ars - <&)2,7’|(@B - QB)C(;‘&)Q,S> (B12)
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Let us define,
Mg = Ay — Arsg (B.13)

Using eqs.(2.33), (B.1), (B.4), (B.6), and that the first set of terms inside the
square bracket in eq.(B.6) can be expressed as eq.(B.11), we get,

L :)\{AL?;)VQTAQBTQS + AEL?;)JQTAQZ)/QS + A,EL?;LQT’AI(J?Q))O'QS}

o) ~ B 0 (B.14)
X {Qrs + Arr’Ar’s’As’s + Kﬁrr)Ar’s + Arr’Kér/)} + O(A2>
We now note that,
AQps =(®S [ by (L)~ |5 )" — (@5, 1by by (Lg) ™' D5,
=(®5 . |b by ((Lg) ™" = (Lg) ") |®5,,)" (B.15)
+ (D5, | b (L)~ ®55)" — (5, [bg b (L)~ |5 )
— (605, |6 b (L) D5 ) — (D, [by by (L)~ [aDS ) + O(N?)
where,
(605, = (5, — (05, (B.16)
From eqs.(3.18), (B.10) and (B.16), we see that,
(605, Pas) = (DS |Pas)" — (5, |Das) (B.17)

Since {|®g4)} forms a complete basis of states, eq.(B.17) is valid with |®g ) re-
placed by any state |A). Choosing |A) = by b3 (Lg) ™! |<i>§7s>, we see that the second,
third, and the fourth terms on the right hand side of eq.(B.15) cancel. On the other
hand, the first term on the right hand side of eq.(B.15) may be expressed as,
— (@5, |0y b (Lg) ™ (L — L) (L) 7' 95,.)" + O(N) (B.18)
= — Ay Prrg Ags + O(N?) |

where,
APy = <(i>27r’|(@B - QB)C(HCBZS’) (B.19)

Finally, since by b3 (Lg )" is hermitian with respect to the inner product (|), using
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eq.(B.17) the last term on the right hand side of eq.(B.15) may be written as,

— (095 4 |bg b (Lg)~'[@5,)

_ _ _ ) (B.20)
= — (D5 [bg by (L)~ DS,)" + (D [by b (L) [ ®S,) + O(A?)
Eq.(B.15) may now be written as,
AQps = — ADyy Py Ags — (05 by b (Lg) 1 D5,.)" _—
+ (D [by by (Lg) ' |®5,) + O(N)
Next we use the relation,
Ap,s(P25|Qpcy [92,00) = Sassy (B.22)
<é2,ﬂz|QBCE|é27S>Asaz = 003 (B.23)
to write,
K9 A g + Agw K, = A, Ry A (B.24)
agr! =1 B2 ar' X g azstlst A3, .
where,
Ry = (©2,4|Qpcy K|D24)" + (P2,|Qpcy K| Do) (B.25)
Using the relation [12] [13],
N@p, K] = -AQp = —Qp +Qp (B.26)
we may express eq.(B.25) as,
ARg =(D25|(Qp — QB)cy |P2,)”
’ ’ 0 (B.27)

— (Do 5|cg KQp|Payr)" + (Po4|Qpcy K|Das)"

We now note that in eq.(B.14) the sum over r and s run over unphysical states

only, since flf;),,zr etc. are taken to be non-vanishing only for such states” Taking

* Actually, it is AL?;),,QT etc. which vanish for r # asq, but this implies that A,(f?)w is of order
A for r # as.
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r = ag and s = [, and using egs.(B.12), (B.21), (B.19), (B.24), and (B.27), we
get,

+ ALQ@@A( )

Tov2 B2

—_(43) A(3) (3) A(3)
L _(AM2V2Q2AT20'252 + AN’2TQO‘2AI/QO'2ﬂ2)
x { = (D5 5,10y by (Lg) T~ D5,0,)" + (D5 5,100 b3 (Lg) 'S 0,)

— Mo, (Do slcg KQp|Par) Ays, + Mg, (P24 |Qpcy K|P25) Asay } + O(N?)
(B.28)

Summing over a complete set of states, the last two terms in the curly bracket may

be expressed as,
M5 4, 100 b3 (L)~ g Kby |95 5,)" + M5 5, Kby b5 (L) 15 0,)"  (B29)

Using eqs.(2.31) and (B.1), and that bgba“(iar)_l is hermitian with respect to the

inner product (|}, we can express eq.(B.29) as,
(D5 5,100 05 (Lg) ™15 )" — (856,105 by (L) 195 0,) + O(N?) (B.30)

Thus the terms inside the curly bracket in eq.(B.28) take the form:

(@5 5,169 b5 (L)~ = (Lg))P50,)" (B31)
— (@ 6,105 03 (Lg) ™" = (Lg) ™[ @5,0,) + O(A?)
Note that (L)™' and (LJ)~" differ by a term of order \. Also, (|)” and (|) differ

by a term of order A. Thus the expression given in eq.(B.31) is of order \2.

This shows that if fl( ) ok, A0 A( ) ok, Vanish, then the left hand side of
eq.(4.14) vanishes. This, in turn, 1mphes that the left hand side of eq.(4.14) must

be of the form given in eq.(4.15). Although the quantities » " and hence

kapavo
(1)
Sk2u2l/2

determined <<i>§ ko | IC |(i>2712>), we shall not carry out that analysis here.

may be determined by careful analysis (similar to the one in ref.[13] which
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APPENDIX C

In this appendix we shall derive an expression for Tﬁ(i])m appearing on the right

hand side of eq.(5.16). From eqs.(5.2), (5.3), we get,

1 g (0) 2]
Tﬂ2k2 - )l\li%(Kﬁsz + Wﬁsz) (Cl)

where K is defined in eqs.(B.1), (B.3), and W[ is defined through the relation,
v = 5l + 002 (C.2)
We now use eqs.(B.4), (B.26), and the relation,

/82k2

1

O ~ ~ ~
Kﬁgzgﬁg = (D5 5, [@B, K]|Pop,)" 3

(95,,1(Qp = QB)|P2k,)"  (C4)

Proof of eq.(C.3): To prove this equation let us note that |5 5,) 18 defined
through the equations:

<(i)§,ﬂ2 |(i)2,a1>// =0, <(i)§,ﬂ2 |(i)2,k2>// =0, <&)§,52‘(i)2:0‘2> = Oayf, (C.5)

It is clear that |®¢ 5,) given in eq.(C.3) satisfy the first two sets of equations given
in eq.(C.5). To verify the last set of equations in eq.(C.5) let us note that with
|§>§7ﬂ2> as defined in eq.(C.3), we get,

<~§752|(i’27a2>” == (QBbEégﬁz g |P2,0,)"

T ‘ o (C.6)
:<q)ic)>,ﬂ2 |Q3b606|q)2702>// = < Zc%,ﬂz |(I)3va2>// = 50&252

This shows that |®§ 5,) defined in eq.(C.3) also satisfies the last set of equations
(C.5).
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Let us now compute W[[i]b. From eqs.(2.8) and (C.2) we see that,

Bpr) = @) + AW B, ) + O(N2) (C.7)

Let us divide the basis {|®,, )} into physical {|®,, 1)}, unphysical {|®, 4, )}, and
pure gauge {|®y.q, ) = @B|Pn-1,a,_,)} as in eqgs.(3.1)-(3.3), with respect to the
BRST charrge @p, and let {(®f, .|} be the conjugate basis defined with respect
to the BPZ inner product (|) in CFT. In this case, {by|®}, )}, {by [P}, 4, )} and

{0y | @5, )} correspond to the basis of pure gauge, physical, and unphysical states

n,0n—1

respectively of ghost number (5 —n) [13].

We now note that in the generic case, the basis of unphysical states can be taken
to be the same in CFT and CFT”; these are the states that are not annihilated by
Qp or Qp. Using this, let us take,

by 196, ) = 051850, ) (€8)

7,001 n,0m 1
Using eq.(C.8) and the analog of eq.(C.3) in CFT, we get,
by |95.0,) = = Qb |95,0,) = Qg [95,0,) (C9)
Eq.(C.7) now gives,
AW = (D5 5, Bap,) + ON2) = (8 4,|Qp| Do) + O(A2) (C.10)

Using eqs.(C.1), (C.4), and (C.10), and the relation Q5|®qz,) = 0, we get,

1

1 g
1 iﬁ%(x

Boka — @5,52\@3 - @B)@zkg)) (C.11)
Using eqgs.(2.22) and (2.29) and that @2,kz> = c101)p) + O(N), we get,

T, = —V2{(@5 ) (g ereile)) (g ercile)) ) (12)
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