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ABSTRACT

We give a generally covariant description, in the sense of symplectic geometry,

of gauge transformations in Batalin-Vilkovisky quantization. Gauge transforma-

tions exist not only at the classical level, but also at the quantum level, where they

leave the action-weighted measure dµS ≡ dµe2S/h̄ invariant. The quantum gauge

transformations and their Lie algebra are h̄-deformations of the classical gauge

transformation and their Lie algebra. The corresponding Lie brackets [ , ]q, and

[ , ]c, are constructed in terms of the symplectic structure and the measure dµS.

We discuss closed string field theory as an application.
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Introduction In the antibracket, or Batalin-Vilkovisky (BV) formalism, the master

action has long been known to determine not only the BRST transformations

but also the gauge transformations. Indeed, as explained in the original paper of

Batalin and Vilkovisky [ 1], and elaborated upon in a recent monograph (Ref.[ 2],

§17.4.2), the gauge transformations of a field (or antifield) Φi are

δΦi =
(
ωij∂j∂

r
k S

)
Λk , (1)

where ω is the symplectic form, S is the classical master action, and Λk are

field/antifield independent parameters of local gauge transformations with statis-

tics (−)k+1.
‡

This result, however, is not completely general. In addition to leaving

only the classical master action invariant, the above formula is not covariant under

a change of basis; it requires the use of Darboux coordinates which make the compo-

nents ωij of the symplectic form constant. More seriously, when Λk is field/antifield

dependent, the above transformations do not generally leave the symplectic form

invariant, and therefore they do not qualify as true gauge transformations or true

invariances (we recall that in BV quantization the physics is determined by the

action and the symplectic structure). This is in contrast to ordinary gauge theory

where gauge parameters can be chosen to be field dependent, in addition to being

spacetime dependent. If the Λk’s are field/antifield independent we find

δΦi = ωij∂j

( (
∂ r

k S
)
Λk

)
=

{
Φi , (∂ r

k S) Λk
}

(2)

showing that the gauge transformations are canonical transformations, and are

generated by the hamiltonian K = (∂ r
k S) Λk. This form of the gauge transforma-

tions has been widely used since most field theories have been formulated using

Darboux coordinates.

‡ ∂j and ∂
r
j stand for ∂l

∂Φj and ∂r

∂Φj respectively, where the supercripts l and r denote left and

right derivatives.
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The antibracket formalism has been recently formulated covariantly in the

sense of symplectic geometry. While such covariant description was known for the

classical part of the formalism, the quantum part required the introduction of extra

geometrical structure [ 3]. In the covariant formalism we need not use Darboux

coordinates, and should be able to give the form of the gauge transformations when

the ωij’s are not constants. The relevant formula was given in [ 4]

δ′Φi =
(
ωij∂j∂

r
k S

)
Λk + 1

2

(
∂ r

k ω
ij
)
Λk∂ r

j S , (3)

giving a variation of the form δ′S = 1
2 (∂ r

k {S, S}) Λk , which vanishes on account

of the classical master equation. While (3) gives an invariance of the classical

master action, it does not necessarily leave the antibracket invariant. We do not

have, therefore, a parametrization of the allowed gauge transformations. Moreover,

with second order partial derivatives, and partial derivatives of the components of

the symplectic form, Eqn.(3) is noncovariant.

In this paper we shall (i) write down the classical gauge transformations and

their Lie algebra (with the associated Lie bracket [ , ]c) in the general case when

the gauge transformation parameters may be field dependent, and, (ii) generalize

this to the full quantum theory, where we find a Lie algebra of quantum gauge

transformations (with the associated Lie bracket [ , ]q). The proper geometrical

interpretation of the gauge parameters Λk is seen to be that of hamiltonian vectors

arising from some hamiltonian Λ. In our picture, the gauge parameters are taken

to be the hamiltonians, which are necessarily field/antifield dependent functions.

Standard gauge transformations arise from hamiltonians linear in the fields (or

antifields); by including all possible field/antifield dependent hamiltonians we are

naturally led to Lie algebras. The construction is fully covariant and involves

only the symplectic structure and the action weighted measure dµS ≡ dµe2S/h̄,

left invariant by the quantum gauge transformations. We were led to consider

this measure and the notion of quantum gauge transformations in our study of

background independence of quantum closed string field theory [ 5].
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A path integral measure In the covariant description of the antibracket formal-

ism a measure dµ in the space of field/antifield configurations is necessary. This

measure is used to define the operator ∆dµ. If dµ = f(Φ)
∏

i dΦ
i, then ∆dµA ≡

1
2f (−1)i∂i(fω

ij∂jA) . For any arbitrary measure dµ the following identities hold

[ 3,6,7]

∆ρdµA = ∆dµA + 1
2 { ln ρ , A} . (4)

∆dµ{A,B} = {∆dµA,B} + (−)A+1{A,∆dµB} . (5)

Other identities we will use are the exchange property {A,B} = (−)AB+A+B{B,A},

and the Jacobi identity (−)(A+1)(C+1){A, {B,C}} + cyclic = 0.

A volume element dµ is consistent if ∆2
dµ = 0. Assume we have a consistent

volume element dµ, and consider the measure dµS ≡ dµ e2S/h̄. The associated

delta operator, making use of (4), is found to be

∆dµS
= ∆dµ +

1

h̄
{S , · } . (6)

Following [ 3] one can then show that ∆2
dµS

= 1
h̄2

{
h̄∆dµ S + 1

2{S , S } , ·
}
, which

indicates that ∆2
dµS

is a linear operator, in fact, a hamiltonian vector. This equa-

tion also shows that dµS is a consistent measure (∆2
dµS

= 0) if dµ is consistent,

and, in addition, S satisfies the quantum master equation: 1
2{S, S} + h̄∆dµS = 0.

The operator ∆dµS
coincides with the operator σ discussed in [ 2], here we have

only pointed out its geometrical interpretation as the delta operator of the partic-

ularly relevant measure dµS. The fact that the master equation can be encoded

in the consistency condition for a measure was noticed in [ 8] and is implicit in

[ 3]. We observe now that the measure dµS is a rather fundamental object in the

BV formalism. There is no need that this measure should be written in terms of

another consistent measure dµ and a nontrivial function S satisfying the quantum

master equation. To argue this we must look at the definition of observables.
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The observables in a theory are defined by 〈A〉 ≡
∫
L dλS A, where L denotes

a Lagrangian submanifold, defined by the condition that at any point p ∈ L,

for any two tangent vectors ei, ej ∈ TpL, we have ω(ei, ej) = 0. The measure

dλS ≡ dλeS/h̄, can be defined directly in terms of dµS using the same prescription

that gives us dλ in terms of dµ [ 3]. Let p ∈ L, and (e1, . . . , en) be a basis of TpL.

One then defines

dλS(e1, · · · , en) ≡ [dµS(e1, · · · , en, f
1, · · · , fn)]1/2 , (7)

where the vectors f i are any set of tangent vectors of the full manifold at p satis-

fying ω(ei, f
j) = δ

j
i . This condition fixes the vectors f j up to the transformation

f j → f j + Cjiei. The right hand side of (7), however, is invariant under this

transformation, since it corresponds to a transformation of the complete basis

({ei}; {f
j}) by a matrix of unit superdeterminant. Eqn.(7) gives us the path in-

tegral measure of the gauge fixed theory in terms of ω and dµS. Finally, in order

for 〈A〉 to be independent of the choice of lagrangian submanifold, A must be a

function of fields/antifields satisfying h̄∆dµA + {S,A} = 0 → ∆dµS
A = 0 (by

Eqn.(6)). This condition defines physical operators in terms of dµS and ω.

Classical gauge transformations If the gauge transformations are to be symplectic

they must be generated by a hamiltonian function. We should therefore have

δΦi = {Φi , K } , (8)

for some suitable odd function K. The symmetries of the BV action are generated

by K’s for which δS = {S ,K } = 0. Since this is the condition for K to be

a classical observable, to every local observable, we can associate a local gauge

symmetry of the classical theory. A special class of solutions are given by the

trivial observables

K = {S ,Λ} , (9)

since {S,K} = 0, by virtue of the Jacobi identity and the classical master equation.

Here Λ is an even function of Φi. As we will see, standard gauge transformations
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arise from trivial observables K. We will discuss later, in the context of string

theory, why nontrivial observables do not lead generically to standard gauge trans-

formations.

Let us now see how we recover the gauge transformations in Eqn.(1). In a

Darboux frame, Λ = ΦiωikΛ
k, with Λk constants, leads to K = (∂ r

k S)Λk. Back

in Eqn.(8) we then recover the original form of the gauge transformations. Note

that, by construction, Λk is the hamiltonian vector associated to the hamiltonian

Λ. We have therefore found that the original parameters of gauge transformations

have the geometrical interpretation of hamiltonian vectors. It is also instructive to

understand the way the transformations given in (3) fit into this description. Such

transformations are easily rewritten as

δ′Φi =
{
Φi , (∂ r

k S)Λk
}
− ωij(∂jΛ

k)(∂ r
k S) + 1

2

(
∂ r

k ω
ij
)
Λk∂ r

j S , (10)

We now recall that a transformation of the type δtΦ
i = (∂ r

j S)µij leaves S invariant

in a trivial fashion if µij = (−)ij+1µji, although it does not necessarily leave ω

invariant. One can verify that the second and third term in the above equation do

not correspond in general to trivial transformations. However, if Λk is hamiltonian

(Λk = ωkj∂jΛ) they do. In this case we can prove that
⋆
δ′Φi =

{
Φi , (∂ r

k S)Λk
}

+

(∂ r
j S)µij , with µij = 1

2(−)i
[
ωjk∂kΛi +(−)(i+1)(j+1)ωik∂kΛj

]
. Therefore, when Λk

is hamiltonian the δ′ transformations differ from gauge transformations by trivial

transformations. Note, however, that the δ′ transformation still cannot be regarded

as a genuine symmetry of the BV theory since it does not represent in general a

canonical transformation.

Let us now compute the algebra of gauge transformations. Let δ̂K denote

the canonical transformation generated by the odd function K: δ̂Kf = {f,K}.

Given that [δ̂K2
, δ̂K1

] = δ̂{K1,K2}, canonical transformations generated by observ-

ables form a Lie algebra, since we have {S, {K1, K2}} = 0, whenever K1 and

⋆ We use the Jacobi identity as well as the identities in Appendix B of [ 7].
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K2 are observables. While any local observable in the theory generates a sym-

metry, not much can be said about the algebra of non-trivial observables unless

we know which specific theory we are studying. Hence we shall focus our at-

tention on the Lie subalgebra whose elements are the canonical transformations

generated by trivial observables K = {S,Λ}. Let δc
Λ = δ̂{S,Λ} denote the classi-

cal gauge transformations induced by Λ, then
[
δc
Λ2
, δc

Λ1

]
=

[
δ̂{S,Λ2} , δ̂{S,Λ1}

]
=

δ̂{
{S,Λ1} , {S,Λ2}

}. Moreover, the Jacobi identity and the master equation imply

that
{
{S,Λ1} , {S,Λ2}

}
= 1

2

{
S,

{
Λ1, {S,Λ2}

}}
− 1

2

{
S,

{
Λ2, {S,Λ1}

} }
. As a

consequence we have that

[
δc
Λ2
, δc

Λ1

]
= δc

[Λ1,Λ2]c
, [Λ1,Λ2]

c ≡ 1
2

{
Λ1, {S,Λ2}

}
− 1

2

{
Λ2, {S,Λ1}

}
. (11)

In contrast with the standard description of gauge transformations via generat-

ing sets of transformations which do not give a Lie algebra, and close only up to

trivial symmetries (see [ 2]), our description of gauge transformations arising from

hamiltonian functions Λ gives directly a closed Lie algebra. The commutator of

two gauge transformations is a gauge transformation of the same type. The usual

gauge transformations, arising from Λ’s that are only linear in fields or antifields,

as expected, do not close among themselves in general. They close when supple-

mented with Λ’s having additional field/antifield dependence. The trivial identity
[
[δc

Λ3
, δc

Λ2
], δc

Λ1

]
+ cyclic = 0, implies that δ(

[Λ1,[Λ2,Λ3]c]c+cyclic
) = 0, and, as a

consequence ( [Λ1, [Λ2,Λ3]
c ]c + cyclic ) must be either zero or a gauge parameter

that generates no gauge transformation. The latter is true, the Jacobi identity for

[ , ]c, calculated using (11) gives a result of the form {S, χ}, which, as a gauge

parameter, generates no gauge transformation.

The above observations indicate that [ , ]c leads to a strict Lie bracket in the

space of even functions Λ modulo functions of the form {S, χ}. Let us denote the

equivalence relation by ≈, that is Λ ≈ Λ + {S, χ}. Indeed, the definition given

above implies that [Λ, {S, χ} ]c ≈ 0, and therefore the bracket depends only on the

equivalence class of the gauge parameters. This bracket defines the Lie algebra of

classical gauge transformations.
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Quantum gauge transformations. The main difficulty in understanding the notion

of gauge transformations at the quantum level was due to the apparent lack of a

suitable invariant object. In Darboux coordinates, the gauge transformations given

in (1) do not leave invariant the quantum master action, nor the measure dµeS/h̄,

as one could naively hope. This is easily verified using the result that the variation

of any measure dµ under a canonical transformation generated by K is given by

δ̂Kdµ = 2dµ · ∆dµK (see [ 7], Eqn.(3.26)). Since we are taking K = {S,Λ} with

∆dµΛ = 0 (Λ is linear in fields), this result, with the help of eqs.(4), (5), and the

Jacobi identity, leads immediately to δ̂Kdµe
S/h̄ = 2dµeS/h̄ ·

{
∆dµS+ 1

4h̄{S, S},Λ
}
.

If instead of a factor 1
4 multiplying the {S, S} term, we would have a 1

2 , the master

equation would imply invariance. This means that the measure dµS = dµe2S/h̄

introduced earlier is actually invariant under the gauge transformations of Eqn.(1).

We can now easily generalize the result to arbitrary coordinate systems, and

field dependent gauge transformation parameters. The variation of the measure

dµS under a canonical transformation generated by K is given by δ̂K dµS =

2dµS ∆dµS
K, and therefore the condition of invariance is simply ∆dµS

K = 0, i.e.

K must be an observable in the full quantum theory. A special class of solutions,

representing trivial observables, is given by,

K ≡ h̄∆dµS
Λ = h̄∆dµΛ + {S,Λ}, (12)

where invariance follows due to the nilpotency of ∆dµS
. These gauge transfor-

mations close under commutation. Defining the quantum gauge transformation

δ
q
Λ ≡ δ̂ h̄∆dµS

Λ, we find

[
δ
q
Λ2
, δ

q
Λ1

]
= δ

q
[Λ1,Λ2]q

, [Λ1,Λ2]
q ≡ 1

2

{
Λ1 , h̄∆dµS

Λ2

}
− 1

2

{
Λ2, h̄∆dµS

Λ1

}
.

(13)

The bracket [ , ]q differs from its classical counterpart [ , ]c, given in Eqn.(11), by

terms of order h̄. In exact analogy to the classical case, we have that ( [Λ1, [Λ2,Λ3]
q ]q+

cyclic ) is of the form ∆dµS
χ, which, as a gauge parameter, generates no gauge
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transformation. Therefore [ , ]q leads to a strict Lie bracket in the space of even

functions Λ modulo functions of the form ∆dµS
χ. We can check that [Λ,∆dµS

χ ]q ≈

0, and therefore the bracket depends only on the equivalence class Λ ≈ Λ + ∆dµS
χ

of the gauge parameters. This bracket defines the Lie algebra of quantum gauge

transformations.

Example I: Scalar Field Theory We first illustrate our ideas with the help of the

simplest theory, namely the theory of a free scalar field φ inD dimensions described

by the action S =
∫
dDx(∂µφ∂

µφ − V (φ)). In this case the classical theory does

not possess any gauge invariance in the usual sense. The BV formulation of the

theory involves the field φ and its anti-field φ∗, and the BV master action coincides

with the classical action S. As a result, any local function K(φ), independent of

antifields, corresponds to a local observable (∆dµS
K(φ) = 0), and hence generates

a gauge symmetry.
⋆

The resulting transformations are

δφ = {φ , K(φ)} = 0, δφ∗ = {φ∗ , K(φ)} = −
δK(φ)

δφ
(14)

This can easily be seen to be a symmetry of the theory leaving both the action S

(which is independent of φ∗), and the measure dφdφ∗ separately invariant. This,

of course, need not be the case for general K(φ, φ∗) = h̄∆dµS
Λ(φ, φ∗).

Example II: Gauge Transformations in Closed String Field Theory. The closed string

field theory master action is given by [ 9]

S =

∞∑

g=0

h̄g
∞∑

N=2 for g=0
N=1 for g≥1

1

N !
1···N 〈V (g,N)|Ψ〉1 · · · |Ψ〉N . (15)

The corresponding measure is dµ =
∏

i dψ
i (for notation, see refs.[ 9,10,5].) Let us

study gauge transformations generated by observables of the form K = h̄∆dµS
Λ.

⋆ Note that a general K of this form cannot be written as ∆dµS
Λ for a local Λ.
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The most general form of Λ is given by,

Λ =

∞∑

g=0

h̄g
∞∑

N=1

1

N !
1···N 〈Λ(g,N)|Ψ〉1 · · · |Ψ〉N . (16)

Separating out the contribution of the terms involving 〈V (0,2)| = 〈ω12|Q
(2), we get,

K = h̄∆dµS
Λ ≡

∑

g,N≥0

h̄g 1

N !
〈K(g,N)|Ψ〉1 · · · |Ψ〉N

= −
∑

g≥0,N≥1

h̄g 1

N !
〈Λ(g,N)|

N∑

i=1

Q(i)|Ψ〉1 · · · |Ψ〉N

−
∑

g,N≥0

h̄g
g∑

g1=0

N−1 for g1=g

N+1 for g1<g∑

m=1

1

(N−m+1)!(m−1)!
1...〈V

(g−g1,N−m+2)| ⊗ 1′...〈Λ
(g1,m)|S11′〉

· |Ψ〉2 · · · |Ψ〉N−m+2|Ψ〉2′ · · · |Ψ〉m′

−
1

2

∑

g≥1,N≥0

h̄g 1

N !
〈Λ(g−1,N+2)|S12〉|Ψ〉3 · · · |Ψ〉N+2 ,

(17)

where |S〉 denotes the sewing ket [ 10]. This generates the gauge transformation:

δ
q
Λ|Ψ〉e =

∑

g,N≥0

h̄g 1

N !
〈K(g,N+1)|S0e〉|Ψ〉1 · · · |Ψ〉N . (18)

In particular, choosing a Λ for which only 〈Λ(0,1)| ≡ 〈Λ| is non-zero, we get

δ
q
Λ|Ψ〉e = − 0〈Λ|Q

(0)|S0e〉 −
∞∑

g=0

h̄g
∞∑

N≥1 (g=0)
N≥0 (g>0)

1

N !
〈V (g,N+2)| 0〈Λ|S01〉|S2e〉|Ψ〉3 · · · |Ψ〉N+2

= Q|Λ〉e +
∞∑

g=0

h̄g
∞∑

N≥1 (g=0)
N≥0 (g>0)

1

N !
〈V (g,N+2)|S1e〉|Λ〉2|Ψ〉3 · · · |Ψ〉N+2 ,

(19)

where |Λ〉e ≡ 0〈Λ|S0e〉. Note that the |Ψ〉 independent term of the gauge trans-

formation receives contribution from two-punctured surfaces of all genera. This
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means that the notion of an unbroken gauge symmetry at the classical level differs

from the corresponding notion at the quantum level. If we truncate to g = 0 we

recover the standard gauge transformations of classical closed string field theory.

Are there gauge transformations generated by nontrivial observables? To an-

swer this we need to see if there are local
†

observables in string field theory which

are not of the form ∆dµS
Λ. It might perhaps be possible to construct nontrivial

local observables that are quadratic and higher orders in the fields. They would

generate transformations δ|Ψ〉 that are linear and higher orders in |Ψ〉, but do

not contain any |Ψ〉 independent piece. Although these would give rise to local

symmetries of the theory, they would not be gauge symmetries in the conventional

sense of the term. If we want a symmetry transformation that contains a field

independent piece, we need a K that is linear in the string field |Ψ〉. We shall

now argue that in string field theory there is no local observable that is linear in

|Ψ〉 and is not of the form ∆dµS
Λ. The intuition is simple, such transformations

would correspond at the linearized level to shifts of the type |Ψ〉 → |Ψ〉 + |HQ〉,

where |HQ〉 is an element of the cohomology of Q. Such transformations leave

the kinetic term of the string field action invariant, but certainly do not qualify as

gauge transformations.

To prove this it is enough to take K = 〈K|Ψ〉 linear in |Ψ〉, and analyze the Ψ

independent terms in the equation ∆dµS
K = 0. This gives, Q(e)

0〈K|S0e〉 = 0, and

shows that 0〈K|S0e〉 must be a BRST invariant operator. Furthermore, since we

want to exclude solutions of the form ∆dµS
Λ, we must also require that 0〈K|S0e〉 be

a non-trivial member of the BRST cohomology. But in string theory we know that

non-trivial members of the BRST cohomology are found only for certain specific

values of momentum kµ, satisfying mass-shell constraints of the form k2 = m2,

† Here by local expressions, we mean terms that when expressed in momentum space, the
integrands have well defined Taylor series expansion in momenta about the point where all
momenta vanish. In position space these terms will be represented by a series containing
higher derivative terms. In this limited sense the string field theory lagrangian and the gauge
transformations are local, since they contain integration over subspaces of the moduli space
which do not include any degeneration point.
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where m is the mass of one of the particles in the spectrum of string theory. Thus,

when expressed as a momentum space integral, 〈K|Ψ〉 will contain a factor of

δ(k2−m2) in the integrand, and hence it does not correspond to a local observable

in the theory.

In this example we have found the quantum gauge transformations of closed

string field theory. An obvious question is whether our formalism can help us

understand the gauge structure of string theory. Since the present approach deals

with Lie algebras, it may provide an alternative or complementary approach to

current studies based on homotopy Lie algebras [ 11]. It remains to be seen if the

Lie brackets [ , ]c and [ , ]q define managable structures in string theory. Another

interesting project would be to isolate from the string algebra the Lie subalgebra

representing coordinate transformations in string theory [ 12].
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