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1. Introduction 

Among the most remarkable of the miracles that have been discovered in the 

recent explorations of string theory is the connection between the vanishing of 

the renormalization group ,S functions for u models and the equations of motion 

for the space time fields which describe the particle excitations of the string.[“” 

In principle, these space time equations of motion follow from the string 

field theory Lagrangian. In practice they can be extracted from the tree level 

S matrix.[” That they should also be given by requiring the Q model which 

describes string propagation to be conformally invariant is a wonderful, if poorly 

understood, bonus. Only by exploiting this connection have nontrivial solutions 

of string theory been found.14’ 

The equation of motion for the dilaton field plays a crucial role in this picture. 

On the one hand it is necessary if one wants to derive the full set of equations 

from an action. On the other hand, to obtain it one must include couplings 

in the 0 model Lagrangian which are functions of the intrinsic two dimensional 

metric.““’ These seem rather odd since the metric is not a dynamical variable of 

the two dimensional field theory.’ The reason that the metric appears in the two 

dimensional Lagrangian is easy to understand. In order to write the equations of 

motion we must go off shell. If the equations are indeed equivalent to conformal 

invariance (metric independence in the conformal gauge) then the metric must 

reappear in the off shell formalism. 

A similar phenomenon occurs in the new covariant, gauge invariant free string 

actions.161 The off shell description of free strings requires an infinite number of 

auxiliary fields. While the on shell fields live in a space of functionals of X”(o), 

the off shell fields require the reparametrization ghost Hilbert space, @(X”, b, c), 

for their description. 

t Of course, if we worked in a gauge other than the conformal gauge, all couplings would 
depend on the two dimensional metric. 
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Comparison of these two formalisms suggests that there is a formulation of 

string field theory in which the fundamental field depends on X”(a) and a metric 

variable x(a). * On the other hand it suggests a treatment of the dilaton equation 

of motion in terms of a coupling to the ghost fields in the u model Lagrangian. 

This is the subject we pursue in the present paper. 

We show that by adding to the u model a coupling between X”(o) and 

ghosts, we can obtain the equations of motion for space time fields by impos- 

ing the fundamental stress tensor operator product relation of conformal field 

theory.“] This was suggested in a more general context by Friedan.“’ It is equiv- 

alent to insisting that the BRST charge be nilpotent. Our calculations thus 

generalize those of Kato and Ogawa.“’ 

Throughout the paper we will work on a flat two dimensional surface and 

to lowest order in o model perturbation theory. However, before beginning the 

calculation we present a heuristic argument that shows that our results are equiv- 

alent to those of Ref. [ 1,5]. W e are going to calculate the c number anomaly in 

the operator product of two stress tensors. Friedan has argued that this is related 

to the trace of the stress tensor in a background two metric.“] Let us bosonize 

the ghost fields in terms of a scalar field 4. The axial ghost number current is 

.L = &4 

In a general two metric this current has an anomaly 

(14 

where the metric in conformal coordinates is e2XbPV. This anomaly equation is 

* This was first suggested in the work of Siegel and Zwiebach,161 who bosonked the ghost 
fields. The bosonized ghost field is proportional to the log of the conformal factor of the 
two metric. This is just the ghost uumber anomaly equation. The possibility of such a 
formalism for string fields was discussed by T. Banks and M. Gell-Mann at the Santa Fe 
Workshop. See also Tseytlin, Ref. 10. 
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enforced by the ghost Lagrangian 

The dilaton field @(X(a)) will b e coupled to the current ja as it is in string field 

theory I” 

Note that this is a renormalizable coupling of the o model to r$. Integrating out 

4 in the conformal gauge, we find the fi Rc2)fD coupling of Ref. 1. We also find 

a correction term for the o model kinetic energy 

axM axN 
GMN - - Ada ad !P&l + GMN -I- $f ~t’d&Dd~@ > 

dXM axN 
aaaaaP SUP& * 

This is a field redefinition for the space time fields, and affects the form of their 

equations of motion without changing the physical content. Note, however, that 

the field redefinition for GMN is of two loop order in the u model perturbation 

expansion. We will not encounter it in the explicit one loop computations that 

we present in the next section. 

The wary reader may be a bit suspicious of our cavalier derivation of the 

equivalence of coupling the dilaton to the ghosts or the two metric. We will 

spend the rest of this paper giving a careful proof of this result through one loop 

order. In Chapter 2 we present a BRST invariant renormalizable Lagrangian 

which couples the nonlinear u model variables XM to the ghosts via the dilaton 

field. We argue that a computation of the operator product of two stress tensors 

in this theory is equivalent to a computation in the u model with a modified 

stress tensor * 

* A similar interpretation of the dilaton field coupling has recently been discussed by Lovelace. 1111 
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In Chapter 3 we compute the operator products of this modified stress tensor 

through one loop order in the background field expansion. We show that the usual 

conformal algebra is satisfied only if the space time fields obey the equations of 

motion derived in Ref. 1. We argue that this is equivalent to nilpotence of the 

BRST charge. This result, which is undoubtedly known to the authors of Ref. 

7, has not (to our knowledge) been carefully derived in the literature. 

Appendix A contains a detailed graph by graph account of the computations 

described in Chapter 3, while Appendix B gives the details of Chapter 2. 

2. Coupling of the Dilaton 

The conventional BRST invariant action for the bosonic closed string in ar- 

bitrary background space-time metric Gij and antisymmetric tensor field Bij 

is 

s=L 
4rrcr’ J 

d2u [Gij(X)d,XidaXj + @B~j(X)~uX’~pxj 
(24 

+ 2b++d-c+ + 26--8+c-] 

where 

u* = (u” f iu’)/Jz 

and 

a* = (&I f i&)/h. (2.2) 

The usual string variables r and u are related to u* by u* = e2(r*iu). Here 

both the (u”,ul) and the (7, a) coordinates are taken to be Euclidean. b and 

c are the antighost and the ghost fields respectively, originating from fixing of 

the reparametrization gauge invariance. In writing Eq. (2.1) we have worked 

in conformal coordinates and used local conformal invariance to eliminate the 

conformal factor x of the two metric. Of course, this is only valid in 26 dimensions 

and for on shell background fields. Nevertheless, if the action (2.1) is truly 
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conformally invariant in flat two space (with vanishing central charge) then the 

neglect of x is justified. The action (2.1) is invariant under BRST transformations 

6Xi = -XcUd,Xi 

6c+ = -Xc+d +C’ (2.3) 

6b++=-X(Giid+X"d+X'+d+b++C++2b++d+~+) 

where X is an anti-commuting parameter. 6c- and 6b-- are obtained by replacing 

the +>s by --‘s in the above equations. The associated Noether current is 

1 1 
P-4 =- 

27ra’ 
c*Gijd*Xid*Xj + C*b+-d&C* s 

where TZ and Tg are the contributions to the stress tensor from the matter and 

the ghost fields respectively. Note that the currents .I: are separately conserved, 

i e . . a- Jf! = d+ J? = 0 if TZ +- = Tf- = 0. 

A modified action which is also BRST invariant is 

SC1 
47ra’ 

Gij(X)d,X”dQXj 

+ Bij(X)Eapd,XidpXi + 2b++&c+ + 2b--d+c- 

+ $+@(X)b--c- + d-@(X)b++c+) 1 . 

The new BRST transformations 

6(e: @c+) = -X(eS ‘)‘,+a+~+ 

P-5) 

b(e-; ‘b++) = X(G;jd+Xid+X’ + d+b++tc’ + 2b++d+c+ + $a+@b++c’) 
P-6) 
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leave (2.4) invariant. The corresponding BRST current is 

J+B = 1 
2Tcv.’ 

ei ‘[c+Gijd+Xia+Xj - c+a+c+b++] . (2.7) 

The reader will have noted that Eqs. (2.5-2.7) are obtained from Eqs. (2.1- 

2.4) by the substitution c + ef @  c, b + e-g ‘b. Hence one may think that the 

theory described by Eq. (2.5) is identical to the one described by Eq. (2.1). This 

is only partially true. In the absence of any external sources, the transformation 

c --) ei @c, b + e-g@b is non-anomalous, and hence the action (2.1) may be 

transformed to (2.4) by this transformation. This transformation, however, is 

anomalous in the presence of external sources that couple to the ghost stress 

tensor or the BRST current. 

This means that an anomaly shows up in correlation functions with these 

operators. As a result the BRST current Jf picks up an anomalous contribution 

as we rotate the ghost fields. The rest of this chapter is devoted to showing that 

this anomalous contribution is given by 

-$- c+d+a+qx) (2.8) 

which is precisely equivalent to modifying the matter stress tensor as in (1.6). 

Another way of looking at it is that if we start from the total stress tensor 

TT+ + T$‘+ in the theory described by (2.4) and make a rotation of c and b to get 

to the action (2.1), Tf, acquires an anomalous contribution - & a+a+@ during 

this rotation. 

As we shall see in the next section, the nilpotence of the BRST operator is 

equivalent to the absence of singular terms in the operator product J,“(u) J+” (a’). 

Since the anomaly in the transformation c -+ e-4 ‘c, b --+ e+i ‘b comes from the 

ghost loop, we must investigate the ghost loop contribution to J,“(u) J,“(u’). 

Graphs like Fig. l( ) h a w ere the ghost loop does not contain an insertion of Jf 

do not give any anomalous contribution, since the transformation c + e-b@c, 



b + e+$ @b is free of anomalies in the absence of an external source coupled to 

JT (or the stress tensor). Graphs like Fig. l(b), where the ghost loop has two 

insertions of JT in it, are also anomaly free since these graphs are finite without 

any regularization so long as u # u ‘. Only graphs of the form shown in Fig. 2, 

where a ghost loop has one and only one insertion of J+” in it, give anomalous 

contributions. The effect of these graphs may be summarized by integrating out 

the ghost field to get- the effective contribution to J+” from the graphs shown 

in Fig. 3. Of these, graphs with more than two insertions of i3+@ (e.g. Fig. 

3(c)) may be shown to vanish, only the graphs of Fig. 3(a) and (b) remain. The 

detailed analysis of these graphs is given in Appendix B. Here we just quote the 

result. 

The total contribution from Fig. 3 gives an effective contribution to J-f of 

the form 

1 -- 
2n 

c+a+a+a (2.9) 

as given in Eq. (2.8). In th e rest of the analysis we may treat the ghost fields 

as free fields with the action given in (2.1) . Thus the question of conformal 

invariance is reduced to the computation of operator product expansions in a u 

model with modified stress tensor (1.6). 

3. Operator Product Expansion 

We now proceed to check the BRST ( or conformal) invariance of the u- 

model described in Sec.2. The Virasoro generators of the string are given by 

j-(u+)nT++du+ and f(u-)nT--du- respectively, where f denotes integration 

along a contour around the origin at fixed r. They generate two independent 

conformal algebras with central charge c if T++(= T$+ + T$+) (and T--) satisfy 
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the operator product expansion, 

1 =-- 
i 

C a-l-a’ 

27r (a+ - a/+)4 + (a+ -2u,+)2T++ ( ) 
- + finite terms 2 1 . 

(3-l) 
We will show that we obtain the equations of motion of spacetime fields by 

demanding that the operator product of the stress tensor has the form (3.1) with 

vanishing central charge c. This is equivalent to nilpotence of the BRST charge 

of the BRST quantized two dimensional field theory. The fact that nilpotence of 

QBRST follows from the conformal algebra for LE + Li is known to the authors of 

Ref. 7, but a careful derivation has not appeared in print. In radial quantiaation 

nilpotence of QBRST is equivalent to the requirement that the operator product 

J,“(cr)J,“(o’) is free of singularities as 0 + 0’. Now 

J,“(u)J,“(a’) =C+(a)c+(a’)T~+(a)T~+(a’) 

+ ~c’(u)c’(a’)T~+(a’)T~+(a) 

+ ~c+(u)T~+(u)c+(u’)T~+(a’) 
P-2) 

+ ~c’(u)z-~+(u)c’(u’)T~+(u’) 

If T$+ (Z’T,) satisfies th e o p erator product expansion given in Eq.(3.1) with c 

replaced by cz (cg), the singular part of the first term in (3.2) may be evaluated 

exactly. Since b and c are free fields, the rest of the terms in (3.2) may also be 

evaluated exactly. The final result is, 

J,“(u)J,“(u’) = c+(a)c+(a’) (a+ ‘,,+,,i; - ;I (3.3) 

where cg = g. This vanishes if c = (cg + c’) vanishes. In particular, it vanishes 

for D=26 in the free field case. Since the ghosts remain free in the presence of 



background fields, QBRST will remain nilpotent as long as the conformal algebra 

(with no central charge) is preserved. Thus the absence of an anomaly in the 

conformal algebra may also be interpreted as the criterion for the nilpotence of 

the BRST charge. 

In actual computation of the operator product (3.1) we get extra singular 

terms on the right hand side of this equation of the form 

Aii(X)d+Xid+Xj + *- 
- o’- 

(a+ - a’+)3 
C~j(X)d-X’d+X~ (3.4 

All the operators are evaluated at (a + a’)/2 in order to maintain the symmetry 

ct * 0’. The first term in (3.4) may be removed by redefining the stress tensor* 

by adding to it an operator proportional to A~~c3+Xic3+X~. We recalculate the 

operator product expansion with the new stress tensor. This affects the coefficient 

c in (3.1). If we now demand that the anomalous terms in the operator product 

expansion, as well as the coefficient c, vanish, we get three sets of constraints on 

the background fields 

cij + cji = 0 (34 

Cij - Cji = 0 (3.6) 

&-E 
27T (3.7) 

Eqs. (3.5-3.6) are equivalent to the vanishing of the P-functions of the cr model. 

This follows from the conservation law of the stress tensor. 

-& (T++(a)T++(a’)) = -& p+-W++(J)) (3.8) 

and the fact that T+- vanishes when the P-function vanishes. Later we shall 

* Normally, a conserved current like the stress tensor is not expected to receive any renormal- 
ization counter terms. However, in the presence of background antisymmetric tensor field, 
dimensional regularization breaks the energy momentum conservation laws, which must be 
compensated by adding explicit counterterms to the stress tensor. 
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derive the relation between Cij and the p-functions of the cr model through one 

loop. 

The operator product expansion is most conveniently carried out using back- 

ground field expansion.“2’ If ei denotes normal coordinates in the internal mani- 

fold, the background field expansion of various relevant quantities are as follows: 

Gij(X) = Gij(XB) - i&k1 jk2 (XB) ck’ tk2 + 0 (63) (3.10) 

- Q 1 Ril,k 2(xB)Blj(XB)Ek1[k2 - (i 4-b j)} + O(t3) (3.11) 

Q(X) = @(XB) + D~Q(XB)[~ + !j DiDjG’(XB)E’[’ + O(r3) (3.12) 

where 

and R and I’ are respectively the Riemann curvature and Christoffel symbol 

constructed out of the metric Gij. XB is the background field which satisfies 

the classical equations of motions of the o model. In the rest of the paper we 

drop the subscript B from XB. The terms given in (3.9-3.12) are sufficient to 

calculate (in Z’++ and C) all terms of order t2, all terms of order t3 with at least 

one derivative on ti and all terms of order t4 with both derivatives on 6. In 

terms involving @, we keep terms linear in [ with at least one derivative acting 

on [, and terms quadratic in [ with both derivatives acting on I. As we shall 

see, these are the only terms required to calculate the coefficient c to two loop 

order, and the other terms in (3.5) and (3.6) to one loop order. 

Using (3.9-3.12) we get 
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+ terms irrelevant for computation in this order] (3.13) 

T ++ = & [2Gijd+XiD+[j + D+~“D+[” 

+ Rijk&‘Ekd+X”d+Xe + $ Rijked+X”EjtfkD+E’ 

+ f RijklD+ EiD+ f$‘(jEk 

- a’ {2DjDkOa+X3D+ck + Dk@D+D+tk + i (DiDjQ)D+D+(E’[j)} 

+ terms irrelevant for computation at this order.] (3.14) 

where 

Sijk = -$ (DiBjk + DjBki + DkBij) (3.15) 

6” = ef(X)Ci (3.16) 

Data = a,[” + u;abEbdaXi . (3.17) 

e:(X) is the vielbein field which transform the coordinate index i to the tangent 

space index a, and wtb is the spin connection constructed from the Christoffel 

symbol I’. In (3.13) and (3.14) we may replace all the Ei by EtEa and D,ti by 

E:DaC’, where EL is the inverse of er. 

We first evaluate the contribution involving the operator d+Xid-Xi in the 

operator product expansion (T++ (a)T++ (a’)). The graphs contributing to this 
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term are given in Fig. 4. The contribution from each individual graph is listed 

in Appendix A, here we only quote the sum of all the contributions: 

. -$ a-xia+xJ ((~~~~,~))3 [l&j + SinnSrn - 2DiDjil, + DkSijk - 2Dk@Sijk] . 

(3.18) 

Vanishing of the symmetric and antisymmetric part of the above equation gives 

Rij + SimnSJvn - 2DiDjQ = 0 (3.19) 

DkSijk - 2SijkD”Q = 0 a (3.20) 

We should emphasize that the graphs contributing to these terms are free of 

divergences and hence may be calculated without introducing any regularization. 

Next we focus on the contribution to the terms proportional to d+X’a+Xj in 

the operator product expansion. These contributions are given in Fig. 5. Since 

we are interested in the anomalous terms in the operator product expansion, we 

must subtract out the contribution of the term proportional to T++ on the right 

hand side of (3.4). Such contributions to one loop order are given in Fig. 6. 

Although the total contribution to the anomalous terms is finite, the individual 

graphs contributing to the operator product expansion are divergent and hence we 

must regularize the integrals. We use dimensional regularization for our analysis. 

The cap tensor always appear quadratically in this computation and is reduced 

by the formula 

&76 = prp _ p”(5Pr (3.21) 

which is then continued to 2 - 2~ dimensions. Again, the details of the calculation 

are given in Appendix A. The final result for the anomalous term in the operator 

product expansion is 

-I siktsjkea+xid+xj 

27r2 
(3.22) 
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This contribution may be removed by adding to T++ a term 

--& sik-sjkea+xid+x’ . (3.23) 

This term will contribute to the operator product expansion through the graphs 

shown in Fig. 7. We must also take into account the contribution from this new 

term to the right hand side of (3.1). The leftover contribution precisely cancels 

the anomaly given in Eq. (3.22). 

We must point out at this stage that the anomalous term proportional to 

d+Xid+Xi vanishes for S = 0. This reflects the fact that a conserved current 

like the stress tensor does not receive any finite or infinite renormalization if the 

regularization prescription obeys the conservation law. This is true for dimen- 

sional regularization in the absence of the antisymmetric tensor field, however 

the stress tensor ceases to be conserved in 2 - 2~ dimensions in the presence of a 

background antisymmetric tensor field. This is the origin of the finite renormal- 

ization of the stress tensor. In fact, it can be verified that if we use Pauli-Villars 

regularization, which respects the conservation of the stress tensor in the presence 

of background antisymmetric tensor field, there is no anomalous contribution of 

the form (3.23) in the operator product expansion. 

We may now proceed to calculate the contribution to the central charge to 

two loop order. The graphs contributing to this term are displayed in Fig. 8. 

Note that there is an explicit contribution from the term given in (3.23), as shown 

in Fig. 8(i). The sum of these graphs is given by 

+’ 6 
47r (a-l- - a’+)4 

-D2@ + (D@)2 + $ R + h SijkSijk 11 . (3.24) 

The D/127r term cancels against the corresponding contribution from the 

ghost fields for D = 26. Thus a consistent formulation of the string theory 
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requires that the rest of the terms in (3.24) must vanish 

-D2Q + (D@i2 + a R + & SijkSijk = 0 a (3.25) 

Linear combinations of Eqs. (3.19-3.20) and (3.25) give us the correct equations 

of motion for the massless states of the string. 

From the conservation law of the stress tensor of Eq.(3.8) it follows that 

when the P-function vanishes the central charge of Eq.(3.25) is independent of 

the coordinates X. To show this let us consider Eq.(3.8) when the trace T+- of 

the stress tensor vanishes. In this case we have d- (T++(a)Z’++(a’)) = 0. From 

the operator product expansion (3.1) we see that the most singular term on the 

left hand side of Eq.(3.8) is Is. Hence &c must vanish. 

Using Eq. (3.8) we can also explicitly express the central term c and the 

coefficients Cij defined by Eq.(3.4) in terms of the ,&function. The trace of the 

stress tensor has the form 

T+- = p,(X)a-Xid+Xj (3.26) 

It has a background field expansion 

Pii(XX’d+E’ -I- DkpijEkd-Xid+Ej + irrelevant terms (3.27) 

By comparing the A)3 t erms on both sides of Eq. (3.8) we can express Cij 

in terms of pij. The relevant graph for calculating (T++(a)T+-(a’)) is shown in 

Fig. 9. It gives a contribution 

(3.28) 

Substituting this in (3.8) and comparing the coefficient of 
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a-x”a+xj&+ - ) a’+ 3 terms on both sides, we get 

Cij=-i Pij s (3.29) 

To express the central charge c in terms of the ,&function we calculate the coef- 

ficient of the a-Xj term in (T+-(a)Z’++(a’)). The relevant graphs are given in 

Fig. 10 and- contribute, 

(3.30) 

Substituting this in Eq. (3.8) and comparing the coefficient of the 

a-Xi ,,+-i,+,, term on both sides, we get 

(3.31) 

This can also be derived by using Eqs. (3.18), (3.24) and the Bianchi identities. 

In other words we have derived the Bianchi identities, showing that to this order 

the space time equations of motion follow from a generally covariant action. We 

emphasize, however, that (3.29) and (3.31) are valid only in the lowest order in 

perturbation theory, and receive corrections in higher orders. 

The central charge may also be calculated from the trace anomaly on a curved 

world sheet, as the coefficient of the Js Rc2) term. 1’J31 If the background met- 

ric is taken to be conformally flat, this is equivalent to calculating (Z-+-T+-), 

which may be related to (T++Z’++) by using conservation of the stress tensor. 

We must, however, mention at this point that if dimensional regularization is 

being used in the calculation, the trace must be taken only at the end of the cal- 

culation, after continuing back to two dimensions. Let us, for example, consider 
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the contribution, 

A c&s = 
I 

&+-‘) @p(a) T$ (0’)) 

(3.32) 

ignoring the terms involving the E tensor for this analysis. Conservation of the 

stress tensor gives, 

P2fi + 2f3 + f2 = 0 

p2f2+f4=0 (3.33) 

P2f3 + f5 = 0 . 

In two dimensions 

Aaarr = (P2J3fi (3.34) 

using Eqs. (3.33). On the other hand, A++++ is given by fip:. This clearly 

shows that the coefficients of Aaarr and A ++++ are related to each other. On 

the other hand, in 2-c dimension 

Aaarr = (P2)2fi + 2E(f2 + f3) . (3.35) 

Since f2 and f3 are ultraviolet divergent c(f2 + f3) is finite and (3.35)is no longer 

related to A++++. Hence in order to get the correct expression for the conformal 

anomaly, we must calculate Tap in an arbitrary two dimensional gravitational 

field, and then take the trace in two dimensions, rather than starting from the 

dimensionally regularized expression for T,&. 
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4. Conclusion 

We have seen that the equations of motion of the dilaton and other mass- 

less fields may be obtained by imposing conformal invariance (or equivalently 

nilpotence of the BRST charge) on a BRST invariant field theory on a flat world 

sheet. This reconciles the string field theory picture of the origin of the dilaton 

with the picture arising from 0 models. 

Our calculations have been done by direct evaluation of the operator product 

expansion. A Ward identity following from conservation of the two dimensional 

stress tensor enabled us to relate all two loop contributions to the central charge 

to the one loop contribution to the less singular terms in the operator product 

expansion. Thus our method may be more easily extended to higher orders. 

We have also seen that the two dimensional Ward identity shows that the 

dilaton equation of motion follows from the other equations. From the space- 

time point of view, this result is a consequence of the Bianchi identities, and 

ultimately of the fact that the space-time equations are derivable from an action. 

Thus we may hope to use this two dimensional identity to prove that the equations 

following from Q2 = 0 are derivable from an action. At present this is only known 

to the lowest order. 

Our work also shows that the string equations of motion follow from Q2 = 0 

where Q is a background dependent BRST charge. This connection (first con- 

jectured by Friedan[‘] ) is also evident in the interacting open string field theory 

constructed by Witten.‘14’ 

Finally we would like to remind the reader of the opposite side of the connec- 

tion between the string field theory and the a-model approaches. We have shown 

that the dilaton can be coupled to the ghost as it is in the string field theory. On 

the other hand, there should be a formulation of the string field theory in which 

the ghosts are replaced by two dimensional metric. Hopefully this will aid us in 

finding a more geometrical formulation for string theory. 
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APPENDIX A 

In this appendix we present some details of the calculation that led to the 

results in Chapter 3. We start by writing the 6 propagator in position and 

momentum spaces respectively 

A@-a’) = -; Ln(~-a’)~ (A4 

K(p) = 27rcY’ $ . (A-2) 

The tree graphs may be evaluated in coordinate space directly. For graphs involv- 

ing one or more loops, it is convenient to evaluate them in momentumspace (using 

dimensional regularization, whenever necessary) and then convert them back to 

position space, remembering that the Fourier transform of l/p2 is en(a - o’)~, 

and each power of p, is equivalent to id, in the position space. 

With these rules, we may proceed to evaluate the graphs in Fig. 4-10. In 

these graphs the x denotes the vertices originating from T++, QD denotes ver- 

tices originating from the terms in T ++ involving the dilaton field a’, 1xJ denotes 

vertices originating from the term given in Eq. (3.23), 0 denotes vertices orig- 

inating from T+-, and all the other vertices originate from the Lagrangian l. 

The double lines denote the background field. If the background field carries any 

derivative of X’ we display it explicitly on the graph. In Fig. 8 we have refrained 

from displaying the background fields explicitly. 

In calculating the set of graphs given in Figs. 4-10, we may omit all terms 

that involve the spin connection w explicitly, either from a vertex involving Z’++, 

or in the Lagrangian. A separate calculation verifies that these graphs cancel 

among themselves. Also in Figs. 4, 5, 7, and 8 we have not bothered to explicitly 

show the graphs which are related to others through the exchange B t+ a’. 

The evaluation of most of the graphs is now straightforward. Hence we will 

concentrate only on a few graphs whose evaluations are not so straightforward. 
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First consider Fig. 4(f). This contribution is given by 

We now expand Xi (a) as 

x$7) 3 x’ q + @  2 

( ) 

-CT@ d xi u-u’ 
a 

( ) 

- 

2 + O[(o - u’)2] (A-4) 

and make a similar expansion for Xi(a’). When substituted into (A.3), the 

lowest order term is cancelled by the symmetry o * o’. The leading contribution 

involving the a+Xia-Xi and d++-Xi operators is given by 

- $ d+X’d-X’DiDj@ + & d2XiDi@ 1 (A.51 

Using the equations of motion for the Xi fields, the term in the square bracket 

is reduced to 

-$ d+Xi3-X’[DiDj@ + SijkDkQ] a (A-6) 

The evaluation of the rest of the graphs in Fig. 4 is straightforward and the 

sum of these contributions give us the result quoted in Eq. (3.18). 

A similar manipulation is needed for the graphs of Fig. 5(j). In this case 

we get operators of the form d+XXid+Xj and 8:X”. The @X’ term precisely 

generates the a:@ term in T ++ on the right hand side of Eq. (3.1). 

The graph shown in Fig. 5(g) suffers from an infrared divergence. But so 

does the graph shown in Fig. 6(b) and when we compare the two sides of Eq. 

(3.1) their divergence gets cancelled. There are also several ultraviolet divergent 

graphs, which cancel from both sides of Eq. (3.1) when we take into account the 

graphs of Fig. 6 on the right hand of Eq. (3.1). Contributions from the rest 

of the graphs in Figs. 5-10 are fairly straightforward, and give us the answers 

quoted in the text. 
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APPENDIX B 

In this appendix we analyze the contributions from Fig. 3. The ghost prop- 

agator in momentum space is given by 

( c+b++) = S(p) = -2i7ra’ p+ 
P2 

and satisfies the identity 

S(P)!rS(P- q) = -2 i74S(P - q) - S(P)) . 

(B-1) 

w4 

With this identity it is easy to show that graphs with three or more insertions 

of d,@ in Fig. 3 vanish. The proof is essentially the same as that of the decoupling 

of a longitudinal photon from a fermion loop in QED. Consider a particular a+@ 

insertion carrying momentum pl. The term involving the propagators adjacent 

to this line then takes the form p,S(q) S(q - PI), where q is some internal loop 

momentum. This may be reduced by Eq. (B.2). If we now sum over all insertions 

of this a+3 vertex in the graph, and reduce each graph using Eq. (B.2), there 

will be pairwise cancellation between various terms. If the internal c line coming 

out of the J+” vertex has no d+ operator acting on it, then we have complete 

cancellation after a shift of momentum (which is allowed for finite graphs). If 

the internal c line has a d+ operator acting on it at the J+” vertex, then the 

cancellation is incomplete, and we get a factor of p; times a graphs with one less 

a+@ insertion, but otherwise having the same structure as Fig. 3. 

But we may now repeat the analysis starting with another d+@ vertex. Since 

we have already used up the d+ acting on the internal c line at the Jf vertex 

to get a p: factor, the pairwise cancellation after summing over all insertions 

and using (B.2), will now be complete, and there is no leftover contribution from 

these graphs. 
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This manipulation cannot be carried out for the graphs shown in Fig. 3(a) 

and can be carried out only once for the graph of Fig. 3(b), which reduces it to 

a graph of the form of Fig. 3(a). Th ese contributions may be evaluated directly. 

Figure 3(a) gives 

1 -- 
37r 

c+ !j d+d+@ e3 [ *@+a + (e$ :a+@)] (B-3) 

whereas Fig. 3(b) gives 
4 

isi 
c+d+@ a+@ e$’ . 

The sum of these contributions is 

(B-4 

-1 t-i@ 

27T 
c e3 d+d+@ . (B.5) 

We may now make a field redefinition c + e -$ @c, b + eb @b. This reduces the 

ghost Lagrangian to the free form given in (2.1) and (B.5) to the form (2.8). 
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FIGURE CAPTIONS 

1. Non-anomalous contributions to J,“(o) J+” (a’). Solid lines denote ghosts, 

dotted lines mesons and double lines background fields. x denotes a Jf 

vertex. 

2. Some anomalous contributions to J?(a) J,“(a’). 

3. Contributions to (JB) + effective from anomalous diagrams. 

4. Contributions to a+Xia-XJ’ in T++(a) T++(a’). x denotes a vertex origi- 

nating from the @ independent part of T ++, @ denotes a vertex originating 

from the <P dependent part of T++. 

5. Contributions to a+Xia+Xj in Z’++(o) T++(o’). 

6. One loop contributions to T ++ to be included on the right hand side of 

(3.1). 

7. Contribution to d+Xid+Xj in T++(a) T++(a’) from (3.23). Oa denotes the 

vertex originating from the term (3.23) in T++. 

8. Contributions to the central charge to order (Y’. 

9. Contributions to d+Xid-Xi in T+-(a) T++(a’). 0 denotes a vertex orig- 

inating from T+-. 

10. Contributions to d-Xi in T+-(a) T++ (a’). 
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