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Abstract

We construct the general electrically charged, rotating black hole solution in the het-
erotic string theory compactified on a six dimensional torus and study its classical proper-
ties. This black hole is characterized by its mass, angular momentum, and a 28 dimensional
electric charge vector. We recover the axion-dilaton black holes and Kaluza-Klein black
holes for special values of the charge vector. For a generic black hole of this kind, the
28 dimensional magnetic dipole moment vector is not proportional to the electric charge
vector, and we need two different gyromagnetic ratios for specifying the relation between
these two vectors. We also give an algorithm for constructing a 58 parameter rotating
dyonic black hole solution in this theory, characterized by its mass, angular momentum, a
28 dimensional electric charge vector and a 28 dimensional magnetic charge vector. This
is the most general asymptotically flat black hole solution in this theory consistent with
the no-hair theorem.
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1 Introduction and Summary

There has been a lot of activity in recent years towards construction of black hole solutions in
string theory[1]. Since string theory is expected to provide a finite quantum theory of gravity, we
hope that within the context of string theory we might be able to address various vexing questions
in black hole physics related to the black hole evaporation and the consequent information loss
puzzle. One suggestion in this direction has been made in refs.[2, 3]. It has also been proposed
there that massive elementary string states themselves should be identified with black holes in
string theory. Similar suggestions have also been made in refs.[4, 5, 6] but for different reasons.

In order to study the physics of black holes in string theory, we need to first construct the
black hole solutions in string theory, and then study their properties. In particular, study of
the relationship between black holes and elementary string states requires us to construct the
most general electrically charged black hole solution in the theory. In this paper we undertake
the task of constructing the most general black hole solution in one particular four dimensional
string theory, − the heterotic string theory compactified on a six dimensional torus. There are
various reasons for choosing this particular theory. One of them is that due to the existence of an
N=4 supersymmetry in this theory, there are various non-renormalization theorems which may
make the quantum theory in this case more tractable compared to the other compactification
schemes. Second, this is perhaps the best understood four dimensional string theory[7]. And
finally, this theory is expected to possess a strong-weak coupling duality symmetry[8] which may
make the study of the non-perturbative physics more feasible.

The theory under consideration has 28 U(1) gauge fields, and thus one would expect that a
generic electrically charged black hole should be labelled by a 28 dimensional charge vector. In
section 2 we use the technique of O(d,d+p) transformations[9, 10, 11, 1] to explicitly construct
a black hole solution characterized by an arbitrary 28 dimensional charge vector, as well as mass
and angular momentum, and study its various properties.1 The relevant transformations in the
present case generate the group O(7,23). The final solution is given in eqs.(2.29) - (2.37). For
various special values of the parameters we can identify the solution to various known solutions
e.g. the rotating charged dilaton black hole of ref.[13] and the rotating Kaluza-Klein black hole
of refs.[14, 15]. One novel feature of a generic black hole solution is that the 28 dimensional
vector representing its magnetic dipole moment is not, in general, parallel to the 28 dimensional
vector representing its electric charge, and we need two gyromagnetic ratios for specifying the
relation between these two vectors. Also, a generic black hole solution has all the 132 moduli
fields, as well as the dilaton-axion field non-zero. We discuss the extremal limits, both for non-
zero angular momentum and zero angular momentum. For non-rotating black holes, some of the
extremal black holes saturate the Bogomol’nyi bound and hence have unbroken supersymmetry.
But black holes carrying non-zero angular momentum never saturate Bogomol’nyi bound, and
hence have no unbroken supersymmetry.

1Although the general procedure for constructing such a solution was outlined in ref.[12], in the present paper
we find a simple form of the O(7,23) transformations on the four dimensional fields that allows us to construct
these solutions explicitly.
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If we allow the solution to carry magnetic charges also, then it should be characterized by 58
parameters, the mass, the angular momentum, 28 electric charges, and 28 magnetic charges. In
section 3 we give an algorithm to construct this 58 parameter rotating dyonic black hole solution.
This is done by using a combination of the S-duality transformations[16, 12] belonging to the
group SL(2,R) and the O(7,23) transformations[17, 18, 19, 20, 6]. These two transformations
together generate the group O(8,24)[21, 22]. This algorithm in fact naturally produces a 59
parameter solution with singular metric, belonging to the Taub-NUT family. We recover the
non-singular black hole solutions by imposing one restriction on these 59 parameters, which sets
the NUT charge to zero.

We conclude the paper in section 4 by pointing out some amusing coincidences between the
properties of black holes and those of elementary string states in the extremal limit.

2 Rotating Electrically Charged Black Holes

The massless fields in heterotic string theory compactified on a six dimensional torus consist
of the metric Gµν , the anti-symmetric tensor field Bµν , twenty eight U(1) gauge fields A(a)

µ

(1 ≤ a ≤ 28), the scalar dilaton field Φ, and a 28 × 28 matrix valued scalar field M satisfying,

MLMT = L, MT = M. (2.1)

Here L is a 28×28 symmetric matrix with 22 eigenvalues −1 and 6 eigenvalues +1. For defi-
niteness we shall take L to be,

L =
(−I22

I6

)
, (2.2)

where In denotes an n × n identity matrix. The action describing the effective field theory of
these massless bosonic fields is given by[23],

S = C
∫
d4x

√
− detGe−Φ

[
RG +Gµν∂µΦ∂νΦ +

1

8
GµνTr(∂µML∂νML)

− 1

12
Gµµ′

Gνν′

Gρρ′HµνρHµ′ν′ρ′ −Gµµ′

Gνν′

F (a)
µν (LML)ab F

(b)
µ′ν′

]
, (2.3)

where,
F (a)

µν = ∂µA
(a)
ν − ∂νA

(a)
µ , (2.4)

Hµνρ = ∂µBνρ + 2A(a)
µ LabF

(b)
νρ + cyclic permutations of µ, ν, ρ , (2.5)

and RG denotes the scalar curvature associated with the metric Gµν . C is an arbitrary constant
which does not affect the equations of motion and can be absorbed into the dilaton field Φ. This
action is invariant under an O(6,22) transformation,

M → ΩMΩT , A(a)
µ → ΩabA

(b)
µ , Φ → Φ, Gµν → Gµν , Bµν → Bµν , (2.6)
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where Ω is a 28 × 28 matrix satisfying,

ΩLΩT = L . (2.7)

This is a symmetry of the full string theory if we also rotate the 28 dimensional lattice Λ of
electric charges by Ω[7]. On the other hand, for fixed Λ, only a discrete subgroup O(6,22;Z) of
O(6,22) is a symmetry of the full string theory.

Let us now consider backgrounds that are independent of the time coordinate t. In this case
the action is expected to have an O(7,23) symmetry[11, 1]. To see how this appears, let us define
new variables as follows:

Ā
(a)
i = A

(a)
i − (Gtt)

−1GtiA
(a)
t , 1 ≤ a ≤ 28 , 1 ≤ i ≤ 3 ,

Ā
(29)
i =

1

2
(Gtt)

−1Gti ,

Ā
(30)
i =

1

2
Bti + A

(a)
t LabĀ

(b)
i , (2.8)

M̄ =




M + 4(Gtt)
−1AtA

T
t −2(Gtt)

−1At 2MLAt + 4(Gtt)
−1At(A

T
t LAt)

−2(Gtt)
−1AT

t (Gtt)
−1 −2(Gtt)

−1AT
t LAt

2AT
t LM + 4(Gtt)

−1AT
t (AT

t LAt) −2(Gtt)
−1AT

t LAt Gtt + 4AT
t LMLAt

+4(Gtt)
−1(AT

t LAt)
2




,

(2.9)

Ḡij = Gij − (Gtt)
−1GtiGtj , (2.10)

B̄ij = Bij + (Gtt)
−1(GtiA

(a)
j −GtjA

(a)
i )LabA

(b)
t +

1

2
(Gtt)

−1(BtiGtj − BtjGti) , (2.11)

Φ̄ = Φ − 1

2
ln(−Gtt) , (2.12)

and,

L̄ =



L 0 0
0 0 1
0 1 0


 . (2.13)

It can be verified that for time independent field configurations, the action (2.3) can be rewritten
as,

S = C
∫
dt

∫
d3x

√
det Ḡe−Φ̄

[
RḠ + Ḡij∂iΦ̄∂jΦ̄ +

1

8
ḠijTr(∂iM̄ L̄∂jM̄ L̄)

− 1

12
Ḡii′Ḡjj′Ḡkk′

H̄ijkH̄i′j′k′ − Ḡii′Ḡjj′F̄
(ā)
ij (L̄M̄L̄)āb̄F̄

(b̄)
i′j′

]
, (2.14)

where,
F̄

(ā)
ij = ∂iĀ

(ā)
j − ∂jĀ

(ā)
i , 1 ≤ ā ≤ 30, (2.15)
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and,

H̄ijk = ∂iB̄jk + 2Ā
(ā)
i L̄āb̄F̄

(b̄)
jk + cyclic permutations of i, j, k . (2.16)

This action has an O(7,23) symmetry:

M̄ → Ω̄M̄ Ω̄T , Ā
(ā)
i → Ω̄āb̄Ā

(b̄)
i , Φ̄ → Φ̄, Ḡij → Ḡij, B̄ij → B̄ij, (2.17)

where Ω̄ is a 30 × 30 matrix satisfying,

Ω̄L̄Ω̄T = L̄ . (2.18)

In order to get a convenient parametrization of Ω̄ it is easier to work with the diagonal form of
L̄. The orthogonal matrix U that diagonalizes L̄ is given by,

U =



I28

1√
2

1√
2

1√
2

− 1√
2


 . (2.19)

We have,

UL̄UT ≡ L̄d =




−I22
I6

1
−1


 . (2.20)

Then UΩ̄UT preserves L̄d.

We can apply this O(7,23) transformation on a known time independent classical solution to
generate new classical solutions of the equations of motion. We shall restrict ourselves to solu-
tions characterized by fixed asymptotic configuration of various fields, representing asymptoti-
cally flat space time. For definiteness, we shall look for solutions with the following asymptotic
forms for various fields:

Mas = I28, Φas = 0, (A(a)
µ )as = 0, (Gµν)as = ηµν , (Bµν)as = 0 . (2.21)

This gives,

M̄as =



I28

−1
−1


 . (2.22)

Given a solution with any other asymptotically constant field configuration, we can bring it
to the form (2.21) by a combination of the O(6,22) transformation, the transformation Φ →
Φ + constant, the general coordinate transformation involving linear change in the coordinates,
and the freedom of shifting A(a)

µ and Bµν by constants. Thus we do not suffer from any loss of
generality by restricting to field configurations with asymptotic behaviour given in eq.(2.21).
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As in ref.[13], we begin with the Kerr solution:

ds2 ≡ Gµνdx
µdxν

= −ρ
2 + a2 cos2 θ − 2mρ

ρ2 + a2 cos2 θ
dt2 +

ρ2 + a2 cos2 θ

ρ2 + a2 − 2mρ
dρ2 + (ρ2 + a2 cos2 θ)dθ2

+
sin2 θ

ρ2 + a2 cos2 θ
[(ρ2 + a2)(ρ2 + a2 cos2 θ) + 2mρa2 sin2 θ]dφ2

− 4mρa sin2 θ

ρ2 + a2 cos2 θ
dtdφ

Φ = 0, Bµν = 0, A(a)
µ = 0, M = I28 . (2.23)

Here t, ρ, θ, φ denote the space-time coordinates. This is guaranteed to be a solution of the
equations of motion derived from action (2.3) since when the Φ, Bµν and A(a)

µ fields are set to
zero, and M is set to the identity matrix, the equations of motion derived from the action (2.3)
become identical to Einstein’s equation in matter free space. Using eqs.(2.8)-(2.12) we get,

Ā
(ā)
φ = δā,29

mρa sin2 θ

ρ2 + a2 cos2 θ − 2mρ
, Ā

(ā)
θ = 0 , Ā(ā)

ρ = 0 ,

M̄ =



I28

−f−1

−f


 , f =

ρ2 + a2 cos2 θ − 2mρ

ρ2 + a2 cos2 θ
,

Ḡijdx
idxj = (ρ2 + a2 cos2 θ)

[ 1

ρ2 + a2 − 2mρ
dρ2 + dθ2 +

ρ2 + a2 − 2mρ

ρ2 + a2 cos2 θ − 2mρ
sin2 θdφ2

]
,

B̄ij = 0, Φ̄ = −1

2
ln f . (2.24)

We can now generate new solutions by performing an O(7,23) transformation on this solution.
Since, however, we want to keep the asymptotic forms of various field configurations fixed,
we only use a subgroup of the O(7,23) transformations which preserve (2.22). This leaves us
with an O(6,1)×O(22,1) subgroup of the full O(7,23) group. If we describe the transformation
by the matrix UΩ̄UT instead of Ω̄, then the O(6,1) subgroup acts on the 23rd - 28th, and
the 30th index of the matrix UM̄UT , whereas the O(22,1) subgroup acts on the 1st - 22nd,
and the 29th index of the matrix UM̄UT . Not every element of this O(6,1)×O(22,1) subgroup
generates a new solution however. It is clear from eq.(2.24) that an O(22)×O(6) subgroup, which
acts on the 1st - 22nd and the 23rd - 28th indices respectively, leaves the solution invariant.
Thus the transformations which generate inequivalent solutions, preserving the asymptotic field
configuration, can be parametrized by the coset

(O(6, 1)× O(22, 1))/(O(6) × O(22)) . (2.25)

This is a 28 dimensional space. We now need to find a convenient representative of a generic
element of this coset in the O(6,1)×O(22,1) group. This is done as follows. We take Ω̄ to be of
the form:

Ω̄ = Ω̄2Ω̄1 , (2.26)
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where,

UΩ̄1U
T =




I21 0 0 0 0 0
0 coshα 0 0 sinhα 0
0 0 I5 0 0 0
0 0 0 cosh β 0 sinh β
0 sinhα 0 0 coshα 0
0 0 0 sinh β 0 cosh β




, (2.27)

and,

Ω̄2 =



R22(~n)

R6(~p)
I2


 , (2.28)

where RN (~k) denotes any N -dimensional rotation matrix that rotates an N -dimensional column
vector with only N -th component non-zero and equal to 1 to an arbitrary N -dimensional unit
vector ~k. Here ~n and ~p are arbitrary 22 and 6 dimensional unit vectors respectively. Thus Ω̄
given by eqs.(2.26)-(2.28) is parametrized by 28 parameters α, β, ~n and ~p.

It is now a straightforward algebraic exercise to apply the transformation generated by Ω̄ to
the field configuration given in eqs.(2.23), (2.24) and extract the expressions for various fields
in the transformed solution. The result is,

ds2 ≡ Gµνdx
µdxν

= (ρ2 + a2 cos2 θ)
{
− ∆−1(ρ2 + a2 cos2 θ − 2mρ)dt2 + (ρ2 + a2 − 2mρ)−1dρ2 + dθ2

+∆−1 sin2 θ[∆ + a2 sin2 θ(ρ2 + a2 cos2 θ + 2mρ coshα cosh β)] dφ2

−2∆−1mρa sin2 θ(coshα + cosh β)dtdφ
}
, (2.29)

where,

∆ = (ρ2 + a2 cos2 θ)2 + 2mρ(ρ2 + a2 cos2 θ)(coshα cosh β − 1) +m2ρ2(coshα− cosh β)2 , (2.30)

Φ =
1

2
ln

(ρ2 + a2 cos2 θ)2

∆
, (2.31)

A
(a)
t = −n

(a)

√
2

∆−1mρ sinhα{(ρ2 + a2 cos2 θ) cosh β +mρ(coshα− cosh β)} for 1 ≤ a ≤ 22 ,

= −p
(a−22)

√
2

∆−1mρ sinh β{(ρ2 + a2 cos2 θ) coshα +mρ(cosh β − coshα)} for a ≥ 23 ,

(2.32)

A
(a)
φ =

n(a)

√
2

∆−1mρa sinhα sin2 θ{ρ2 + a2 cos2 θ +mρ cosh β(coshα− cosh β)} 1 ≤ a ≤ 22 ,

=
p(a−22)

√
2

∆−1mρa sinh β sin2 θ{ρ2 + a2 cos2 θ +mρ coshα(cosh β − coshα)} a ≥ 23 ,

(2.33)
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Btφ = ∆−1mρa sin2 θ(coshα− cosh β){ρ2 + a2 cos2 θ +mρ(coshα cosh β − 1)} (2.34)

M = I28 +
(
PnnT QnpT

QpnT PppT

)
, (2.35)

where,

P = 2∆−1m2ρ2 sinh2 α sinh2 β ,

Q = −2∆−1mρ sinhα sinh β{ρ2 + a2 cos2 θ +mρ(coshα cosh β − 1)} . (2.36)

Note that the solution is characterized by non-trivial dilaton as well as other scalar moduli fields
M . From eqs.(2.29) and (2.31) we can also find an expression for the canonical Einstein metric
gµν ≡ e−ΦGµν :

ds2
E ≡ gµνdx

µdxν = e−Φds2

= ∆
1

2

{
− ∆−1(ρ2 + a2 cos2 θ − 2mρ)dt2 + (ρ2 + a2 − 2mρ)−1dρ2 + dθ2

+∆−1 sin2 θ[∆ + a2 sin2 θ(ρ2 + a2 cos2 θ + 2mρ coshα cosh β)] dφ2

−2∆−1mρa sin2 θ(coshα+ cosh β)dtdφ
}
. (2.37)

One can easily verify that the new solution given in eqs.(2.29)-(2.37) describes a black hole
with mass M , angular momentum J , electric charge Q(a) and magnetic dipole moment µ(a) given
by,

M =
1

2
m(1 + coshα cosh β) , (2.38)

J =
1

2
ma(coshα + cosh β) , (2.39)

Q(a) =
m√
2

sinhα cosh β n(a) for 1 ≤ a ≤ 22

=
m√
2

sinh β coshα p(a−22) for 23 ≤ a ≤ 28 , (2.40)

µ(a) =
1√
2
ma sinhαn(a) for 1 ≤ a ≤ 22

=
1√
2
ma sinh β p(a−22) for 23 ≤ a ≤ 28 . (2.41)

From eqs.(2.40) and (2.41) we see that for generic values of the parameters α, β, ~n and ~p, the

28- dimensional vectors ~µ and ~Q are not parallel to each other. The special cases for which
~µ and ~Q are parallel are i) β = 0, ii) α = 0, and iii) α = β. The black hole solution in case
(i) corresponds to the rotating charged black hole solution discussed in ref.[13], whereas the
case α = β corresponds to the Kaluza-Klein black hole discussed in refs.[14, 15]. To check that
the results (2.40) and (2.41) are consistent with the ones derived in refs.[13, 15], note that the
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gyromagnetic ratio, defined as 2µM/QJ , is equal to 2 in case (i), and is equal to (1 + sech2α)
in case (iii), which varies between 1 and 2 as α varies between ∞ and 0.

Even though ~µ and ~Q are not parallel in general, and hence we cannot define an overall
gyromagnetic ratio, we can define two separate gyromagnetic ratios in the left and the right
hand sector as follows. Let us define

Q
(a)
L

R

=
1

2
(I28 ∓ L)abQ

(b) , µ
(a)
L

R

=
1

2
(I28 ∓ L)abµ

(b) . (2.42)

Then ~QL (~µL) has its last six components zero, whereas ~QR (~µR) has its first 22 components

zero. In other words, ~QL (~µL) and ~QR (~µR) can be regarded as 22 and 6 dimensional vectors
respectively. Then from eqs.(2.38) - (2.41) we get,

~µL =
1

2
gL

J

M
~QL , ~µR =

1

2
gR

J

M
~QR , (2.43)

where,

gL = 2
1 + coshα cosh β

coshα+ cosh β

1

cosh β
, gR = 2

1 + coshα cosh β

coshα + cosh β

1

coshα
. (2.44)

Various geometrical properties of the solution can be studied using the canonical metric given
in eq.(2.37). There are two horizons corresponding to the surfaces,

ρ2 − 2mρ+ a2 = 0 , (2.45)

which gives the location of the horizons at,

ρ = m±
√
m2 − a2 ≡ ρ±H . (2.46)

Note that the horizons disappear for a > m, leaving behind naked singularity. The limit a→ m
is known as the extremal limit.

The area of the outer event horizon, which is proportional to the Bekenstein entropy of the
black hole, is given by,

A =
∫
dθdφ

√
gθθgφφ |ρ=ρ+

H

= 4πm(coshα + cosh β) (m+
√
m2 − a2) . (2.47)

The surface gravity of the black hole, calculated at θ = 0, is given by,

κ = lim
ρ→ρ+

H

√
gρρ∂ρ

√−gtt |θ=0 =

√
m2 − a2

m(coshα + cosh β)(m+
√
m2 − a2)

. (2.48)

κ/2π can be interpreted as the Hawking temperature of the black hole. Finally, the angular
velocity Ω at the horizon is found by demanding that the vector ∂

∂t
+Ω ∂

∂φ
is null at the horizon.

This gives,
gtt + 2gtφΩ + gφφΩ

2 = 0 . (2.49)
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The solution to the above equation is

Ω =
a

m(coshα + cosh β)(m+
√
m2 − a2)

. (2.50)

From eqs.(2.47), (2.48) we see that in the extremal limit a→ m,

A→ 4πm2(coshα + cosh β) = 8π|J | , κ→ 0 . (2.51)

For non-rotating black holes (a = 0) special care is needed to study the extremal limit. From
eqs.(2.37), (2.30) we see that in this case,

ds2
E = −∆− 1

2 (ρ2 − 2mρ)dt2 + ∆
1

2 (ρ2 − 2mρ)−1dρ2 + ∆
1

2 (dθ2 + sin2 θdφ2) , (2.52)

where,
∆ = ρ2{ρ2 + 2mρ(coshα cosh β − 1) +m2(coshα− cosh β)2} . (2.53)

The metric describes a black hole with horizon at ρ = 2m and singularity at ρ = 0. The extremal
limit corresponds to the case when the horizon approaches the singularity, i.e. m → 0 keeping
the physical mass M defined in eq.(2.38) fixed. We shall now study this limit in three separate
cases.

Case I: α > β

In this case we consider the limit

m→ 0, α → ∞, m coshα ≡ m0 finite, β finite . (2.54)

Then eqs.(2.38) and (2.40) take the form:

M =
m0

2
cosh β, ~QL =

m0√
2

cosh β ~n, ~QR =
m0√

2
sinh β ~p . (2.55)

~QL and ~QR are 22 and 6 dimensional vectors respectively, and have been defined below eq.(2.42).

From this we get the following relations between M , ~QL and ~QR:

M2 =
1

2
~Q2

L ,
~QR =

√
2M tanh β ~p . (2.56)

Thus here ~Q2
R < ~Q2

L. From eqs.(2.47) and (2.48) we see that in this limit,

A→ 0, κ→ 1

4M
cosh β . (2.57)

Case II: α < β

In this case we consider the limit

m→ 0, β → ∞, m cosh β ≡ m0 finite, α finite . (2.58)
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In this limit, eqs.(2.38) and (2.40) take the form:

M =
m0

2
coshα , ~QL =

m0√
2

sinhα~n , ~QR =
m0√

2
coshα ~p . (2.59)

Thus now,

M2 =
1

2
~Q2

R ,
~QL =

√
2M tanhα~n . (2.60)

In this limit ~Q2
L <

~Q2
R. Also,

A→ 0, κ→ 1

4M
coshα . (2.61)

Case III: α = β.

In this case we consider the limit:

m→ 0, α = β → ∞, m cosh2 α ≡ m0 finite . (2.62)

In this limit,

M =
m0

2
, ~QL =

m0√
2
~n, ~QR =

m0√
2
~p . (2.63)

Thus,

M2 =
1

2
~Q2

L =
1

2
~Q2

R . (2.64)

Also in this limit,
A→ 0, κ→ ∞ . (2.65)

In the normalization convention that we have been using, the Bogomol’nyi bound that follows
from the space-time supersymmetry of the theory, is given by M2 ≥ ( ~Q2

R/2)[24, 25]. Thus
we see that the extremal black holes in cases II and III saturate the Bogomol’nyi bound, and
hence give rise to supersymmetric solutions, whereas those in case I do not. Also for non-zero
J , eqs.(2.38)-(2.40) shows that M2 is always larger than ( ~Q2

R/2), even in the extremal limit
a → m. This shows that the extremal black holes carrying non-zero angular momentum do
not correspond to supersymmetric solutions. (Similar observations have been made in ref.[26].)
For special cases α = β and α = 0, the non-rotating solutions constructed here reproduce the
solutions discussed in ref.[5].

3 Rotating Dyonic Black Holes

In this section we shall discuss construction of black holes carrying both electric and magnetic
charges. One class of dyons that can be constructed trivially are the ones for which the magnetic
charge vector ~Qmag is parallel to L~Qel, where ~Qel is the electric charge vector. This is done with
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the help of SL(2,R) transformations[27, 16, 12, 28]. To see how this works, we first note that
the equation of motion for the Bµν field, derived from the action (2.3), allows us to introduce a
field Ψ, related to Hµνρ through the relation:

gµµ′

gνν′

gρρ′Hµ′ν′ρ′ = −(− det g)−
1

2 e2Φǫµνρσ∂σΨ , gµν ≡ e−ΦGµν . (3.1)

Let us now define the complex scalar field:

λ = Ψ + ie−Φ ≡ λ1 + iλ2 . (3.2)

Then the equations of motion and the Bianchi identities of the theory can be shown to be
invariant under the transformations:

λ → aλ + b

cλ+ d
, gµν → gµν , M →M ,

F (a)
µν → (cλ1 + d)F (a)

µν + cλ2(ML)abF̃
(b)
µν , ad− bc = 1, a, b, c, d ∈ R , (3.3)

where,

F̃
(a)
µ′ν′ =

1

2
(− det g)−

1

2gµµ′gνν′ǫµνρσF (a)
ρσ . (3.4)

Thus given a solution of the classical equations of motion, we can generate a new solution by
performing the above SL(2,R) transformation on the original solution.

In accordance with our earlier spirit we shall look for solutions with fixed asymptotic values
of various fields. Let us choose the asymptotic values of Φ and Ψ to be zero. A solution with
non-zero asymptotic values of Φ and Ψ can be brought to this form by using the freedom of
shifting Φ and Ψ by constants keeping Gµν , A

(a)
µ and M fixed. Thus we do not suffer from any

loss of generality by restricting our solutions this way. This forces us to consider only those
SL(2,R) transformations which leave the point Φ = Ψ = 0 fixed. These transformations belong
to an SO(2) subgroup of SL(2,R), and are represented by the matrix

(
a b
c d

)
=

(
cos γ sin γ
− sin γ cos γ

)
. (3.5)

We can now apply this transformation to the electrically charged rotating black hole solution
given in eqs.(2.29)-(2.37). Since gµν does not transform under the SL(2,R) transformation, the
geometry remains identical. The matrix valued scalar field M also remains the same as given
in eqs.(2.35), (2.36). The fields Φ, A(a)

µ and Bµν (or equivalently Ψ) change. We shall not write
down the transformed solutions explicitly, but only give the asymptotic forms of the gauge field
strengths which allow us to extract the electric and the magnetic charges associated with this
solution. These are given by,

F
(a)
ρt ≃ n(a)

√
2

m

ρ2
sinhα cosh β cos γ for 1 ≤ a ≤ 22 ,

≃ p(a−22)

√
2

m

ρ2
sinh β coshα cos γ for 23 ≤ a ≤ 28 , (3.6)
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F̃
(a)
ρt ≃ −n

(a)

√
2

m

ρ2
sinhα cosh β sin γ for 1 ≤ a ≤ 22 ,

≃ p(a−22)

√
2

m

ρ2
sinh β coshα sin γ for 23 ≤ a ≤ 28 . (3.7)

This gives,

Q
(a)
el =

n(a)

√
2
m sinhα cosh β cos γ for 1 ≤ a ≤ 22 ,

=
p(a−22)

√
2

m sinh β coshα cos γ for 23 ≤ a ≤ 28 , (3.8)

Q(a)
mag = −n

(a)

√
2
m sinhα cosh β sin γ for 1 ≤ a ≤ 22 ,

=
p(a−22)

√
2

m sinh β coshα sin γ for 23 ≤ a ≤ 28 . (3.9)

Although the above solution represents a rotating dyonic black hole solution, it does not cor-
respond to a black hole with a general electric and magnetic charge vector. In particular, the
electric and the magnetic charge vectors are related as

Q(a)
mag = tan γLabQ

(b)
el . (3.10)

We shall now discuss the construction of a rotating black hole solution carrying independent
electric and magnetic charge vectors. The basic strategy that we employ is to make successive
use of SL(2,R) and O(7,23) transformations. Since these two sets of transformations do not
commute, we would expect to produce solutions carrying charges that are more general than the
ones given in eqs.(3.8), (3.9) by using this procedure. However, as pointed out in ref.[11], there
is a potential problem with this approach. The magnetically charged solution is characterized
by an A(a)

µ which is not globally defined, but need to be defined using two different coordinate
patches. Now, if we perform a general O(7,23) transformation on this solution, the component

Gti of the metric mixes with A
(a)
i . Thus in the resulting field configuration, the metric will not

be globally defined, but need to be defined in two separate coordinate patches, one around the
positive z-axis, and the other around the negative z-axis. On the overlap of the two coordinate
patches, the two solutions are related by a coordinate transformation of the form:

t→ t+ cφ , (3.11)

for some constant c. This, however is not a globally defined coordinate transformation, since it
is not invariant under φ → φ + 2π. Hence the solution constructed this way would not be an
acceptable field configuration. Alternatively, one could use only one coordinate patch, but then
the resulting metric will have a singularity either on the positive or on the negative z-axis.
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This shows that we have to be careful about applying SL(2,R) and O(7,23) transformations on
a solution successively, but it does not rule out the possibility that suitable combinations of these
transformations can be found which give rise to a non-singular metric. We shall now show how
this can be done in a systematic manner to produce a 58 parameter black hole solution carrying
arbitrary mass, angular momentum, electric charge and magnetic charge. The first point to
note is that since for time independent solutions the equations of motion of this theory are the
same as those of the ten dimensional heterotic string theory for field configurations independent
of seven of the ten dimensions (the time and the six internal coordinates), these equations of
motion are expected to have an O(8,24) symmetry[21, 22].2 To see how this O(8,24) symmetry

manifests itself in the present case, let us first note that the equations of motion of the Ā
(ā)
i

fields, derived from the action (2.14) gives,

∂i

(√
det Ḡe−Φ̄(M̄L̄)āb̄Ḡ

ii′Ḡjj′F̄
(b̄)
i′j′

)
= 0 , 1 ≤ ā ≤ 30 . (3.12)

This allows us to introduce a set of fields ψā through the equations

√
det Ḡe−Φ̄(M̄L̄)āb̄Ḡ

ii′Ḡjj′F̄
(b̄)
i′j′ =

1

2
ǫijk∂kψ

ā . (3.13)

The bianchi identity for the gauge fields, ǫijk∂iF̄
(ā)
jk = 0 gives,

D̄i(eΦ̄(M̄L̄)āb̄∂iψ
b̄) = 0 , (3.14)

where D̄i denotes the covariant derivative with respect to the metric Ḡij . Let us now regard ψ
as a 30 dimensional column vector and define,

M =




M̄ − e2Φ̄ψψT e2Φ̄ψ M̄L̄ψ − 1
2
e2Φ̄ψ(ψT L̄ψ)

e2Φ̄ψT −e2Φ̄ 1
2
e2Φ̄ψT L̄ψ

ψT L̄M̄ − 1
2
e2Φ̄ψT (ψT L̄ψ) 1

2
e2Φ̄ψT L̄ψ −e−2Φ̄ + ψT L̄M̄L̄ψ − 1

4
e2Φ̄(ψT L̄ψ)2


 , (3.15)

L =



L̄ 0 0
0 0 1
0 1 0


 , (3.16)

and,
ḡij = e−2Φ̄Ḡij . (3.17)

If we restrict ourselves to field configurations for which H̄ijk = 0, then eq.(3.14) and the other
equations of motion derived from the action (2.14) can be shown to be identical to the equations
of motion derived from the action:

S̃ = C̃
∫
d3x

√
det ḡ [Rḡ +

1

8
ḡijTr(∂iML∂jML)] . (3.18)

2Actually, since the Kerr solution is independent of two coordinates, t and φ, there is in fact an infinite
parameter Geroch group of transformations that can be used to generate new solutions[17]. However, most of
these solutions are singular, and so we restrict ourselves to the O(8,24) group of transformations.

14



S̃ is manifestly invariant under the O(8,24) transformation:

M → Ω̃MΩ̃T , ḡij → ḡij , (3.19)

where Ω̃ is a 32×32 matrix satisfying

Ω̃LΩ̃T = L . (3.20)

We can use this O(8,24) transformation to generate new solutions of the equations of motion
from a given time independent solution. As before, we shall consider only a subgroup of this
O(8,24) group of transformations which keeps the asymptotic field configuration fixed. Together
with the asymptotic conditions on Gµν , Φ and M that we have already imposed, if we further
restrict the ψā’s to vanish asymptotically3 then the asymptotic value of M is given by,

Mas =
(
I28

−I4

)
. (3.21)

To see what subgroup of O(8,24) transformations preserve Mas, let us work in a representation
in which L is diagonal. The orthogonal matrix U which diagonalizes L is,

U =




I28 0 0 0 0
0 1√

2
1√
2

0 0

0 1√
2

− 1√
2

0 0

0 0 0 1√
2

1√
2

0 0 0 1√
2

− 1√
2




. (3.22)

We have,
ULUT = Ld , (3.23)

where,

Ld =




−I22
I6

1
−1

1
−1




. (3.24)

From eqs.(3.21) and (3.22) we get,

UMasUT =
(
I28

−I4

)
. (3.25)

Thus the matrices UΩ̃UT , which preserve both Ld and UMasUT belong to an O(22,2)×O(6,2)
transformations. The O(22,2) transformation acts on the 1st - 22nd, 29th and 31st row, whereas
the O(6,2) transformation acts on the 23rd - 28th, 30th and 32nd row.

3Note that adding a constant to ψā does not change the equations of motion, and hence any non-zero constant
asymptotic value of ψā can be removed by simply subtracting that constant from ψā in the solution.

15



We shall now study the effect of these transformations on the original Kerr solution (2.23).
The metric ḡij and matrix M for this solution can be easily computed, and the result is,

ḡijdx
idxj = (ρ2 + a2 cos2 θ − 2mρ)

[ 1

ρ2 + a2 − 2mρ
dρ2 + dθ2 +

ρ2 + a2 − 2mρ

ρ2 + a2 cos2 θ − 2mρ
sin2 θdφ2

]
,

(3.26)

M =




I28 0 0 0 0
0 −f−1 0 0 −g
0 0 −f − fg2 g 0
0 0 g −f−1 0
0 −g 0 0 −f − fg2




≡ M(0) , (3.27)

where,

f = (ρ2 + a2 cos2 θ − 2mρ)/(ρ2 + a2 cos2 θ)

g = 2ma cos θ/(ρ2 + a2 cos2 θ − 2mρ) . (3.28)

It is clear that the matrix UM(0)UT is left invariant under the O(22)×O(6) subgroup of the
O(22,2)×O(6,2) group, which act on the first 22 and the 23rd-28th indices of the matrix respec-
tively. What is perhaps not so obvious is that this matrix is also left invariant under an SO(2)
subgroup of O(22,2)×O(6,2), represented by the matrix

UΩ̃UT =




I28
cosα 0 sinα 0

0 cosα 0 sinα
− sinα 0 cosα 0

0 − sinα 0 cosα



. (3.29)

This can be verified by explicit computation. Thus the transformations which generate inequiv-
alent solutions are parametrized by the coset:

(O(22, 2)× O(6, 2))/(O(22) × O(6) × SO(2)) . (3.30)

This coset is parametrized by 57 parameters. This, together with the original parameters m
and a, gives a 59 parameter solution. But we now recall that not all of these solutions are non-
singular, due to the possible singularity in the Gtφ component of the metric discussed previously.
The presence of such a singularity is signalled by an asymptotic value of ∂θGtφ proportional to
sin θ, in the same way that the presence of magnetic charge associated with the gauge field
A(a)

µ is signalled by the presence of an asymptotic value of F
(a)
θφ proportional to sin θ. From

eqs.(2.8) and (3.13) we see that such an asymptotic form of Gtφ would induce an asymptotic
ψ30 proportional to 1/ρ. Thus in order to get a non-singular metric, we must demand that
the coefficient of 1/ρ in the asymptotic expression of ψ30 must vanish. (This is equivalent to
demanding that the coefficient c appearing in eq.(3.11) vanishes.) This gives one constraint
among the 59 parameters, thereby reducing the number of independent parameters to 58. Using
eqs.(3.15), (3.19), (3.27) and (3.28) we can derive an explicit form of this constraint on the
O(22,2)×O(6,2) matrix Ω̃:

Ω̃30,29Ω̃31,29 + Ω̃30,31Ω̃31,31 − Ω̃30,30Ω̃31,30 − Ω̃30,32Ω̃31,32 = 0 . (3.31)
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Note that 58 is precisely the expected number of parameters required to label the most general
static black hole solution consistent with the no hair theorem, since such a black hole will be
characterized by mass, angular momentum, 28 electric charges and 28 magnetic charges. Thus
although we have not explicitly shown that the solutions constructed this way are free from
naked singularities, there is good reason to believe that this is indeed the case.

We shall end this section by giving an interpretation of the 59th parameter that takes us out
of the class of non-singular solutions. A typical representative O(8,24) transformation which
does not satisfy (3.31), and hence, acting on a Kerr solution, produces a singular solution, is
given by,

UΩ̃UT =




I28
cosα 0 sinα 0

0 1 0 0
− sinα 0 cosα 0

0 0 0 1



. (3.32)

For simplicity, let us restrict ourselves to studying the effect of this transformation on the
Schwarzschild solution (a = 0). In this case, the transformed solution is given by,

Gµνdx
µdxν = −ρ(ρ− 2m)

∆̃
(dt+m sinα cos θdφ)2 +

∆̃

ρ(ρ− 2m)
dρ2 + ∆̃(dθ2 + sin2 θdφ2) ,

Φ = 0 A(a)
µ = 0, M = I28, Bµν = 0 , (3.33)

where,

∆̃ = ρ2 − 4mρ sin2 α

2
+ 4m2 sin2 α

2
. (3.34)

This can be easily recognized as the Taub-NUT solution[29]. The action of the other elements
of the O(8,24) group then produces the Taub-NUT dyon solutions discussed in refs.[26, 30]. For
non-zero a, the solutions generated this way correspond to rotating Taub-NUT dyon solutions
given in ref.[18].

Thus we see that the rotating dyonic Taub-NUT solutions can also be generated via O(8,24)
transformation of the original Kerr solution. This has already been observed before[18, 19, 20],
and can be traced to the fact that the transformation on the fields represented by the O(8,24) ma-
trix (3.32) is precisely the Ehlers-Geroch transformation[31] that takes us from the Schwarzschild
solution to the Taub-NUT family of solutions. To this effect, we note that the scalar field ψ30

defined through eqs.(3.13), (2.8) is simply the generalization of the NUT potential[32], and re-
quiring it to fall off faster than 1/ρ asymptotically corresponds to setting the NUT charge to
zero.

4 Conclusion

In this paper we have explicitly constructed the general electrically charged rotating black hole
solution in heterotic string theory compactified on a six dimensional torus. We have also given
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an algorithm to construct the general rotating black hole solution carrying both, electric and
magnetic charges. This is the most general black hole solution in this theory consistent with no
hair theorem.

We hope that these results can be used to study the relationship between black holes and
elementary string states in the spirit of refs.[2, 3]. To this end, we shall conclude this paper
by pointing out some amusing coincidences between the properties of black holes and those
of elementary strings in the extremal limit. First we compare the gyromagnetic ratios of the
solutions found in this paper and those of elementary string states in the limit β → ∞ with the
physical mass M , the physical angular momentum J , and the parameter α fixed. Here α and
β are the parameters appearing in the black hole solution given in section 2. (Note that in this
limit the solution develops naked singularity, but we shall ignore this problem. We can take the
limit J → 0 at the end of the calculation, so that the solution approaches an extremal black
hole.) From eq.(2.44) we see that in this limit,

gL → 0, gR → 2 . (4.1)

On the other hand, these gyromagnetic ratios for elementary string states can be computed
using a slight generalization of the work of ref.[3]. The answer is,

gL = 2
SR

SR + SL

, gR = 2
SL

SR + SL

, (4.2)

where SL and SR denote the contribution to the z component of the angular momentum from
the left and the right moving oscillators respectively. From eqs.(2.38) - (2.40) we see that in

the limit β → ∞, with M , J and α fixed, M2 − ~Q2
R/2 → 0. Thus these states saturate the

Bogomol’nyi bound, which, in turn, implies that the right hand part of this state must be the
lowest state in the Neveu-Schwarz (or Ramond) sector consistent with GSO projection[25]. Thus
for these states |SR| ≤ h̄, and most of the contribution to J comes from SL. This shows that in
this limit |SR| << |SL|, and gL and gR given in eq.(4.2) agree with those given in eq.(4.1).

Next we shall compare the area of the stretched horizon and the logarithm of the density of
single string states in the extremal limit. We shall restrict ourselves to the non-rotating solution
since in this case the extremal limit (2.58) corresponds to saturation of the Bogomol’nyi bound,
and various non-renormalization theorems are expected to be valid. As we can see from eq.(2.61),
the area of the event horizon vanishes in the limit (2.58). However, if As denotes the area of
the surface ρ = ρ+

H + η, where η is a fixed length of the order of the Planck length, then using
eq.(2.52) we find that it is non-zero and has the value,

As = 8πMη/ coshα = 8πη

√√√√
M2 −

~Q2
L

2
. (4.3)

This surface is similar to the stretched horizon discussed in refs.[2, 3]. On the other hand, the

density of states of elementary string excitations in the extremal limit M2 → ~Q2
R/2 can be easily

calculated (see, for example, ref.[3]) and is given by,

dS ∼ exp(4π
√
n) , (4.4)
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where n denotes the total contribution to mass2 of the state from the left moving oscillators.
(Note that in this case there is no appreciable contribution to the density of states from the

right moving oscillators.) This, in turn, is proportional to M2 − ( ~Q2
L/2). Thus we see that,

As ∝ ln dS . (4.5)

This establishes the relationship between the density of string states and the area of the stretched
horizon in the extremal limit.
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