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1. Introduction and Summary

There is mounting evidence [1 — 10] that the heterotic string theory compacti-
fied on a six dimensional torus is invariant under an SL(2,Z) group of transforma-
tions that acts non-trivially on the coupling constant of the theory. Some of the
consequences of this symmetry has been analyzed in refs.[11][12]. Tt is natural to
ask if this symmetry is present for more realistic compactification of the theory,
say for compactification on a Calabi-Yau manifold. At present there does not seem
to be a way to answer this question, since testing this symmetry requires comput-
ing some observables (e.g. mass spectrum, partition function etc.) exactly, i.e.
without using perturbation theory. There are certain non-renormalization theo-
rems [13 — 15] in the toroidal compactification of the heterotic string theory that
allows us to calculate some quantities in the theory exactly, and hence test the
symmetry. Also, in the field theory limit, the partition function of a twisted ver-
sion of the theory is exactly calculable [9]. No such powerful non-renormalization
theorem exists in the N = 1 supersymmetric compactification of the heterotic
string theory. N = 2 supersymmetric compactifications provide an intermediate
case, and the recent results of Seiberg and Witten [16] might be useful in analyzing
the structure of duality transformations in heterotic string theory compactified on

K3 x S' x S [17]. (For a recent analysis of this problem see ref.[18].)

In the absence of a mechanism to test this symmetry in a realistic compact-
ification scheme, we can at least try to ask if this symmetry is present in other
(non-realistic) compactification of the theory. This might give a clue to how this
symmetry might depend on the compactification scheme. With this in mind, we
shall study the duality group of heterotic string theory compactified on a seven
dimensional torus. In the low energy limit, this will result in a three dimensional

supergravity theory with eight local supersymmetries.

Such theories were analyzed long ago by Marcus and Schwarz [19]. The only
massless bosonic fields in this theory are the spin two (non-propagating) graviton,

and a set of scalar fields; this is due to the fact that in three dimensions vector



fields are dual to the scalar fields and hence all vector fields can be traded in for
scalar fields. It was shown in Ref.[19] that the scalar fields parametrize the coset
0(8,24)/0(8)x0O(24), and that the effective action is invariant under O(8,24) trans-
formation (see also [20]). The duality group of the full string theory is expected
to be a subgroup of this O(8,24) group. Of this, a subgroup O(7,23;Z) is already
known to be a symmetry of the theory, — this is the standard target space dual-
ity group for the compactification of the heterotic string on a seven dimensional
torus [21]. In this paper we shall argue that the duality group in fact is much
larger, — O(8,24;Z), — with a generic element of O(8,24;Z) acting non-trivially on
the coupling constant of the theory.T

An intuitive understanding of this large group of symmetries can be given as
follows? The three dimensional theory can be regarded as a four dimensional the-
ory compactified on a circle. Since the strong-weak coupling duality group SL(2,7)
does not act on space-time, we would expect that this duality symmetry will re-
main unbroken even when we compactify one of the three spatial directions. There
are, however, seven independent ways of regarding the three dimensional theory
as a four dimensional theory compactified on a circle, since any of the seven com-
pact directions could be regarded as the non-compact direction in the original four
dimensional theory before compactification. Thus the three dimensional theory,
besides possessing the usual O(7,23;Z) target space duality symmetry, is expected
to be invariant under seven different SL(2,Z) symmetry groups. The transforma-
tions belonging to these different groups do not commute with each other, and
are thus expected to generate a big non-abelian discrete group. As we shall see,
the O(8,24;Z) group contains the O(7,23;Z) group, as well as each of the SL(2,7Z)

groups, as its subgroup.

If there is a general lesson to be learned from the analysis of this paper, it
is probably that for a generic string compactification we should not expect the

duality group to be a product of the target space duality group and the coupling

T This was already hinted in ref.[5].
I This argument has been developed independently by E. Witten (private communication).



constant duality group. In particular, for string theory compactified on a Calabi-
Yau manifold [22], or for more general (0,2) string compactification [23], the duality
transformations may mix the axion-dilaton field with the other moduli fields in a
non-trivial manner. Other interesting compactifications of the theory to three

dimensions [24] may also provide a good laboratory for testing this phenomenon.

The paper is organized as follows. In sect. 2 we carry out the dimensional
reduction of the ten dimensional theory to three dimensions, and show that the
resulting theory is manifestly O(8,24) invariant. We also identify an O(8,24;Z)
subgroup of this which we claim to be an exact symmetry of the full string the-
ory. In sect.3 we show that various classical solutions in the three dimensional
theory, representing periodic arrays of monopoles in the four dimensional theory,
are related to elementary string states via specific O(8,24;Z) transformations. We
discuss the quantization of some of these classical solutions in sect.4 and show that
the O(8,24;Z) symmetry of the three dimensional theory makes definite prediction
about the existence of harmonic forms in the moduli space of these solutions. In
sect.h we show that two of the hitherto unrelated, but similar solutions in string
theory, — the ‘stringy cosmic string’ solution of ref.[25], and the ‘fundamental
string’ solution of ref.[15], — are in fact related by a Z3 subgroup of the O(8,24;Z)
group. In this section we also suggest a way by which O(8,24;Z) invariance of the
theory might resolve the usual infra-red problems associated with charged parti-
cles in three dimensions. In the three appendices we discuss various properties of
periodic arrays of BPS monopole solutions in (3+1) dimensions, since these solu-
tions provide most of the testing ground for the O(8,24;Z) symmetry of the three

dimensional theory.



2. O(8,24) Invariant Effective Action

We shall begin by discussing how the dynamics of massless fields in the heterotic
string theory, compactified on a seven dimensional torus, is described by an O(8,24)
invariant effective action. This will also establish the relationship between the
fields that transform naturally under O(8,24), and the fields appearing from the
dimensional reduction of the N = 1 supergravity theory in ten dimensions, and
will be useful to us later for studying the O(8,24;Z) transformation properties of

elementary string excitations and solitons.

We start with the N = 1 supergravity theory coupled to N = 1 super Yang-
Mills theory in ten dimensions, and dimensionally reduce the theory from ten to
three dimensions. Since at a generic point in the moduli space only the abelian
gauge fields give rise to massless fields in three dimensions, it is enough to restrict
to the U(1)16 part of the ten dimensional gauge group. The ten dimensional action

is given by,

c / @02/=G0) = (RO 4 GUOMN g, 9(10) 5, 0 10)

_iH](\}(])\)]PH(m)MNP _ }FE(])\;IF(N)IMN)
12 4 ’

(2.1)

where Gg@%, B](\%\),, AE&IO)I, and ®19 are ten dimensional metric, anti-symmetric
tensor field, U(1) gauge fields and the scalar dilaton field respectively (0 < M, N <
9,1<1<16), and,

Fynt = oy AR — o AR 22)
1 .
HJ(\}[(JJ\),P = (8MB](\}?3) — §A§\1[O)IFJ(\,12)I) + cyclic permutations of M, N, P.

We have ignored the fermion fields in writing down the action (2.1). C is an
arbitrary constant that we shall choose appropriately for later convenience. This

constant can always be absorbed into a shift in the dilaton field.



The dimensional reduction of this theory can be carried out following the pro-
cedure of refs.[26][27]. We shall follow the notation of ref.[6] and introduce the
‘three dimensional fields’ @mn, B, AI , O, ALa), g and By, (1 <m <7,
0<u<2 1<a<30) through the relations

s = s B = B A= AL
A = ;GmnGSJ?)QW A1) _ _(%A(w)f _ ALAM),

Agmw) %Bém}rz) —EmnA( )Jr AI A(I+14)’

G = Gl — GE;SJ)FQ)MGEWZQ) Gm” (2.3)

B, = BEJO) _ 4§mnAEL )Al(j n) _ 2(A£Lm)Al(/m+7) _ Al(/m)AELm—i-?))’
® = (I)(l()) - %ln det 67 Guv = 6_2(I)Gp,l/>

1<mn<7 0<pur<2 1<71<L16.

Here G™" denotes the inverse of the matrix @mn. We now combine the scalar
fields @mn, Emn, and gfn into an O(7,23) matrix valued scalar field M. For this
we regard @mn, gmn and 21] as 7x 7,7 x7,and 7 x 16 matrices respectively, and

émn — 1AL AT a5 2 7T x 7 matrix, and define M to be the 30 x 30 dimensional

5 AmAn
matrix
Gt GY(B+C) G1A
M=|(-B+0O)G' (G-B+0O)GYG+B+C) (G-B+C)G'A
ATG-1 ATGY G+ B+ C) Lig+ ATG-1A
(2.4)
satisfying
0 Iy 0
MM =L, MY'=M, L= 0o 0o |, (2.5)
0 0 —Ij

where I, denotes the n x n identity matrix.



The effective action that governs the dynamics of the massless fields in the
three dimensional theory is obtained by substituting in Eq.(2.1) the expressions
for the ten dimensional fields in terms of the three dimensional fields, and taking

all field configurations to be independent of the internal coordinates. The result is

1 1 i ! /
S = 1 /d3x\/ —g [Rg - "0, 29,® — Ee“@g““ 9" 9" HywpHyv

(2.6)
— e 2 g g ES (LML) F ), + é 9" Tr(0,MLd, ML)]
where
B = 9,48 — 9,4 .

Hywp = (0uBy, + QAELQ)LabFV(Z)) + cyclic permutations of u, v, p,

and R, is the scalar curvature associated with the three dimensional metric g, .
In deriving this result we have chosen the normalization constant C' in Eq.(2.1) in

such a way that we get an overall normalization factor of 1/4 in front of Eq.(2.6).

The action given in eq.(2.6) is invariant under the O(7,23) transformation

M — @MQT, Aga) — QabAg)) Juv — Guv B;U/ - B/U/a ¢ — (I>> (2'8)

Y

where (2 is an O(7,23) matrix, i.e. a 30 x 30 matrix, satisfying,
QLO” = L. (2.9)

In three dimensions the field B, has no physical degrees of freedom. Using this

fact, we shall restrict ourselves to backgrounds characterized by

Hywp = 0. (2.10)

(a)

The equations of motion of the gauge fields A, now take the form:

0, (6—2@, /= guu’g””’(ML)abFlﬁ?g,) — 0. (2.11)



This allows us to define a set of scalar fields )* through the relations

_ ’ ’ b 1
V=ge 2 g (ML) ), = S 0,0, (2.12)

The Bianchi identity for F, [f;) , etV PﬁuFlEg) = 0, now takes the form:
D" (em(ML)abauwb) —0, (2.13)

where D, denotes the covariant derivative which preserves the metric g, .

Let us now regard ¢ as a 30 dimensional column vector, and define a new

32x32 matrix M as follows

M + e®yypT —e2®y) MLy + 5e2®(v7 Ly)
M = —62(I)1DT €2<I> _%€2<I>wTL1/}
VILM + 52T (W Ly)  —3e* 9T Ly e2® 4 9T LM Ly + 1e2® (97 Ly)?
(2.14)

It can be verified by straightforward algebraic manipulations that the matrix M

satisfies the relations

ME=M, MILM=CL, (2.15)

where £ is a 32x32 matrix
L 0 0
L=]10 0 1]. (2.16)
0 1 0

For H,,, = 0, the equations of motion derived from the action (2.6), together with

eq.(2.13), can be shown to be identical to the equations of motion derived from the



action
B 1

%=1

1
/ Brv—g [Rg + 59" Tr(9,MLO, ML) |. (2.17)

This action is manifestly invariant under the O(8,24) transformation
M = QMOT, G — G (2.18)
where (2 is a 32x32 matrix satisfying,
acol = .. (2.19)

This establishes the O(8,24) invariance of the low energy effective field theory

describing the three dimensional string theory.

We shall now show that this O(8,24) symmetry of the action may be understood
in terms of the O(7,23) symmetry (2.8), and the SL(2,R) symmetry of the four
dimensional effective action discussed in Ref.[6]. We regard the three dimensional
effective theory as the result of dimensional reduction of the four dimensional
effective theory to three dimensions. Then the three dimensional effective theory
should possess all the symmetries of the four dimensional effective theory, as long
as they are not broken by compactification. In particular, the SL(2,R) symmetry
of the four dimensional effective action (whose discrete subgroup SL(2,Z) may
be identified with the S-duality group of the full four dimensional theory) should
induce an SL(2,R) symmetry of the three dimensional theory. There are many ways
of regarding a three dimensional theory as a compactified four dimensional theory;
let us, for definiteness, take the four dimensional theory to be the one obtained by
compactifying the directions 4-9. Then the three dimensional theory is obtained by
compactifying the third direction of the four dimensional theory on a circle. The
action of the SL(2,R) group on various ‘four dimensional fields’ has been given in
Ref.[6]. From this one can find the transformation laws of various ten dimensional

fields, and hence, by using eq.(2.3), (2.12) and (2.14), the transformation laws of



various ‘three dimensional fields’. It turns out that the SL(2,R) transformation of

the ‘four dimensional fields’ — A — (aA 4+ b)/(cA + d) — generated by the matrix

a
with ad — bc = 1, corresponds to the following transformation on the
c

‘three dimensional fields’:

M — amaT, (2.20)
where,
a 0 0 O O b 0
0 e 0 0O O O O
0O 0 4 0 0 0 —c
Q=10 0 0 Is 0 0 O (2.21)
0 0 0 0 Iig 0 O
c 0 0 0 0 d 0
0 0 b 0 0 0 a

It can be easily verified that € given above represents an O(8,24) transformation.
Furthermore, one can also verify that the full O(8,24) group of transformations may
be generated as a combination of the O(7,23) transformation (2.8), and the SL(2,R)
transformation given above. Thus the O(8,24) symmetry of the three dimensional
effective action may be regarded as a consequence of the O(7,23) symmetry, and

the SL(2,R) symmetry of the four dimensional theory.

We shall argue in the next section that an O(8,24;Z) subgroup of this is a sym-
metry of the full string theory. In doing so, we must first identify an appropriate
0(8,24;Z) subgroup of the full O(8,24) group which we want to show is the symme-
try of the full theory. Let us first identify the 0(7,23;Z) subgroup of the O(8,24)

that represents the usual target space duality symmetry of the three dimensional

* In the basis that we have chosen, O(8,24;Z) matrices are not O(8,24) matrices with integer
entries.
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string theory [21]. This subgroup is generated by matrices of the form:
Q00
0 1 0], (2.22)
0 0 1

where €2 is an 0O(7,23) matrix satisfying the condition that LOL preserves the 30
dimensional Lorenzian, even, self-dual lattice Agg, with metric L, which represents
the allowed values of the electric charge vectors of elementary string states [28].
This specifies the O(7,23;Z) subgroup of O(8,24) completely. For convenience, we

shall choose the lattice A3g as the lattice containing the set of vectors
ni

: ni € Z, €€ Agyxp,, (2.23)

ni4

3

where Ag,« g, is the root lattice of Fg x Eg. This means that in the absence of
any background scalar field, the theory represents the Eg x Eg heterotic string
theory, compactified on a seven torus, with each of the seven radii being equal
to the self-dual radius. In the normalization convention of ref.[6] o/ = 16, and
hence the self-dual radius corresponds to R = v/a/ = 4. This also shows that the
normalization factor of 1/4 in eq.(2.17) is consistent with the normalization factor
of 1/327 that appears in front of the four dimensional effective action of ref.[6], with
the extra factor of 87 coming from the length of the extra internal dimension. The
compatibility of the normalizations of the four and the three dimensional effective
actions will be important for us in our later analysis, since we shall use the known
solitons in four dimensions to construct three dimensional solitons. Note that by
restricting the lattice Agg in this way we do not suffer from any loss of generality,
since any other choice of the lattice is equivalent to the lattice Azg described above,

with an appropriate choice of the background scalar fields [28] [29].

11



We shall now specify the O(8,24;7Z) subgroup of O(8,24) by prescribing a 32
dimensional lattice As2 which is preserved by the O(8,24;Z) transformations. We

take this lattice to be the collection of vectors of the form:

my |, BE Ago, mi, Mg € Z. (2.24)

m2

O(8,24;Z) subgroup of O(8,24) is defined to be the group of O(8,24) matrices
Q, satisfying the condition that L)L preserves the lattice Age. (Equivalently, €
preserves the lattice £A32.) In the next section we shall discuss the possibility that

this O(8,24;Z) subgroup is a symmetry of the full string theory.

Using eqs.(2.23) and (2.24) we see that the lattice Agp contains the set of

vectors

n

nia |, ni,m; € Z, €€ Npyxp, (2.25)

In order to check that we are on the right track, we shall now verify that the S-
duality group SL(2,Z) of the four dimensional theory is a subgroup of the O(8,24;7)
group that preserves the above lattice. To do this, we regard the 3-dimensional
theory as a four dimensional theory compactified on a circle as before, taking the
four dimensional theory to be the one obtained by compactifying the directions

4-9. From eqgs.(2.20), (2.21), we see that the SL(2,Z) transformation generated by

2
the matrix < with ps — qr = 1, p,q,r,s € Z, corresponds to an O(8,24)

12



transformation generated by:

p 0 0 0 0 ¢q O
0 e 0 0 0 0 O
00 s 0 0 0 —r
Q=10 0 0 Is 0 0 O (2.26)
0 0 0 0 Ly 0 O
r 0 0 0 0 s 0
0 0 —q 0 O 0 p

It can be easily verified that ) given above preserves the lattice LA30 for Ass
defined by eq.(2.25), and hence represents an O(8,24;Z) transformation. If, instead
of regarding the 3 direction as one of the four dimensions, we choose any of the other
directions 4-9 as one of the four dimensions, the matrix {2 is modified appropriately,

but in each case represents an O(8,24;Z) transformation.

The three dimensional string theory is manifestly O(7,23;Z) invariant. Thus
establishing O(8,24;Z) invariance of the theory basically amounts to showing that
the original SI(2,Z) symmetry of the four dimensional theory is not destroyed
when we compactify one of the three space-like directions in this theory.* In the
next two sections we shall try to identify some of the soliton states in the string
theory which are related to the elementary string excitations via the above SL(2,7)
subgroup of O(8,24;7) transformations. The existence of these soliton states is a

necessary requirement for the O(8,24;7) invariance of the theory.

x Recent results of ref.[9] provide strong evidence in favor of this.

13



3. Elementary Particles and Solitons

The charge quantum numbers of elementary string excitations are characterized
by a 30 dimensional vector @ € Agy. The asymptotic value of the field strength F, ,S‘;)
associated with such an elementary particle can be calculated using the procedure

outlined in ref.[6]. The answer in polar coordinates is

1
\/—gF(“)Op ~ —Eem]\/[abab, (3.1)
where (p, ) are the polar coordinates of the two dimensional space, with origin
at the location of the elementary particle. Using eq.(2.12), we get the following

asymptotic form of ¥%:
0
P o~ —2—Labozb + constant. (3.2)
T

Thus under 6§ — 0 — 2, * — ¥® + Lgpal. This induces the following transforma-
tion of the matrix M:

M — Qp(@)MQL(a), (3.3)
where,
130 —Lo 0
Q@) =1 0 1 0|, a*=dla (3.4)
al —%&2 1

One can easily verify that Qg (d) is an O(8,24) matrix. Furthermore, since the
lattice Asg is even and self-dual with respect to the metric L, we have @ =
al La=even, and o LA=integer for &, 5 € Agg. Using these relations one can
verify that LQg (&)L preserves the lattice Asg, i.e. acting on a vector of the form
given in eq.(2.24), it produces another vector of the same form. Thus Qg(d) €
0(8,24; Z). This shows that elementary string excitations in three dimensions
may be regarded as vortices, with the matrix valued field M transforming by an

0(8,24;7) transformation as we go around the vortex.

14



Of special interest are the elementary string excitations which are invariant
under half of the supersymmetry transformations, and hence saturate the Bogo-
mol'nyi bound [13]. These were analyzed in detail in refs.[6][8]. Elementary string
states with @2 = —2 and saturating the Bogomol'nyi bound are 16 fold degenerate,
whereas those with @? = 0 and saturating the Bogomol'nyi bound are 16x24 fold

degenerate.

At this stage we should point out that due to infra-red logarithmic divergence
in the electro-magnetic contribution to the self energy, both the elementary string
excitations and the soliton masses are divergent in this theory. This does not con-
tradict the Bogomol’'nyi formula, since the asymptotic values of the scalar fields
which appear in the expression for the Bogomol'nyi bound, also diverge logarithmi-
cally. Because of the divergent self-energies, it is more convenient to use the criteria
of unbroken supersymmetry rather than saturation of the Bogomol'nyi bound to
characterize these states, although we shall continue to refer to them as states
saturating the Bogomol’'nyi bound. The presence of these infra-red divergences
puts the analysis in the three dimensional theory on a less solid footing than the
corresponding analysis in the four dimensional theory. However, these infrared di-
vergences affect the elementary particles and solitons in an identical manner since
they are caused by massless scalars and abelian gauge fields, and, as we have seen
in sec.2, the dynamics of these fields is manifestly O(8,24;Z) symmetric. Thus,
whatever be the physical effect of these infra-red divergences, we do not expect
them to cause a violation of the O(8,24;Z) symmetry. In view of this, we shall
continue to analyze the spectrum of states in this theory ignoring the infra-red di-
vergences. It will also be understood that when we relate the asymptotic behavior
of various fields with various charge quantum numbers, we shall be talking of an
asymptotic region where the logarithmic growth of various fields have not reached

a large enough value so as to invalidate the classical analysis.

Let us now turn to the analysis of the non-singular soliton solutions in the
three dimensional string theory. A class of these solutions may be constructed

using an idea developed in ref.[30], namely by starting from a periodic array of

15



known monopole solutions in four dimensions along one particular direction (say
the 3 direction) with periodicity 2mR(3), and reinterpreting it as a three dimensional
solution, with the third direction compactified on a circle of radius R3). (As stated
before, here R3) = 4.) There are two classes of known non-singular monopole
solutions in four dimensions, the BPS monopole and the H-monopole, and in both
cases multiple monopole solutions are known to exist. SL(2,Z) invariance of the four
dimensional theory in fact demands the existence of many other multi-monopole
solutions, with each monopole carrying magnetic charge vector 3, for some specific
set of vectors 3 belonging to a 28-dimensional self-dual Lorentzian lattice [6]. In
our analysis of this section we shall assume the existence of solutions representing
periodic arrays of these monopoles; we shall not, however, need to know the specific
forms of these solutions” Quantization of these soliton solutions will be discussed
only for the periodic arrays of BPS monopole solutions, since this is the case that
is best understood. For this purpose, we have discussed some of the properties
of these solutions in appendices A-C. (Quantization of even a single H-monopole
solution is plagued by our lack of understanding of the physics at large and small
distance scales [8], although the classical multiple H-monopole solutions can be

constructed explicitly [30].)

Let us consider a magnetic monopole solution in four dimensions carrying mag-

netic charge vector (. (52 = —2 corresponds to BPS monopoles, and B2 =0
(@)

ﬂ —
fields (1 < a < 28,0 < 1 < 3), then the total magnetic flux of the gauge field A/(;La)

corresponds to H-monopole solutions.) If A}/ denotes the four dimensional vector

associated with this monopole solution is given by 47rEdBBB [6], where,

0 Is O
L=|1 o o |. (3.5)
0 0 —Ij

Let us now consider an array of these monopoles in the 3 direction separated by

a distance 87 (which corresponds to a radius of compactification 4, the self-dual

* In fact, construction of many of these solutions may require us to take stringy effects into
account.
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radius). Then the total flux per unit length coming out of a cylinder enclosing
the 3 axis will be %[_/(—1566. As has been argued in appendix A, asymptotically,
the dependence of various fields on the third direction can be ignored. Thus if
(p,0) denote the polar coordinates of the 2 dimensional space spanned by the 1,2

directions, we get,

—(a 1 . -
9y AL ~ — - Laf" (3.6)

Thus flga) increases by %Z}agﬁg as 0 — 0 — 2.

The relationship between four dimensional fields and the ten dimensional fields
was given in ref.[6]. Hence from eq.(3.6) we can determine how the asymptotic
values of different ten dimensional fields transform under § — 6 — 2x. This,
in turn, can be used to calculate how the asymptotic values of different three
dimensional fields, defined through eq.(2.3), (2.4), (2.12) and (2.14), transform
under § — 0 — 2. We find that if we identify the direction i = 3 with the first

compact direction of the 7 dimensional torus (m = 1), and if,

ai
B=—|a |, d1,d@2 € 7% €€ Apyxps, (3.7)
£
then, as 8 — 0 — 27,
M — Qg(a1, @y, ) MQE (@1, @2, ), (3.8)
where,
1 0 0 0 0 0 0
a9 ]6 0 0 0 0 0
—368% —al 1 —al T 0 0
Qs(a@, @) =| a 0 0 Ig 0 00 (3.9)
& 0 0 0 Iz 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



Here,

32 =p3TLB = 2d, - @ — €2 (3.10)
It can be easily verified that Qg(a@, @2, ) is an O(8,24;Z) matrix. Thus we see that
these soliton solutions can also be regarded as vortex solutions, with the matrix M
transforming by a non-trivial O(8,24;Z) transformation as we go around the vortex.
In fact, Qg represents an element of the target space duality group O(7,23;Z).
Although, unlike ordinary vortex solutions, these solutions depend on the internal

coordinate 23, it has been argued in appendix A that the 2% dependence of various

fields falls off exponentially as we move away from the soliton core.

We shall shortly see that the elementary particles and the soliton solutions
are related by O(8,24;Z) transformations. However, we shall first generalize the
soliton solution by taking into account the electric charge quantum numbers that
the soliton is allowed to carry. First of all, the four dimensional monopole solution
can carry an electric charge vector —n/3 for any integer n, this electric charge arises
from the quantization of an appropriate zero mode of the monopole solution. This
induces asymptotic values of dy1)® as in the case of electrically charged elementary
string excitations. Furthermore, the solution can also carry a momentum in the
internal direction labelled by i = 3. This momentum will be labelled by an integer
k, and, from the three dimensional viewpoint, will correspond to a new charge
quantum number associated with the three dimensional gauge fields. Hence this
will also induce an asymptotic value of dypy®. The net result is that for a three

dimensional soliton labelled by the quantum numbers (3, n, k),

M — Qg(dy, @, € n, k)MQL (@, do, Einy k), as 0 — 0 — 2r, (3.11)

where,
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1 0 0 0 0 0 0
a Is 0 O 0 —nas 0
_%52 —al 1 —al T %n32 -k 0
Qg(ay, dy, & n, k) = a1 0 0 Ig 0 —na; 0 |. (3.12)
—£ 0 0 0 g né 0
0 0O 0 0 0 1 0
23 +k nai 0 naj n&l —%nzﬁz 1

It can be verified that Qg(a@1, @, &;n, k) also represents an O(8,24:Z) matrix.

Thus we see that both, the elementary string excitations, and solitonic states
in the theory, saturating the Bogomol'nyi bound, are characterized by O(8,24;Z)
matrices €, such that the matrix M transforms to QMQOT as we go around the
state once. Let us now consider the effect of an O(8,24;Z) transformation w on

such a state. Under such a transformation,
M= M =wuMuT. (3.13)
Thus, as § — 6 — 2,
M = woMuwl = waOMOT W = WQLWTIM (WD) TIQTWT = AM'QT, (3.14)
where,

Q= wOw (3.15)

Thus under an O(8,24;Z) transformation generated by w, a state characterized by

the matrix € goes to a state characterized by the matrix ' = wQuw™!.

We shall now show that the solitons characterized by the matrices 2g(ay, d2, 5, n, k)
given in eq.(3.12) are related to the elementary string excitations characterized by

the matrix Qg(d) given in eq.(3.4) through an O(8,24;Z) transformation. This is
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easily verified by noting that

Qs(@1, da, &, k) = wyQp(do)w

where,
k
ay
ap=101,
as
and,
n 0 0 0
0 Is 0 O
0 0 0 0
wp=|10 0 0 I
0 0 0 0
1 0 0
0 0 1 0

0
0
0
0
L

0
0

o O O o o O

-1

@ = al Lag = 2a; - d@y — €2,

n

n

(3.16)

(3.17)

(3.18)

This shows that the soliton solutions are related to the elementary excitations

in string theory via an O(8,24;7) transformation. Note that in constructing the

soliton solutions we have treated the internal direction m = 1 as special, since that

is the direction we have identified as one of the directions in the four dimensional

theory. Other soliton solutions in the theory, corresponding to any other internal

direction being identified as the fourth direction may be constructed in a similar

manner. These solitons will also be related to the elementary string excitations by

appropriate O(8,24;7) transformation.

* This result is not surprising, since in the limit of large radius of the internal direction z°,

3

both the elementary particles and the solitons can be identified to the corresponding states
in four dimensions, which are known to be related by SL(2,Z) transformations. But as we
shall see in the next section, O(8,24;Z) symmetry makes non-trivial predictions about the

moduli space of multi-soliton solutions.
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So far we have only shown that the quantum numbers of the solitons are
related to those of elementary particles via an O(8,24;Z) transformation. However,
O(8,24;7) invariance also requires that the degeneracy of states is identical for the
elementary particles and solitons. In order to investigate this question, we need to
quantize the collective coordinates of the soliton solutions. As mentioned at the
beginning of this discussion, this will be done only for the periodic arrays of BPS
monopole solutions (characterized by 3% = —2). From the relationship between
@y and 3 given in eqs.(3.7), (3.17) it follows that the corresponding elementary
string states have (dp)? = —2, and hence are 16 fold degenerate [6]. On the other
hand, the moduli space of periodic array of single BPS monopoles is 4 dimensional,
and is given by R? x S x S!, with R? representing the location of the array in
the non-compact directions, the first S! denoting the location of the array in the
compact direction, and the second S' representing the coordinate conjugate to the
U(1) electric (:halrge.Jr The quantum numbers k and n can be identified to momenta
conjugate to these two angular coordinates. The structure of the fermionic zero
modes is identical to that of a single BPS monopole in 4 dimensions with moduli
space R3 x S1, since the supersymmetry algebra, as well as the number of unbroken
supersymmetry generators is the same in the two cases. Standard analysis [2] [32]
then shows that the soliton state is 16-fold degenerate, in agreement with the

requirement of O(8,24;Z) symmetry.

In our discussion relating the solitons to elementary excitations, we have con-
sidered only those elementary string states which do not carry any winding number
in the 23 (m = 1) direction. This can be seen from eq.(3.17). Strings winding along

the 23 direction will play a crucial role in the analysis of section 5.

T As s typical for solitons in three dimensions [31], the zero modes associated with R? x S1x S!
are not strictly normalizable due to a logarithmic divergence from large distances. This
divergence is related to the fact that these solitons have infinite mass due to logarithmic
divergence in the integral of energy density from large distance scale, and also affects the
elementary string states. A possible infra-red regularization that gives rise to normalizable
zero modes associated with the R? x S' x S! factor has been discussed in appendix C.
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4. Predictions of O(8,24;7) Invariance

As in the case of four dimensional theory, existence of O(8,24;Z) symmetry
predicts the existence of many new soliton states in the theory. We shall consider

only some specific examples here. Let us consider the O(8,24;7) matrix

p 0 0 0 0 ¢qg O
0 I¢ 0O 0 O O O
0o 0 s 0 0 0 —r
w=|0 0 0 Ig 0 0 0 |, ps —qr = 1. (4.1)
0 0 0 0 Iig 0 O
r 0 0 0 0 s 0
0O 0 —g O O 0 p

Applying this O(8,24;Z) transformation on an elementary string excitation char-
acterized by the matrix Qp(dp), with dg given by eq.(3.17), we get the following
O(8,24;Z) matrix:

1 0 0 0 0 0 0
rag I 0 0 0 —pas 0
—r; 2 —ral 1 —rad T -k + %d’% 0
wQp(dg)w™t = ray 0 0 I 0 —pay 0. (42
—ré 0 0 0 L 23 0
0 0 0 0 0 1 0
k+ %d’% par{ 0 pag peT —%2623 1

Reversing the analysis that led to eq.(3.12), we can easily verify that a state
characterized by the above O(8,24;Z) matrix corresponds to a periodic array of
r monopoles in four dimensions, carrying electric and magnetic charge quantum
numbers —p/3 and 73 respectively, and carrying k units of momentum in the inter-
nal direction i = 3. For 3% = —2, i.e. for BPS monopoles, O(8,24;7) invariance
again predicts a 16 fold degeneracy of these states.
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In order to verify this prediction, one may proceed as follows. First one assumes
that the scale of breaking of the SU(2) symmetry that leads to the construction
of the BPS monopoles, as well as the inverse radius of the third direction, is
small compared to the Planck mass. In this limit we can ignore the gravitational
effects, and regard the solitons as periodic array of monopole solutions in N = 4
supersymmetric SU(2) gauge theories in four dimensions, with the SU(2) symmetry
spontaneously broken by the vacuum expectation value of the Higgs field. In
particular, in this limit the off-diagonal components GZ())LO) of the gravitational field,
which would behave like a gauge field in three dimensions and would couple to the
charge quantum number k, is ignored, since the corresponding gauge coupling
constant is proportional to the inverse radius of the third direction measured in
Planck units. The question of existence of states characterized by eq.(4.2) now
becomes the question of whether the SL(2,Z) symmetry of the N=4 supersymmetric
Yang-Mills theory in four dimensions survives under the compactification of one
of the space directions. Although the recent results of Vafa and Witten [9] show
that the SL(2,Z) invariance of the theory does not depend on the underlying four

manifold, it will be reassuring to directly verify the existence of these states. We

shall now discuss how this might be done.

As in the case of multi-monopole solutions, the existence of supersymmetric
states representing multiple periodic arrays of monopoles, and carrying multiple
units of electric charge and momentum in the 3 direction, can be studied by quan-
tizing the collective coordinates parametrizing the moduli space of these solutions.
The moduli space of r BPS monopoles arranged in a periodic array has been dis-
cussed in some detail in appendix B. As explained there, this moduli space is

expected to have the structure”

M. =R*x (S' x St x M%7, x Z,) (4.3)

* It has been shown in appendix C that even though the zero modes associated with the
coordinates on R? x S x S! are not normalizable, the zero modes associated with the
coordinates on M are renormalizable.
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where M is a 4(r — 1) dimensional manifold. The first Z, acts on the coordinate
X3 of the first ST as X3 — X3 —(27/r), and the second Z, acts on the coordinate
© of the second S! as © — © — (27/r). Both the Z, transformations also have
non-trivial action on MY. Physically, for well separated arrays, the action of the
first Z, on M, corresponds to translating one of the periodic arrays by one period,
whereas the action of the second Z, on M, corresponds to changing the U(1) phase
of all the monopoles in one array by 27. Since p and k are the quantum numbers
representing the total U(1) charge, and the total momentum in the third direction
respectively, for a given value of p and k the X3 and © dependent part of the
wave-function has the form exp(ikX3 +ip©). Hence this part of the wave-function
picks up a factor of exp(—2mik/r) under the first Z, transformation, and a factor
of exp(—2mip/r) under the second Z, transformation. Thus the part of the wave-
function coming from MY must pick up a factor of exp(27ik/r) under the action

of the first Z, and a factor of exp(2mip/r) under the action of the second Z,.

As was shown in ref.[33], and discussed in the specific context of monopoles
in refs.[32][34][7], the supersymmetric states of the soliton, saturating the Bogo-
mol'nyi bound, are represented by harmonic forms on the space MY. For each
such harmonic form, we get a 16 fold degenerate state from quantization of the
supersymmetric partners of the coordinates on R% x S x S!. From the relation
ps — qr = 1 it follows that the numbers p and r are relatively prime, but there is
no restriction on k. Thus if we want a 16 fold degenerate state for each of these

values of p and k, we must demand that,

For every integer p that is relatively prime with respect to r, and for every integer
k, the space MO has a unique (and hence (anti-)self-dual) harmonic form, which
picks up a phase exp(2mwik/r) under the action of the first Z, group, and a phase
exp(2mip/r) under the action of the second Z, group.

At present we do not have a direct proof of the above conjecture for values
of r > 2. We shall now give an indirect argument for the existence of these

harmonic forms starting from the corresponding results on the r-monopole moduli
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space [35] [7] [10]. Before we proceed we should, however, warn the reader that
this argument is based on various assumptions that look physically plausible, but
it does not constitute a rigorous proof. For simplicity, we shall consider the case
r = 2, the extension to the more general case is straightforward. Let us consider
the case when the radius of compactification R3) of the third direction is much
larger than the scale of breaking of the SU(2) symmetry (which we shall denote by
K). Let R denote the region of MY where two monopoles are within a distance
of order K of each other, and the resulting configuration is repeated along the
third direction with periodicity 27 R(3). Let us, for definiteness, assume that the
2-monopole clusters are located around the points 27rnR 3y on the 3-axis. In this
region, the metric on Mg is close to the metric on the two monopole relative moduli
space MY, since for an infinitesimal motion in ./\/lg, the change in various fields near
the monopoles in one cluster comes mostly due to the monopoles in that cluster.
Contribution from the other clusters are suppressed by inverse powers of R(3).
Now, M3 is known [35] [7] [10] to have a self-dual harmonic form € which picks
up a phase of —1 under the Z, action associated with the U(1) phase. Q falls off
exponentially as the two monopoles are pulled away from each other to a distance
much larger than K. This allows us to construct an approximate harmonic 2-form
Q on M§ which is equal to  in the region R, and falls off rapidly in the region
of moduli space where we pull the two monopoles in the cluster away from each

other at a distance >> K.

Let h denote the action of the first Zy transformation on MY. As explained
in appendix B, this corresponds to moving one of the monopoles in the cluster by
a distance mR(3) along the positive 3-axis, and the other monopole by a distance
—7 R (3) along the negative 3-axis. Let ho{) denote the action of the diffeomorphism
h on the approximate harmonic form Q. Since the diffeomorphism generated by h
is a symmetry of the metric, h o Q is also an approximate harmonic form on Mg.
Furthermore, since Q has support mostly in the region of ./\/lg where the monopoles
cluster around the points 2mn R 3), and (as follows from the definition of k) h o Q

has support mostly in the region of ./\/lg where the monopoles cluster around the
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points (2n+ 1)7TR(3), there is no significant overlap between the forms Q and hoQ).

It then follows that
1

wh =3 "emhipl o (4.4)

=0
are also approximate harmonic forms on ./\/lg with the property that w®) picks
up a phase of exp(imk) under the action of the first Zy group of transformations
generated by h, and a phase of —1 under the second Z, group of transforma-
tions associated with the U(1) phase. The construction given in eq.(4.4) gives two

independent w(k), which can be taken to be w©® and w®,

Normally one would expect that the above approximate harmonic forms on
/\/lg can be suitably modified so as to give exact eigenforms ©*®) of the Laplacian
with a small, but not necessarily zero, eigenvalue A¥). Physically this effect may
be understood by regarding the system as a one dimensional periodic array of
two monopole bound states (with finite binding energy). We expect the bound
state energy to shift slightly due to the influence of the other monopoles and the
periodicity requirement, but do not expect the state to disappear completely. We
shall now argue that in the present case M) vanishes exactly. This is proved by
noting that if A¥) % 0, then either d or § = xdx (or both) does not annihilate
@), Let us assume that do®) #£ 0; the case where d@®) # 0 can be dealt
with in an identical manner. We can then define a normalized differential form
o) = dok)/ VAF) which is also an eigenform of the laplacian with eigenvalue
A®) - Since for R3) — o0, A®) 0, in this limit &®*) corresponds to a harmonic
form on MY, and its restriction to R would correspond to a new harmonic form
on the two monopole moduli space MS * (Note that in this limit o) ceases to
be an exact form, since do®) — 0.) But we know from the analysis of the two
monopole moduli space that such harmonic forms do not exist [10]. This shows

that our initial assumption must be wrong, i.e. M%) must vanish.

* We are implicitly assuming that &@®*) will also have its support mostly inside R and h(R).
This is physically plausible, since bound states of monopoles with finite binding energy are
expected to have support only in regions where the monopoles are close to each other.
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This argument shows the existence of the relevant harmonic forms @®) on
./\/lg for large R(3) and hence the existence of the relevant supersymmetric state
in the two soliton sector. It is probably clear to the reader that the argument
presented here is simply a variation of the argument [13] that once AE) is non-
zero, the number of states increase, and there is no convenient way of getting rid
of these extra states in the R(3y — oo limit. We can now use the same continuity
argument as in ref.[13] to argue that these states, and hence these harmonic forms
must exist also for finite values of R(3). Alternatively, one could argue that the
number of square integrable harmonic forms on a manifold is a topological property
of the manifold, and is not expected to change under smooth deformations of the

manifold.

As in the case of four dimensional theories [6] [7], we can also give a plausibility
argument for the existence of these bound states based on triangle inequality. Since
the Bogomol'nyi formula gives infinite mass of all the states, this is not a useful
starting point. Instead, we shall base our calculation on the direct analysis of the
force between far away solitons. For this, let us consider two arrays, one carrying r;
units of magnetic charge and p; units of electric charge per unit period in the third
direction, and the other carrying ro units of magnetic charge and ps units of electric
charge per unit period in the third direction. Using the results of ref.[36] giving the
asymptotic Higgs and gauge fields around a dyon, one can show that the attractive

force (proportional to the inverse separation) due the exchange of massless Higgs

between the two arrays is proportional to v/(p1)2 + (11)24/(p2)? + (r2)?, whereas
the repulsive electric and magnetic force between the two arrays is proportional

to (pip2 + rlrg)jr These two forces balance each other only when the two vectors

m
due to the higgs exchange is always larger then the repulsive electric and magnetic

b1 b2 ) . .
< ) and < ) are proportional to each other. Otherwise the attractive force
2

force.

1 For simplicity, we have assumed that the coupling constant is unity, but this is not a
necessary assumption.

27



Let us now consider a state carrying p units of magnetic charge and r units

of electric charge per unit period in the three direction. If p and r are relatively

p
prime, it is clear that the vector cannot be written as a sum of two other
r

vectors with integer entries which are proportional to each other. In other words,
if we try to regard the array carrying the above magnetic and electric charges as
a combination of two different arrays, then for large separation, these two arrays
experience a net attractive force. It is then plausible that there are bound states
of these two arrays, and that there exists specific bound states which attain the
lowest possible energy, i.e. saturate the Bogomol'nyi bound. These are precisely

the states that are needed for establishing duality invariance of the spectrum.

5. Fundamental Strings and Stringy Cosmic Strings

There are two kinds of different string like solutions that have been constructed
in four dimensional string theory. The first kind, known as fundamental string,
describes the classical field configuration around a fundamental string and was
constructed in ref.[15]. The second kind, which was called ‘stringy cosmic string’,
and was constructed in ref.[25][37], represents a solution where one of the 6 compact
directions decompactify at the core of the string. Each of these two solutions
may be regarded as a solution in the three dimensional string theory by taking
the direction, along which the string extends, to be compact. In this section
we shall show that these two different classes of three dimensional solutions are,
in fact, related by an O(8,24;Z) transformation. Unlike in the previous section,
our discussion in this section will be based on the study of the classical solutions
themselves, but we expect that this can be elevated to the quantum level once
we properly quantize the collective coordinate excitations of the corresponding

solutions.

We begin with a discussion of the fundamental string solution. In the notation

of this paper, the field configuration associated with a fundamental string solution,
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winding once in the three direction and without carrying any other charges, is

given by,
Y A
% 00 0 0 5 0
0 Is O 0 0 O 0
1 A
0O 0 5 0 0 0 —%
M=] 0 0 0 Is 0 O 0 , (5.1)
0O 0 O 0 Iig O 0
A 1
x 0 0 0 0 5 02
A Al
0O 0 - 0 0 0 5
guvdatdz” = —dt* + \g|dz|, (5.2)
where
1, A
= Ao = — In—. .
A=A+ iAo 5 (5.3)

2z = x' 4 iz? denotes the complex coordinate labelling the two dimensional space,
and A is an arbitrary complex number. Note that this solution is ill defined for
large |z|, since A2 becomes negative, forcing ® to be complex. Thus the solution
given above should be regarded only as an approximate solution that gets modified
at large distances when Ao becomes of order 1 and the theory enters the strong
coupling regime. We note in passing that the SL(2,Z) transform of these solutions
with the O(8,24;Z) matrices 2 given in eq.(2.26) will correspond to magnetically

charged strings discussed in ref.[38], winding along the x3 direction.

Let us now consider the O(8,24;Z) transformation w that exchanges the 2nd
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and 31st rows and columns, and also the 9th and 32nd rows and columns:

10 0 00 0 00
00 0 00 0 10
00 Is 00 0 0O
00 0 1.0 0 00
W= (5.4)
00 0 00 0 01
00 0 0 0 I»n 0O
010 00 0 00O
00 0 01 0 00
This transforms the solution (5.1) to
BE s 9 0 0 0
£ £ 0 0 0 0
0O 0 Is O 0 0
M = ) N , (5.5)
0 0 0 L X o
0 0 o0 -x bLE
0O 0 0 0 0 I3

with g, and A still given by eqs.(5.2) and (5.3) respectively. Using the relations
(2.3), (2.4), (2.12) and (2.14) between the matrix M and the ordinary metric and
antisymmetric tensor fields in ten dimension, it can easily be checked that this

corresponds to a ten dimensional metric of the form:

10 10
R AR -
10 10 | =\, : :
Gy’ G ) de\-h AP
This soluion coincides with the ‘stringy cosmic string solution’ constructed in
ref.[25] near the ‘decompactification point’ (small |z]). At z = 0 the direction
4 decompactifies, since the metric component Gz(élo) blows up. Note the amus-

ing fact that in order to identify this solution to the four dimensional solution of
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ref.[25], we need to identify the coordinates (2V, x!, 22), and any one of the coordi-

nates (2°,...2%) (let us choose z° for definiteness) as the coordinates of the four
dimensional theory, with the string extending in the z° direction. But the coor-
dinate 23, which was the direction in which the original fundamental string was
pointing, now must be regarded as a compact direction to start with and cannot

be taken to be the direction in which the cosmic string extends.

The solution given in eq.(5.5), or equivalently eq.(5.6), suffers from the same
kind of problems at large distances as the solution (5.1), since eigenvalues of the
metric become negative. An elegant solution to this problem was provided in

ref.[25]. Let j(A) be the SL(2,Z) invariant function of the variable A, satisfying

PN+ q
J(

=i(\) fi —rqg=1 A
M+s> j(A) for ps—rq=1, p,qrseZ, (5.7

G(N) ~e 2™ for large Ao,

and that j(A) has no other pole anywhere else in the upper half A plane. Let us
now consider a field configuration given by eq.(5.5), with \(z) given by,

i(A(z)) = é + B. (5.8)

Then, for |z| << |A|, we get back eq.(5.3). This shows that for small |z| the new
solution agrees with the original one. However, since A(z) is obtained as a solution
to eq.(5.8), Ay is guaranteed to be positive for all values of z. Furthermore, as
|z| — oo, A approaches a constant value, depending on the value of B. As a result,

this solution is well behaved asymptotically.

This suggests that we should modify the fundamental string solution at large
distance in a similar way, so that it has good asymptotic behaviour. In particular,
we can now take the fundamental string solution to be given by eq.(5.1), with A
given by eq.(5.8) instead of eq.(5.3). This agrees with the original solution for small

|z|, but differs from it for large |z|, and is free from the problem of the original
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solution”” For A given as a solution of eq.(5.8), M is not a single valued function
of z. In particular, there are closed curves in the 2z plane, not necessarily enclosing
the string, but the points where \ = i or exp(427i/3), with the property that A
transforms by an SL(2,Z) transformation of the form A\ — (p\ + ¢q)/(rA + s) as

we move around these closed curves. This induces a transformation on M of the

form:
M — QMOT, (5.9)
where,
p 0 0 0 0 ¢qg O
0 Ise 0 0 O O O
0 0 s 0 0 0 -—r
Q=10 0 0 Is 0 0 0 |. (5.10)
0 0 0 0 Lig 0 O
r 0 O 0 s 0
0 0 —q 0 O 0 p

Since €2 is an O(8,24;7) transformation, we see that the solution obtained this way
is well defined if O(8,24;Z) is a gauge symmetry of the theory, so that we can

identify field configurations related by this transformation.

Although the solution constructed this way is well defined at this level, it
was argued in ref.[25] that as a result of the presence of the orbifold points in
the map from the z plane to the A plane, corresponding to the points A\ = i or
A = exp(+27i/3), stringy modification of these solutions, which preserve partial
invariance of these solutions under supersymmetry transformations, may not be
possible.Jr It was also shown in ref.[25] that there exists 12 string configurations
which do not suffer from this difficulty. This might mean that single elementary

string states do not represent well defined states, but 12 of them together do.

* I wish to thank A. Shapere for a discussion on this point.

T The argument in ref.[25] was given not for the fundamental string solutions, but for the
cosmic string solutions. However, since these two solutions are related by an O(8,24;Z)
transformation, the same argument must apply to this case as well.
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We end this section by mentioning that the mechanism of replacing eq.(5.3)
by eq.(5.8), that makes the solution well behaved asymptotically, might also be
responsible for the removal of infra-red divergences alluded to in sects. 3 and 4
from other string states as well. As stated there, these divergences are due to the
long range electric and magnetic fields around the elementary string and soliton
states. Equivalently we can attribute these divergences to the fact that the field M
does not approach a constant value asymptotically; this can be seen from eqs.(3.2)
and (3.6). This situation is very similar to that in the solution (5.3), where A
does not approach a constant value asymptotically. In particular, A — A4 1 under
2z — 2™z, Thus it is conceivable that using the identification of field configurations
under the O(8,24;Z) symmetry, the field configurations around the elementary
string excitations and solitons can be appropriately modified (as in eq.(5.8)) so
that M approaches some constant value M) asymptotically. Such solutions will

be free from the infra-red divergence problems discussed in the previous section.

APPENDIX A

Asymptotic Behaviour of the Periodic Array of BPS Monopole Solutions

In this appendix we shall discuss the asymptotic field configurations for a
periodic array of BPS monopole solutions. We first consider a configuration of
N well separated monopole solutions in four dimensions, and work in a gauge
where asymptotically the Higgs field is directed along a fixed direction (say the 3
direction) in the isospin space everywhere except along a Dirac string singularity.

The asymptotic magnetic field is given by

—

N 7_" 7“(0] o
3
S (A.1)
; |7 — oy |3 2

where r{g)7 is the location of the Ith monopole. The Bogomol'nyi equation
Di¢ = +B;, (A.2)
for the Higgs field ¢ then determines the asymptotic value of the Higgs field upto
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an additive constant. Choosing the + sign in eq.(A.2) we get,
ol 1 o

3
o= C-Y ——]2 (A3)
; |7 — Toyr|d 2

1

Here C' is a constant which sets the scale of breaking of the SU(2) symmetry.

From this we can construct the asymptotic form for the Higgs field for a periodic
array of BPS monopoles along the three direction provided the period is large

compared to the scale of SU(2) breaking. It is given by,

! I3 (AA)

)2+ (2% — ady) + 2k ()2 2

O~ [C—

0

Koo ([ (! = 2fg))? + (2% — 2}

The sum over £ in this expression has a logarithmic divergence, but the divergene
contribution is independent of the coordinates (2!, 22, 23) and can be removed by
appropriately adjusting C. The asymptotic values of the gauge field strengths are
given by eq.(A.2), and are finite. This way we can construct a soliton solution in
the three dimensional string theory from periodic array of BPS monopoles in four
dimensions. The solution, however, suffers from the usual problem of logarithmic

growth of the scalar field ¢ at large distance, and the associated problem of infinite

energy. In particular, if we define,

p= (el —afy)? + (@ — a2, (A5)
then for large p,
1
¢ ~ 7R (In p)os. (A.6)

The N-soliton solution in three dimensions can be constructed in an identical

manner from N different periodic arrays of BPS monopoles, and has the following
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asymptotic form of the Higgs field when the arrays are well separated from each

other:

1
gb:[C’—ZZ — N 2 3

(A7)

03

Finally, we would like to point out that although these solutions are not inde-
pendent of the coordinate 23, and hence are not vortex solutions in the conventional
sense, the dependence of these solutions on 23 decreases exponentially as we move
away from the core. To see this, let us consider a single array of monopoles. In

this case, the asymptotic Higgs field is given by eq.(A.4), and hence,

06 o0 (23 — x?o) + 27k R(3)) o3
w B k=—o00 (,02 + (Sﬂ3 - :L’Z()’O) + 27Tk‘R(3))2)3/2 ' 2 (A 8)
N % d—w cot(mw) (& = iy + 2me i) .z,
21 (p? + (23 — :c?o) + 27rwR(3))2)3/2 2

where the contour of integration over w encloses the real axis. We can now express

this as the sum of two contours, C7 and Cs, given by,

w=y (@ =aly) —ip=9) oy,

B 27TR(3)

1 .
w=-—y {(x3_x?0))+z(p—e)} on (o,

(A.9)
where € is a small but fixed number. Eq.(A.8) may then be rewritten as
90 [y 2 R3yy +i(p — €)
- . ) . 3/2
ox s 27 ({27TR(3)y +i(2p — e)}{zﬁR(g)y _ ze}) /
ilp =)~ (@ — o) i(p =€) + (27 — z(y)) o3
’ [COt{ 2R3 oy} - cotd 2R3 + Tyt 5
(A.10)

where the factor ({27TR(3)y +1i(2p — ) H2r R3)y — z'e})3/2 in the denominator is

to be taken to be positive for y = 0. This defines this term on the real y axis
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completely since there is no branch point on this axis. The term inside the square
bracket is of order e~(P=/Bw) for large p. The rest of the integrand is finite and
falls off as y~2 for large |y|. This shows that (9¢/023) falls off exponentially as we

move away from the soliton core.

We end with the note that our analysis so far does not show that the solutions
representing periodic arrays of BPS monopoles, constructed this way, are non-
singular everywhere in space. As we shall see in appendix B, these solutions give
rise to well defined scattering functions, which might be an indication that the solu-
tions are indeed finite everywhere in space. In particular, if the solution is singular
at some point, then we might expect the scattering function associated with a line
passing through that point to be ill defined. Even if it turns out that the solutions
have singularity at some point(s) in space, we might hope that stringy corrections
will remove the singularity, or that string propagation in the background provided

by these solutions is well behaved, even if the solutions themselves are singular.

APPENDIX B

Moduli Space of Periodic Arrays of BPS Multi-monopole Solutions

In this appendix we study the moduli space of periodic array of BPS multi-
monopole solutions in (34+1) dimensions. We start with the observation [39] that
moduli space of N monopole solutions is identical to the space of rational functions
S(v) = P(v)/Q(v), where P(v) is a polynomial in v of degree < N — 1, Q(v) is a
polynomial in v of degree N, and the zeroes of Q(v) are distinct from the zeroes
of P(v). For N well separated monopoles the zeroes of Q(v) are all distinct, and
S(v) has the form:

N
Swy=>" Al (B.1)

v—ur
=1 1

S(v) has the interpretation of being the scattering function associated with the the

differential operator 0; + iA; — ¢ on a line parallel to the 22 axis, where t denotes
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length measured along the line, and v = 23 + iz! labels the point of intersection
of the line with the 1 — 3 plane.* Thus, a periodic array of monopoles along the 3

axis with period 2w R(3) will be described by a scattering function of the form:

S(u) = :Z_ m - %cot[%(u — ). (B.2)

where u = (23 + iz!)/ R3). It is also straightforward to write down the scattering

function S(u) for N well separated arrays of BPS monopoles. This is given by,

N
S(u):%Z)\Ico’c[%(u—uI)], uy #uy for I # J. (B.3)
I=1

This function is parametrized by 2N complex variables A\; and uj.

The function S(u) given in eq.(B.3) is characterized by the fact that it is
periodic in Re(u) with period 27, it has N distinct poles in the interval 0 < Re(u) <
27, and that limy_jo0 S(u) = — limy—_joe S(u), but neither of these limits vanish.
A more well behaved scattering function, one that vanishes for Im(u) — +oo,
may be obtained if we consider quasi-periodic arrays of monopoles which pick up
a U(1) phase 2™ under translation by one period.T A single array of this kind is

described by a scattering function

0 )\627riom A ei(a—%)(u—uo)

(Up to an overall normalization factor, this result may also be derived by starting

from the configuration of cyclically symmetric monopoles given in ref.[40] and then

* Instead of choosing the lines to be parallel to the x? axis, we could have chosen any other
set of parallel lines. For a detailed discussion of this see Ref.[39].
T This corresponds to introducing a Wilson line along the 3 direction [8].
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taking the limit where the radius of the circle becomes large.) A configuration of

multiple well separated arrays is described by the scattering function:
, for0<a<l. (B.5)

Note that S(u) vanishes for I'm(u) — Zoo. This fall-off may be attributed to
the cancellation between the contributions from different monopoles in the array
due to their phase difference. In analogy with the BPS monopole solutions in four
dimensions, we now speculate that for the most general configuration of N quasi-
periodic arrays (not necessarily well-separated) of this kind, the scattering function

S(u) satisfies the following criteria:
1. S(u+ 27m) = ™S (u).
2. limy— 400 S(u) = 0.
3. S(u) has N (not necessarily distinct) poles in the interval 0 < Re(u) < 2.

A general expression for such a function is given by

B cila+N/2)u 21}721 aJe—iJu
S(u) = RS , (B.6)
[Ir=1sing(u = ur)]

with the constraint
N N
1D ase ™ #0. (B.7)
I=1J=1

Eq.(B.7) guarantees that the poles in S(u) coming from the zeroes in the denom-
inator are not cancelled by the zeroes of the numerator. We shall denote by My
the 4N real dimensional space parametrized by a; € C and u; € S x R, satisfying
(B.7).

There is a natural action of the group R? x S x S' on the function S(u) and
hence on the space M. This group action is identical to that for N monopole

solutions in four dimensions, with the only difference that the translation in the
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third direction is now represented by a compact coordinate. If (X', X2 X3 0)
denote the parameters of the group, with X2 and © periodic parameters with

period 27, then under the action of this group,
S(u) — X TOG(u — X3 —ix1). (B.8)

Physically, X!, X? and X3 denote translations in the 1, 2 and 3 directions re-
spectively, while © represents a change of the U(1) phase. Using these symmetry
transformations, we can locally ‘gauge fix’ the coordinates ay, uy of the full moduli

space My to ay, uj, satisfying,

N
> =0 (B.9)
I=1

and,
N N _
11> ae ™ =1. (B.10)
I1=1J=1

We shall denote by ./\/l(])v the 4(N —1) dimensional space spanned by the coordinates
Gy € C and uy € S x R, satisfying eqgs.(B.9), (B.10). Then locally the full moduli
space M parametrized by the coordinates a; and u; subject to the constraint

(B.7) can be described the coordinates (X1, X2, X3, 0) of R? x S x S1 and those
of MY, through the relations:

ay = 5J6X2+i@6iJ(X3+iX1) (B.11)

and,
ur =y + X3 +ix!. (B.12)

Thus locally the full moduli space My has the structure of R? x S x ST x M(J)\,.

Globally, however, we need a Zy x Z identification of the points in this space to
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recover the correct moduli space. This is seen by noting that the following Zxy X Zn
transformations in R% x ST x S x M(J)\f leave the original parameters ay and uy

unchanged (up to shift of u; by multiples of 27):

- - 2 ~ ~ 2
u]—>u1—|—N7T for 1<I<N-—-1, uN—>uN—|—N7T—27r,
(B.13)
- — 2miJ 3 3 2T
ay —aje v, X°— X°— —,
N
and,
~ ~  2mi 2
aj—ajeN, O —-0-——. (B.14)

N

This establishes the structure (4.3) of the moduli space of multiple array of BPS
monopole solutions. For well separated arrays, the transformation (B.13) corre-
sponds to translating the Nth array by a distance 27 along the negative 3-axis
relative to the other arrays, accompanied by an overall shift of all the arrays by a

distance 27 /N along the positive 3-axis.

APPENDIX C

Metric on My

We shall begin by discussing a subtlety involving the overall U(1) phase ©.
A change of © by 00 corresponds to an infinitesimal gauge transformation of
the solution with matrix valued parameter A(z' 22, 23) = 2221 A%?/2 which
approaches the value §© o3/2 far away from the soliton core. In order to see what
kind of deformation of the solution it corresponds to, we run into a problem. In we
demand as in ref.[39] that the deformation generated by the gauge transformation

parameter A is orthogonal to all the pure gauge deformations™ then A must be

* In this case orthogonality is only in a formal sense, since the proof of orthogonality given
in ref.[39] involves an integration by parts, and the relevant boundary terms do not vanish
in this case.
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proportional to the background Higgs field ¢ [39]:
A(z' 2%, 2%) = 60 p(a', 2%, 2%), (C.1)

where 60 is a free parameter. Eqs.(A.7) and (C.1) shows that asymptotically A ~
(N/ 27TR(3))5@(1I1 p)os. Comparing this with the asymptotic form of A generated
by the deformation of the parameter O, we see that the deformation induced by 50
is not compatible with the deformation induced by 0©. Furthermore, as we shall
see later, a deformation induced by A given in eq.(C.1)(as well as the deformations
induced by the parameters X' and X?) are not normalizable. All these difficulties
may be avoided by introducing an explicit infra-red cut-off at some length scale L.
In this case all the deformations will be normalizable, and the parameter A given
by eq.(C.1) approaches the value (N/ 27TR(3))5(:)(111 L)os asymptotically. Thus now
© and © can be related as © = NOIn L/mR3).

Such a regularization may be provided, for example, by keeping the extent
of the array in the third direction to be large but finite, instead of being strictly
periodic and infinite. If the array stops after L repetitions, then locally My can
be approximately identified to a 4N dimensional subspace of the 4N L dimensional
moduli space My, of NL monopoles in 3+ 1 dimensions. Equivalently, one could
consider a Zj, symmetric cyclic arrangement [40] of N L monopoles around a circle
of radius LR3) in the z! — 23 plane, each monopole being a finite distance away
from the circle. In the L — oo limit this represents N periodic arrays of monopoles

with periodicity 2w R 3.

Using arguments similar to those in ref.[39] one can show that the vector fields
8/0X' 0/0X%, 0/0X3 and 8/0O are covariantly constant in the full moduli space.
As a result, the metric on the full moduli space My factorizes into a direct sum of
a constant metric on R? x S x S and a metric on ./\/l(])v. We shall now show that
although the constant metric on R? x S! x S depends on the infra-red regulator
L, the metric on M?V is in fact independent of L and hence the notion of the

existence of harmonic forms on M?V is well defined. We first use eq.(A.7) to
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express the asymptotic value of the Higgs field as

2
~ L o= 1.0 -
6 =0+ g mlp = B+ OCR) 5 + 3 oifilp) (C2)
=1
Where,*
1 N
R = (R X', R X?), Xt = o, i=1,2, C.3
(Rs) (3X°) NR(g); (0)1 (C.3)
2 .
p=('2%), pPP=> (2" (C4)
1=1

Here C is a finite constant, o; are Pauli matrices, and fi(p) are some functions of
p. Although we do not know the explicit form of f;(p), we know that they fall off
exponentially for p >> 6"1, i.e. outside the core of the soliton. The moduli space
of soliton solutions corresponds to the space of solutions for fixed N and 6’, ie.
fixed asymptotic value of the Higgs (and the other) field(s). It is easily seen from
eq.(C.2) that the overall translation in the x! — 2% plane corresponds to a shift
of R. Since a change in R gives 0¢ oR - p/p? asymptotically, the zero modes
associated with these deformations are clearly non-normalizable. This shows that
the zero modes associated with the R? factor in eq.(4.3) are not normalizable. But
this analysis also shows that all other deformations of the solution which keep R

(and also C) fixed give rise to square integrable §¢.

Thus in order to test the normalizability of the zero modes corresponding to
these other deformations we need to study whether the deformations of the gauge
fields induced by these deformations are also square integrable. In this case the
gauge fields in fact are not independent, but are related to ¢ (up to a gauge trans-

formation) by the Bogomol'nyi equation (A.2). Using this equation, one can verify

* Note that the center of mass coordinates X', X2, X3 have been scaled by R3) so that X3
has periodicity 27. This notation is consistent with the one used in appendix B.
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that the deformations that keep C , N and Rin eq.(C.2) fixed induces a gauge field
deformations for which 6F;; ~ 1/p3, and hence 0A; ~ 1/p* asymptotically. Such
deformations are clearly square integrable. However we also have deformations
of the solution induced by the gauge transformations with parameter A given in
eq.(C.1). This induces an asymptotic gauge field deformation of the form:

7

0603—.
27TR(3) 78 p2

§A; o (C.5)

This deformation is clearly not square integrable.

Thus we see that the deformations associated with the parameters X1, X?
and © are not square integrable, but all other deformations are square integrable.
In particular, all deformations associated with the coordinates labelling M(])V are
square integrable. Thus the metric on ./\/l(])v is finite and hence is independent of
the infrared cut-off L. On the other hand the metric components gxix1, gx2x2
and ggg are all of order In L. Using the relation © = NOIn L/mR 3y, we see that

geo is of order (InL)~!.

Even though the metric on M(])V is finite, unlike in the case of four dimensional
theory, M?V does not become flat in the limit when the solitons are far from each
other. This is related to the non-normalizability of the zero modes describing the
dynamics of single isolated solitons. We shall now derive the form of the metric
on the two soliton moduli space in the limit where the two solitons are widely
separated. Let X g (1 < i < 3) denote the center of mass coordinates labelling
the space R? x S!, © be the overall U(1) phase labelling the second S!, and ',
0 be the relative coordinates labelling the space ./\/lg. We shall normalize the
coordinate § such that it has periodicity 2m. Following the analysis given at the
end of appendix A, we can show that a change in the solution due to a change
in 22 falls off sufficiently fast asymptotically, hence 33 is expected to be finite

asymptotically. On the other hand, the asymptotic value of the Higgs field as a
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function of R = (R(3)X1, R(3)X2) and p = (7', 72) is given by,

In|p— R’+ﬁ +
R 7= (R+p)| R

~ . N - 0'3
¢:{c+ m\(p—(R—m}? (C.6)
If ¢ denotes the change of ¢ under a variation 55 of ,3' for fixed ﬁ, then it can

easily be verified that,

/ 2pl66]? o In PIOF2, (1)

with the major contribution to the integral coming from two regions: |p" —ﬁ—a <<
p, and |p'— R+ ,ZV| << p. A similar contribution is obtained from the computation

of [ d*p|5A;|?. This gives g;; o< Inpd;; for 1 <4,5 < 2.

Finally we need to analyze ggg. In this case we proceed in a somewhat indirect
manner. Let py be the momentum conjugate to 0. pp is quantized in integer
units since @ has been normalized to have periodicity 27w. For large separation
between the two solitons, py has the interpretation as the difference in the electric
charges carried by the two solitons. Now, as has been argued at the end of Sec.4, if
po # 0, i.e. if the two solitons carry different amount of electric charges, then the
attractive force between them proportional to 1/p due to the higgs field wins over
the repulsive force due to the electromagnetic fields. In the weak coupling limit,
this net force is proportional to (pg)?/p. The net result is a contribution to the
potential energy (and hence to the Hamiltonian) proportional to (pg)?Inp. This,

in turn, means that the Lagrangian of the system must contain a term proportional
to (Inp)~1(df/dt)?. Thus Ggg o (Inp)~".

Combining the above results, we get the following asymptotic form of different

components of the metric
Gij ~ C1Inpdyy, Gss~Ch, Gog ~ Ca(Inp)~", (C.8)

where C; are constants.
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