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ABSTRACT

Target space duality (T duality), which interchanges Kaluza–Klein and winding-mode

excitations of the compactified heterotic string, is realized as a symmetry of a world-sheet

action. Axion-dilaton duality (S duality), a conjectured nonperturbative SL(2,Z) symmetry

of the same theory, plays an analogous role for five-branes. We describe a soliton spectrum

possessing both duality symmetries and argue that the theory has an infinite number of dual

string descriptions.
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1. Introduction

One of the major gaps in our understanding of string theory is the lack of a fundamental

formulation of the nonperturbative theory. Many efforts have been made to gain insight into

nonperturbative aspects of string theory in recent years. These include studies of matrix

models, construction of soliton solutions such as black holes and magnetic monopoles, studies

of string field theory, and much more. Another recent focus, which will be pursued here, is

a proposed nonperturbative SL(2,Z) symmetry of the heterotic string theory compactified

to four dimensions [1 − 3] . While such a symmetry is not yet definitively established, the

evidence for it is certainly mounting [4 − 6] . To be concise, let us refer to this symmetry as

S duality.

If present at all, S duality is necessarily nonperturbative, since it transforms the four-

dimensional dilaton field, whose value determines the string loop expansion parameter (New-

ton’s constant), nonlinearly. Despite this fact, it has many remarkable similarities with

target-space duality (called T duality), which is also an infinite discrete group. (This group

generalizes the well-known R → 1/R symmetry.) In the case of toroidal compactification of

the heterotic string, in the manner originally proposed by Narain [7], GT = O(6,22;Z). In

general, the group GT depends on the particular compactification chosen. Other examples

that have been studied include certain orbifolds and Calabi–Yau spaces. Unlike GT , the S

duality group SL(2,Z) seems to be “universal” in the sense that it does not depend on the

compactification chosen, at least if the choice preserves some supersymmetry in four dimen-

sions. Of course, in the case of toroidal compactification (the only case we will consider

explicitly), there is N = 4 supersymmetry in four dimensions.

Heuristically, one can describe the toroidally compactified heterotic string theory by

an effective four-dimensional action, containing fields associated with massless quanta only.

Effects due to finite string size and string loops are then represented as a double series ex-

pansion in the string scale α′ and Newton’s constant. Of course, these series do not converge,

and there are important nonperturbative phenomena associated with both expansions. The

leading term (in both senses), which is a classical N = 4, D = 4 field theory, has both du-

alities — O(6,22) and SL(2,R), but as usually formulated, there is an apparent asymmetry

between them. Namely, O(6,22) is a manifest symmetry of the action, whereas SL(2,R)

is a symmetry of the equations of motion only. However, in a recent paper [6] we showed

that it is possible to recast the theory, by introducing suitable auxiliary fields, so that both
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symmetries are realized simultaneously in the action in essentially the same way. In certain

cases, the price for doing this is that the action no longer has manifest general coordinate

invariance, though this symmetry is still present. The way this works is that the formulas

for general coordinate transformations of vector fields are modified from the usual ones by

terms that vanish when the equations of motion are satisfied.

An analogous mathematical problem arises in understanding the T duality group O(6,22)

in the 2D world-sheet theory, which underlies the α′ expansion. Namely, in the usual for-

mulation O(6,22) is a symmetry of the world-sheet field equations only, not the world-sheet

action. In section 2, methods analogous to those employed for the 4D problem are used to

find a new form of the world-sheet action possessing O(6,22) symmetry. (This generalizes

previous work by Tseytlin [8], which contained many of the essential ideas.) The bound-

ary condition on the world-sheet fields break this O(6,22) symmetry to O(6,22;Z). Thus, if

there are no anomalies, the toroidally compactified heterotic string theory should have this

symmetry order-by-order in Newton’s constant, provided that at each order the full nonper-

turbative α′ dependence is taken into account. It seems plausible that the corresponding

statement can be made for the S duality symmetry SL(2,Z) when the role of the α′ and

Newton’s constant expansions are interchanged, i.e., S duality should be true order-by-order

in α′ when the full nonperturbative Newton’s constant structure is included at each order.

This interchange in the roles of α′ and Newton’s constant corresponds roughly to what one

gets by replacing the string theory by a dual theory [9] based on five-branes [10] [11]. This

is only heuristic, however, since there is no well-defined quantum theory of five-branes as

yet. In any case, we propose to refer to this expected symmetry between the roles of the two

duality groups as duality of dualities.

In section 3 a mass formula for string solitons as a function of their electric and magnetic

charges is described. By assuming that a Bogomol’nyi bound is saturated (as is expected for

an N = 4 theory), the spectrum of soliton masses is shown to depend on the moduli in just the

right way to ensure O(6,22;Z) ⊗ SL(2,Z) symmetry. The spectrum of charges corresponds to

a 56-dimensional even self-dual lattice, whose properties ensure that the Dirac–Schwinger–

Zwanziger–Witten [12] [13] (DSZW) quantization requirements are automatically satisfied.

The states containing electric charges only are present in the perturbative spectrum, whereas

all the others containing at least one non-zero magnetic charge must arise nonperturbatively.

As a result, the perturbative spectrum is O(6,22;Z) invariant but not SL(2,Z) invariant.
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However, the spectrum of the perturbative five-branes, compactified on a six-dimensional

torus, contains states that carry both magnetic and electric charges in such a way that the

spectrum of charges is symmetric under SL(2,Z) transformations, but not under O(6,22;Z)

transformations.

Since the string world-sheet theory does not have S duality, one obtains a different world-

sheet theory by applying an SL(2,Z) transformation. Section 4 explains that the transformed

theories can be interpreted as an infinite family of isomorphic theories, any one of which

provides an equally good starting point for defining the full theory. The essential difference

between different choices is which states in the spectrum belong to the perturbative spectrum

and which ones arise nonperturbatively as solitons. This SL(2,Z) duality of string theories

generalizes a Z2 duality proposed for certain field theories by Montonen and Olive [14].

2. World-Sheet Action with Manifest O(6,22;Z) Symmetry

When the heterotic string is compactified on a 28-torus that is conjugate to an even

self-dual lattice of signature (6,22), one obtains a consistent four-dimensional theory. The

resulting 4D theory has N = 4 supersymmetry and contains the following massless bosons:

graviton (gµν), 4D dilaton (Φ), antisymmetric tensor (Bµν) – related by a duality trans-

formation to the axion (χ), 28 abelian vector fields (Aa
µ) transforming as a vector of the

group O(6,22), and scalars (or moduli) described by a matrix Mab, which parametrizes

the coset O(6,22)/O(6) × O(22). The matrix M is an arbitrary real symmetric 28 × 28

matrix belonging to the group O(6,22). The axion and dilaton can be combined into a

complex field λ = χ + ie−Φ ≡ λ1 + iλ2, which transforms under S duality according to

λ → (aλ+ b)/(cλ+d), where
(

a b
c d

)

∈ SL(2,Z). For “generic” values of the moduli this is the

complete massless bosonic spectrum. However, for special values corresponding to various

hypersurfaces in moduli space, there are additional massless states and nonabelian gauge

symmetries. Certain parts of our analysis are not easily generalized to include nonabelian

gauge symmetries, so we restrict the moduli to “generic” values. The lifting of this restric-

tion is an important topic for future study. To keep formulas from becoming unwieldy, all

fermions are dropped, though their inclusion would not be an essential complication.

Let us now consider the string world-sheet theory in the presence of all the bosonic fields

listed above, each being a function of the four-dimensional space-time coordinate xµ. Thus,

the world-sheet theory contains as “couplings” exactly those fields that are included in the
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low-energy effective field theory. In the usual formulation of the world-sheet theory, the mod-

uli described by Mab appear in three distinct pieces corresponding to internal components of

the ten-dimensional metric, antisymmetric tensor, and vectors (of which there are 16). This

action certainly does not have O(6,22) symmetry. The equations of motion of the world-

sheet theory can be recast in a manifestly O(6,22) symmetric form, however [15] [8] [16].

For this purpose one introduces 28 world-sheet fields ya(σ, τ) to parametrize the 28-torus

discussed earlier. Since the geometric data reside in the moduli, each ya can be regarded as

an angular coordinate for a circle of unit radius. The invariant metric of the group O(6,22)

is conveniently taken to have the form

L =







0 I6 0

I6 0 0

0 0 −I16






, (1)

so that six eigenvalues are +1 and 22 are −1. Since MT LM = L and MT = M , M−1 =

LML. In terms of these quantities, it was shown in ref.[16] that the world-sheet field

equations can be recast in the manifestly O(6,22) symmetric form
⋆

D0y
a = −(ML)abD1y

b (2)

and

gµν∂
α∂αxν+Γµνρ∂

αxν∂αxρ = −1

2
D1y

a(L∂µML)abD1y
b

− ǫαβ∂αxνF a
µνLabDβyb +

1

2
ǫαβHµνρ∂αxν∂βxρ.

(3)

In these equations

F a
µν = ∂µAa

ν − ∂νA
a
µ

Hµνρ = ∂µBνρ +
1

2
Aa

µLabF
b
νρ + cyc. perms.

Dαya = ∂αya + Aa
µ∂αxµ

(4)

and Γµνρ is the usual Christoffel connection. The
∫

ΦR(2)d2σ term has been dropped from

the world-sheet action, since it is higher order in α′. Note that O(6,22) symmetry requires

⋆ The vectors Am+6
µ

and ym+6 (1 ≤ m ≤ 6) are related to the vectors A
(2)
mµ and ym+6 of ref.[16] by a

minus sign.
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regarding the coordinates ya as a 28-vector. Since they describe a product of 28 circles,

it is clearly only possible to rotate them with integer coefficients, so the group must be

restricted to O(6,22;Z). Note also that Dαya is gauge invariant provided that under a gauge

transformation, δAa
µ = ∂µΛa, the internal coordinates transform as follows: δya = −Λa.

Since the matrix ML has 22 eigenvalues that are −1 and 6 that are +1 the y equation of

motion (2) describes 22 left-moving bosons and 6 right-moving bosons.

Following Tseytlin [8] (whose work we are generalizing here), it is possible to find an

action based on the world-sheet coordinates xµ and ya that has manifest O(6,22) symmetry.

The Lagrangian (for flat world-sheet metric) that gives the equations of motion (2) and (3)

is

L =
1

2
gµνη

αβ∂αxµ∂βxν − 1

2
D0y

aLabD1y
b − 1

2
D1y

a(LML)abD1y
b

+
1

2
ǫαβ [Bµν∂αxµ∂βxν − Aa

µ∂αxµLabDβyb] .

(5)

The [U(1)]28 gauge invariance of this formula involves an interplay between the last two

terms, since δBµν = −1
2F a

µνLabΛ
b.

To understand this theory better, it is important to exhibit the coupling to a world-sheet

metric hαβ that gives 2D Weyl invariance and reparametrization invariance. This is achieved

by replacing the first term (as usual) by

L′
1 =

1

2

√
−hhαβgµν(x)∂αxµ∂βxν , (6)

and the third term by

L′
3 = − 1

2
√
−hh00

D1y
a(LML)abD1y

b − h01

2h00
D1y

aLabD1y
b . (7)

The other three terms are not modified. The last two terms are reparametrization and

Weyl invariant as they stand. The second term (L2) is not reparametrization invariant,

but it turns out the sum L2 + L′
3 is. The construction used here is a specialization to

two dimensions of the general method introduced in ref.[6]. Reparametrization invariance

is achieved by modifying the usual rule δya = ξ1∂1y
a + ξ0∂0y

a. Specifically, the term ∂0y
a

should be replaced by the expression that it equals as a result of the ya equation of motion.

All other transformations are the usual ones.
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The action can now be varied with respect to hαβ to give the symmetric traceless energy–

momentum tensor Tαβ . The requirement that Tαβ vanishes gives the usual Virasoro condi-

tions, which are rather simple in the hαβ = ηαβ gauge. Alternatively, if one wishes, the hαβ

equations of motion can be solved and used to eliminate hαβ from the action, thereby ob-

taining the “Nambu form.” This Nambu form still has reparametrization symmetry, which

can be used to impose the Virasoro conditions as gauge conditions that supplement the

equations of motion given previously.

The T duality group O(6,22) relates Kaluza–Klein excitations of the compactified string

to winding-mode excitations. From the point of view of the conventional 2D world-sheet

field theory, the KK excitations can be understood perturbatively (in the α′ expansion),

whereas the winding-mode excitations are nonperturbative solitons. If the characteristic

size of the compact dimensions is called R, these statements are reflected in the fact that

the masses of Kaluza–Klein excitations are proportional to 1/R, whereas those of winding-

mode excitations are proportional to R/α′. Thus, the latter become infinitely heavy in the

weak coupling limit α′ → 0, a characteristic feature of solitons. Given these facts, it seems

remarkable that the O(6,22) symmetry is realized on the action! Clearly, this requires some

explanation. The internal components of the metric and the other moduli are of order R2/α′

(times dimensionless numbers). In the usual string action only terms proportional to R2/α′

or 1/α′ appear. However, the matrix Mab is constructed out of the internal metric and its

inverse. Thus, it has pieces proportional to (R2/α′)n for n = −1, 0, +1. To understand

the symmetries in question perturbatively in α′, we must consider R2 to be of order α′.

This means that the y2 terms in the O(6,22) symmetric action (5) are strongly coupled and

must be treated exactly. Fortunately, since the y dependence in eq. (5) is quadratic, this is

possible and explains why a symmetry that relates perturbative excitations to solitons can

be realized in the action.

3. Bogomol’nyi Bound, Soliton Spectrum, and Five-Branes

The effective field theory of massless bosonic fields for heterotic string theory compact-

ified on a Narain torus at a generic point in the moduli space can be written in various

classically equivalent forms. One form that has manifest T duality and general coordinate
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invariance is

S =
1

32π

∫

d4x
√
−g
[

R − 1

2(λ2)2
gµν∂µλ∂ν λ̄ −

28
∑

a,b=1

λ2

4
F a

µν(LML)abF
bµν

+
λ1

4

28
∑

a,b=1

F a
µνLabF̃

bµν +
1

8
gµνTr(∂µML∂νML)

]

.

(8)

The overall multiplicative factor of 1/32π is irrelevant for classical analysis, and was omitted

in ref.[6], but it provides a convenient normalization of the action when discussing charge

quantization, breaking of SL(2,R) symmetry to SL(2,Z), and the Bogomol’nyi bound [4] [5].

Although there are no massless charged fields in this theory, the full string theory does

contain massive charged states, as well as soliton states carrying magnetic charges. The

electric and magnetic charges qa
el and qa

mag of a state are defined by
⋆

2qa
el = lim

r→∞
rxiF a

0i, 2qa
mag = lim

r→∞
rxiF̃ a

0i. (9)

The Bogomol’nyi lower bound [17] on the mass squared of a state for a given value of (qa
el,

qa
mag) is given by [18] [5]

m2 ≥ λ
(0)
2

16

(

qa
el(LM (0)L + L)abq

b
el + qa

mag(LM (0)L + L)abq
b
mag

)

≡ (m0)
2, (10)

where the superscript (0) denotes the asymptotic value of the corresponding field.

In ref.[5] the expression for m0 in eq.(10) was shown to be SL(2,Z) invariant. In order

to rewrite it in a manifestly SL(2,Z) invariant form, let us express qa
el and qa

mag in terms of

vectors αa
0 and βa

0 [5]

qa
el =

1

λ
(0)
2

M
(0)
ab (αb

0 + λ
(0)
1 βb

0), qa
mag = Labβ

b
0, (11)

where both αa
0 and βa

0 belong to a reference lattice P0, which is even and self-dual with

⋆ These definitions differ from those of ref.[4][5] by a factor of two due to different normalization conven-
tions for the gauge fields.
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respect to the metric L. Now eq.(10) may be rewritten as

(m0)
2 =

1

16
(αa

0 βa
0 )M(0)(M (0) + L)ab

(

αb
0

βb
0

)

, (12)

where we define

M =
1

λ2

(

1 λ1

λ1 |λ|2

)

and L =

(

0 1

−1 0

)

. (13)

M and L play the same role for SL(2,Z) that M and L do for O(6,22;Z). Eq.(12) is manifestly

invariant under SL(2,Z) transformations ω and under O(6,22;Z) transformations Ω:
†

M →ΩT MΩ, αa
0 → (Ω−1)abα

b
0, βa

0 → (Ω−1)abβ
b
0

M →ωTMω,

(

αa
0

βa
0

)

→ ω−1

(

αa
0

βa
0

)

.
(14)

Eq.(12) suggests that it is natural to combine the vectors αa
0 and βa

0 into a single 56-

dimensional vector ξ =

(

αa
0

βa
0

)

which now belongs to a 56-dimensional lattice Γ. The new

lattice Γ is self-dual not only with respect to the metric L, but also with respect to the

metric L̂ = L ⊗ L. The latter condition says that, for any two vectors ξ = (αa
0, β

a
0 ) and

ξ′ = (α′a
0 , β′a

0 ) belonging to the lattice Γ,
‡

ξT L̂ξ′ = αa
0Labβ

′b
0 − α′a

0 Labβ
b
0 = integer. (15)

In our normalization this is just the DSZW quantization condition for the magnetic charge.

The statement that the spectrum of electric and magnetic charges in the theory remains

invariant under SL(2,Z) transformations [4] can now be translated to the statement that the

lattice Γ is invariant under SL(2,Z) transformations. This follows from eq.(14) and the fact

that both ~α0 and ~β0 belong to the lattice P0. Similarly, T duality invariance of the spectrum

is the statement that Γ is invariant under O(6,22;Z) transformations. This follows from the

invariance of the lattice P0 under such transformations.

† The SL(2,Z) and O(6,22;Z) transformation laws of the vectors αa

0 and βa

0 can be read off from eqs.(9),
(11), and the known transformation laws [2] [6] of the fields λ, M and F a

µν
under these transformations.

‡ In fact, the terms are separately integers, since P0 is even and self-dual. This reflects the fact that
there are states in the spectrum without magnetic charge.
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To summarize, we have expressed the mass squared of supersymmetric states in the the-

ory in a form that it is manifestly invariant under the SL(2,Z) and O(6,22;Z) transformations.

Furthermore, these two transformations appear on an equal footing. In this formalism, both

the SL(2,Z) and O(6,22;Z) invariances of the allowed spectrum of charges correspond to

the invariance of the lattice Γ under the corresponding transformations. However, in string

theory, there is a fundamental difference between these two transformations. An O(6,22;Z)

transformation relates Kaluza–Klein modes to string winding modes, and hence transforms

perturbative string excitations to perturbative string excitations, whereas an SL(2,Z) trans-

formation transforms perturbative string excitations to monopole (or dyon) solutions in

string theory. Thus, the spectrum of perturbative string excitations has O(6,22;Z) symme-

try, but not SL(2,Z) symmetry. This can be seen explicitly by noting that the perturbative

string spectrum contains charge vectors ~ξ of the form

(

αa
0

0

)

. States with βa
0 6= 0 are

solitons, and their masses diverge in the weak coupling limit.

Assuming that SL(2,Z) is a genuine symmetry of string theory, it is reasonable to ask

if there is some dual formulation of the theory for which the spectrum of perturbative exci-

tations has SL(2,Z) invariance, and O(6,22;Z) symmetry of the spectrum becomes manifest

only after including the soliton solutions of this dual theory. Let us now look for such a pos-

sibility among p-brane theories in ten dimensions. When a ten-dimensional p-brane theory

is compactified on a torus to four dimensions, the spectrum includes the usual Kaluza–Klein

modes, which can be identified with the Kaluza–Klein modes in string theory. But there

are also excitations that correspond to the p-brane wrapped around the six-torus, which are

required to be the SL(2,Z) transforms of the Kaluza–Klein modes, just as the string winding

modes are O(6,22;Z) transforms of Kaluza–Klein modes.

We shall now show that if such a scenario holds, p must be five. From eq.(12), taking

λ
(0)
1 = 0 (i.e., vanishing θ angle), the ratio of the masses of a purely electrically charged

particle to a purely magnetically charged particle is given by

1/λ
(0)
2 = lim

r→∞
eΦ(10)

(

det G
(10)
Smn

)−1/2
∝ R−6, (16)

where Φ(10) is the ten-dimensional dilaton field, G
(10)
Smn denotes the internal components of

the ten-dimensional string metric, and R ∝
√

G
(10)
Smn denotes the linear scale of the internal

manifold measured in this metric. Let us now consider the dependence of this mass ratio on

R for a fixed value of Φ(10).
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For a p-brane theory compactified on a six-torus, the masses of the Kaluza–Klein modes

are proportional to 1/R′, whereas those of the p-brane winding modes, which are supposed

to be identified with the string theory monopoles, are proportional to R′p. Here R′ denotes

the radius of the internal manifold computed in the p-brane metric, which can differ from

the string metric by a multiplicative factor involving the dilaton field. In order to study the

dependence of the mass ratio on R for fixed value of the dilaton field, we can take R′ to

be proportional to R. The mass ratio is then proportional to R−p−1. Comparison with the

calculation based on string theory in eq.(16) then gives p = 5. This shows that if there exists

a dual version of string theory for which the perturbative spectrum is manifestly SL(2,Z)

invariant, it must be a theory of five-branes.

This result can be made more concrete by identifying the quantum numbers αm
0 and βm

0

(1 ≤ m ≤ 6) with the internal momenta and winding numbers of the five-brane wrapped

around a six-torus. In this analysis all fields that arise from the dimensional reduction of

the 16 ten-dimensional gauge fields are set to zero, and we only consider states that do not

carry any charge associated with these gauge fields. In this case, the indices a, b in eq.(8)

can be taken to run from 1 to 12, αa
0, βa

0 can be regarded as 12-dimensional vectors, and M

and L can be taken to be 12×12 matrices of the form

M =

(

Ĝ−1 Ĝ−1B̂

−B̂Ĝ−1 Ĝ − B̂Ĝ−1B̂

)

, L =

(

0 I6

I6 0

)

, (17)

where Ĝ and B̂ are internal components of the metric and antisymmetric tensor fields,

respectively. As was shown in ref.[6], the gauge field dependent part of the action (8) can

be replaced by

− 1

128π

∫

d4x
√−g

6
∑

m,n=1

[

F
(m,α)
µν Ĝmn(LTML)αβF (n,β)µν + F

(m,α)
µν B̂mnLαβF̃ (n,β)µν

]

.

(18)

The precise relation between the fields F
(m,α)
µν and F a

µν can be found by using the manifestly

O(6,6)×SL(2,R) form of the action given in ref.[6] and the equations of motion derived

from that action. This form of the action contains 24 field strengths F
(a,α)
µν (1 ≤ a ≤ 12,

1 ≤ α ≤ 2), with the identification

F
(a,1)
µν = F a

µν . (19)
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The equations of motion relate F (a,2) to F (a,1). In particular,

F
(m,2)
µν =λ1F

(m,1)
µν + λ2Ĝ

mnF̃
(n+6,1)
µν + λ2Ĝ

mnB̂npF̃
(p,1)
µν

=λ1F
m
µν + λ2Ĝ

mnF̃n+6
µν + λ2Ĝ

mnB̂npF̃
p
µν , 1 ≤ m ≤ 6.

(20)

Let us now consider adding source terms of the form

1

4

∫

d4x
√−g(A

(m,1)
µ Jµ

m + A
(m,2)
µ J̃µ

m) (21)

to the action (18). For asymptotically Minkowskian metric gµν the gauge field equations of

motion derived from the combined action (18), (21) give rise to the following form of Gauss’s

law after we use eqs.(9), (11), (19) and (20)

∫

d3x
√−gJ0

m =
1

2
lim

r→∞
rxi(

|λ|2
λ2

ĜmnF
(n,1)
0i − λ1

λ2
ĜmnF

(n,2)
0i + B̂mnF̃

(n,2)
0i ) = αm

0 ,
∫

d3x
√
−gJ̃0

m =
1

2
lim

r→∞
rxi(

1

λ2
ĜmnF

(n,2)
0i − λ1

λ2
ĜmnF

(n,1)
0i − B̂mnF̃

(n,1)
0i ) = βm

0 .

(22)

This shows that the quantum numbers αm
0 and βm

0 are the total charges coupled to the

gauge fields A
(m,1)
µ and A

(m,2)
µ , respectively. Since these gauge fields couple naturally to the

five-brane [6], the contribution to these charges from a given configuration of the five-brane

can be calculated. To do this, let us introduce the world-volume metric γrs (0 ≤ r, s ≤ 5)

and ten-dimensional fields G
(10)
FMN , A(10)

M1...M6
(0 ≤ M, N, Mi ≤ 9) that couple naturally to the

five-brane [10] [11], and write the five-brane σ-model action in terms of these background

fields:

∫

d6ξ[
1

2

√−γγrsG
(10)
FMN∂rZ

M∂sZ
N − 2

√−γ +
1

6!
AM1...M6

ǫr1...r6∂r1Z
M1 . . . ∂r6Z

M6]. (23)

In writing this equation, the coupling of the ten-dimensional dilaton field Φ(10) to the five-

brane has been ignored, but this will not affect the analysis. Let us now consider backgrounds

characterized by non-zero values of

G
(10)
Fmn, G

(10)
Fµν , A(10)

m1...m6 = λ1ǫm1...m6 , 1 ≤ m, n ≤ 6, µ, ν = 0, 7, 8, 9 (24)

with all other components of all the fields set to zero. Denoting the internal coordinates by
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Y m and the space-time coordinates by Xµ, the action can be written as

∫

d6ξ[
1

2

√−γγrs(G
(10)
Fmn∂rY

m∂sY
n + G

(10)
Fµν∂rX

µ∂sX
ν) +

λ1

6!
ǫm1...m6ǫ

r1...r6∂r1Y
m1 . . . ∂r6Y

m6 ].

(25)

Taking the background fields to be independent of the internal coordinates Y m, this theory

has the following two conserved world-volume current densities corresponding to internal

momentum and winding-number densities of the five-brane

jr
m =(

√−γγrsG
(10)
Fmn∂sY

n +
λ1

5!
ǫrr2...r6ǫmm2...m6∂r2Y

m2 . . . ∂r6Y
m6),

j̃r
m =

1

5!
ǫrr2...r6ǫmm2...m6∂r2Y

m2 . . . ∂r6Y
m6.

(26)

Let us now introduce background fields G
(10)
Fmµ and A(10)

µm2...m6 and write down the extra

terms that appear in the world-volume action to linear order in these fields. Using the

identifications [6]

G
(10)
Fmµ = G

(10)
FmnA

(n,1)
µ , A(10)

µm2...m6 = ǫmm2...m6(−A
(m,2)
µ + λ1A

(m,1)
µ ), (27)

the extra terms in the world-volume action take the form

∫

d6ξ
(

A
(m,1)
µ jr

m∂rX
µ − A

(m,2)
µ j̃r

m∂rX
µ
)

. (28)

Let us now work in the static gauge X0 = ξ0. Comparing eqs.(21) and (28), and using

eqs.(22), gives

αm
0 = 4

∫

j0
md5ξ, βm

0 = −4

∫

j̃0
md5ξ, 1 ≤ m ≤ 6. (29)

This shows that αm
0 and βm

0 are proportional to the total internal momenta and winding

numbers of the five-brane, respectively. In other words, the spectrum of perturbative five-

brane excitations, which contains both Kaluza–Klein states and five-brane winding states, is

characterized by states for which the first six components of the twelve-dimensional vectors

αa and βa are non-zero. Since this is an SL(2,Z) invariant set, the spectrum of allowed

charges for perturbative five-brane excitations is SL(2,Z) invariant.

13



This analysis does not prove definitively that the mass spectrum of perturbative five-

brane states is SL(2,Z) invariant. A complete answer to this question requires a better

understanding of the five-brane mass spectrum. However, the five-brane theory is character-

ized by the same space-time supersymmetry algebra that is responsible for the Bogomol’nyi

bound (12). (The presence of central charges corresponding to five-brane winding numbers

in the supersymmetry algebra was established in ref.[19].) Hence the masses of the pertur-

bative five-brane states are expected to satisfy the same lower bound as given in eq.(12). It

remains to be proved that there are five-brane states that saturate this bound.

We conclude this section with the observation that the perturbative five-brane spectrum

does not contain string winding modes; these must appear as soliton solutions in the five-

brane theory. Hence T duality is not a symmetry of the perturbative five-brane spectrum.

4. SL(2,Z) Transformed World-Sheet Theories

The preceding section described a spectrum of electric and magnetic charge excitations

in terms of 56-component vectors (~α0, ~β0) that is consistent with the S and T dualities of the

toroidally compactified theory. It was obtained by saturating the Bogomol’nyi bound and is

consistent with the most general DSZW quantization requirements. In perturbation theory

(i.e., the expansion in Newton’s constant), all of the electrically charged states (~α0, 0) are

present in the spectrum, whereas none of the magnetically charged states (~β0 6= 0) appear.

All ~β0 6= 0 states must arise nonperturbatively as solitons. The world-sheet theory of section

2 accounts for all the electrically charged states. As was explained there, some of these

are perturbative and some are solitons from the world-sheet (first quantization) viewpoint.

However, they are all perturbative from the space-time (second quantization) viewpoint.

Since the S duality group SL(2,Z) relates electrically charged states to magnetically charged

states, it relates perturbative states and nonperturbative states of the space-time theory, just

as the T duality group O(6,22;Z) did for the world-sheet theory. Specifically, the SL(2,Z)

group element
(

a b
c d

)

maps states with charges (~α0, 0) to ones with charges (a~α0, c~α0). It is

possible to find group elements for any pair of relatively prime integers a and c.

Now let us consider applying the SL(2,Z) transformation directly to the world-sheet

theory. This transformation acts nontrivially on the background gauge fields Aa
µ(x), as well

as the antisymmetric tensor Bµν(x) and the dilaton Φ(x). In the form that the theory

has been written, these are complicated nonlocal transformations. However, this doesn’t

14



really matter; the formulas are not required. In terms of the transformed fields Ã(x), B̃(x),

and Φ̃(x), the transformed world-sheet theory is isomorphic to the original one expressed in

terms of A, B, and Φ. Therefore, this gives an S transformed dual formulation of the world-

sheet theory, for which the excitation spectrum has charge vectors of the form (a~α0, c~α0),

as measured by the original gauge fields Aa
µ(x).

⋆
Of course, from the viewpoint of the

transformed potentials Ãa
µ these are electrically charged states as before. In terms of the

transformed world-sheet theory, all states with charges that are not of the form (a~α0, c~α0)

must arise as solitons of the associated space-time theory. Therefore there are an infinite

number of equivalent dual starting points for defining the theory, which can be labeled by

pairs of relatively prime integers (a, c). This generalizes the proposal of Montonen and

Olive [14] (in another context) that there should be two dual formulations, which could be

called “electric strings” (a = 1, c = 0) and “magnetic strings” (a = 0, c = 1). Note that

distinct dual formulations are labeled by pairs (a, c) rather than by SL(2,Z) elements
(

a b
c d

)

.

The reason for this is that the element
(

1 1
0 1

)

, which corresponds to a quantized shift of the

axion field, is a symmetry of the world-sheet theory. Only group elements with c 6= 0 act

nontrivially on the electric string.

If one considers five-branes, on the other hand, one finds that the perturbative excitations

can be described as having six nontrivial electric charges (the first six components of ~α0)

and six nontrivial magnetic charges (the first six components of ~β0). This charge spectrum

does have SL(2,Z) symmetry, but it is not O(6,22;Z) invariant. Dual formulations of the

five-brane world-volume theory can be reached by acting with T dualities in the manner

described above for S dualities and the string world-sheet theory.

5. Discussion

By assuming that the heterotic string compactified on a torus to four dimensions has S

duality, this Letter has shown that an attractive picture, satisfying a number of consistency

tests, emerges. It seems likely that this symmetry is sufficiently robust that it is applica-

ble even for more realistic compactification schemes. A deeper understanding of S duality

should be helpful for understanding crucial features of realistic models, such as the origin

of supersymmetry breaking together with the absence of a cosmological constant. It might

⋆ For long strings, explicit soliton solutions representing these dual strings, and some properties of these
solutions were discussed in ref.[20].
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even provide helpful clues for constructing a better string field theory. Of course, we are still

very far from such a level of understanding.

There are some more modest, but still challenging, problems that may be appropriate

to study first: One is to generalize our analysis to nongeneric values of the moduli for which

there is unbroken nonabelian gauge symmetry. Another (possibly related) one is to explore

whether it is possible to construct an effective four-dimensional space-time theory with S

duality symmetry when charged states are included. As has been explained, perturbative

string excitations should be related to nonperturbative solitons by the S duality symmetry.

In Ref.[6] a space-time action with SL(2,Z) symmetry was constructed, but this was done

only for the low-energy field theory without charged particle excitations. If any of them

are added, then the magnetically charged states that they transform into would need to be

added, too. One reason for thinking that this might be possible is the example of the world-

sheet theory. As we have shown, the world-sheet theory can be recast so as to incorporate

the T duality symmetry that relates perturbative Kaluza–Klein excitations to winding-mode

solitons.

Some related issues have been discussed in recent papers by Kallosh and Ortin, Binétruy,

and Duff and Khuri [21]. We gratefully acknowledge useful discussions with P. Binétruy, M.

Duff, and A. Strominger.

REFERENCES
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