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Abstract. We summarize the recent developments in the study of time dependent so-
lutions describing the rolling of a tachyon on a non-BPS D-brane system.

Keywords. String theory; D-branes.

PACS No. 11.25.-w

Our understanding of the role of open string tachyons living on unstable D-brane
systems in string theory has increased considerably over the last few years. In
this talk I plan to give a general overview of the subject, with particular focus on
the recent developments in the study of time dependent solutions. I shall use the
convention i = ¢ = &/ = 1. In these units the tension of the fundamental string is
1/(2m).

We begin our discussion by reviewing the spectrum of D-branes in type-ITA
and IIB superstring theories. Dp-branes are by definition p-dimensional extended
objects on which fundamental open strings can end. It is well-known that type-
ITA/IIB string theory contains stable BPS Dp-branes for even/odd p, and that these
D-branes carry Ramond—Ramond charges. These D-branes are oriented, and have
definite mass per unit p-volume known as tension. The tension of a BPS Dp-brane
in type-ITA/IIB string theory is given by

Ty = (2m) P gt (1)

where g5 is the closed string coupling constant. The BPS D-branes are stable, and
all the open string modes living on such a brane have mass? > 0. Since these branes
are oriented, given a specific BPS Dp-brane, we shall call a Dp-brane with opposite
orientation an anti-Dp-brane, or a Dp-brane.

Besides these stable BPS Dp-branes, type-II string theories also contain in their
spectrum unstable, non-BPS D-branes [1-4]. These branes have precisely those
dimensions which BPS D-branes do not have. Thus type-ITA string theory has
non-BPS Dp-branes for odd p and type-1IB string theory has non-BPS Dp-branes
for even p. These branes are unoriented and also carry a given mass per unit
p-volume, given by

Ty =v2(@2m) g . (2)
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The most important feature that distinguishes the non-BPS D-branes from BPS
D-branes is that the spectrum of open strings on a non-BPS D-brane contains a
single mode of negative mass® besides infinite number of other modes of mass? > 0.
This mode, known as the tachyon, has mass? given by

m-=——. (3)

Another important feature that distinguishes a BPS Dp-brane from a non-BPS Dp-
brane is that unlike a BPS Dp-brane which is charged under the Ramond-Ramond
(RR) (p+ 1)-form gauge field of string theory, a non-BPS D-brane is neutral under
these gauge fields. Various properties of non-BPS D-branes have been reviewed in
[5,6]. We shall use the convention that a D-brane will generically refer to a BPS
D-brane, and when we want to refer to a non-BPS D-brane we shall explicitly use
the adjective non-BPS.

Although a BPS Dp-brane does not have a tachyonic mode, if we consider a
coincident BPS Dp-brane-Dp-brane pair, then the open string stretched from the
brane to the anti-brane (or vice-versa) also has a tachyonic mode. This gives rise
to two tachyonic modes on a coincident brane—anti-brane pair. The mass? of each
of these tachyonic modes is given by the same expression as (3).

Our main goal will be to study the decay of (a system of) branes via classical
dynamics of these tachyonic modes. There are several reasons why this problem is of
interest. First of all, the very existence of such systems in string theory make them
interesting objects to study. They also provide examples of solvable time-dependent
solutions in string theory. Such examples are few in number. Furthermore, this
study may have cosmological significance since such unstable D-brane systems are
likely to have been present in the early Universe.

The dynamics of open strings living on a Dp-brane is described by a (p + 1)-
dimensional (string) field theory, defined such that the free field quantization of
the field theory reproduces the spectrum of open strings on the Dp-brane, and the
S-matrix elements computed from this field theory reproduce the S-matrix elements
of open string theory on the D-brane. On a non-BPS D-brane, the existence of a
single scalar tachyonic mode shows that the corresponding open string field theory
must contain a real scalar field 7' with mass? = —1/2, whereas the same reasoning
shows that open string field theory associated with a coincident brane—anti-brane
system must contain two real scalar fields, or equivalently one complex scalar field
T, of mass?> = —1/2. However, these fields have non-trivial coupling to all the
infinite number of other fields in open string field theory, and hence one cannot
study the dynamics of these tachyonic modes in isolation. Furthermore, since the
|mass?| of the tachyonic modes is of the same order of magnitude as that of the other
heavy modes of the string, one cannot work with a simple low energy effective action
obtained by integrating out the other heavy modes of the string. This is what makes
the analysis of the tachyon dynamics non-trivial. Nevertheless, it is convenient to
state the results of the analysis in terms of an effective action Seg (7, ...) obtained
by formally integrating out all the positive mass? fields. This is what we shall
do [6a]. Here ... stands for all the massless bosonic fields, which in the case of
non-BPS Dp-branes include one gauge field and (9 — p) scalar fields associated with
the transverse coordinates. For Dp-Dp brane pair the massless fields consist of two
U(1) gauge fields and 2(9 — p) transverse scalar fields.
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First we shall state two properties of Seg (T, ...) which are trivially derived from
the analysis of the tree-level S-matrix:

(1)

2)

For a non-BPS D-brane the tachyon effective action has a Z symmetry under
which 7' — —T', wheras for a brane—anti-brane system the tachyon effective
action has a phase symmetry under which 7' — e?T.

Let V(T') denote the tachyon effective potential, defined such that for space-
time independent field configuration, and with all the massless fields set to
zero, the tachyon effective action Seg has the form:

- / AP+l V(T). (4)

In that case V(T) has a maximum at 7' = 0. This is a trivial consequence
of the fact that the mass? of the field T is given by V" (T = 0), and this is
known to be negative.

The question that we shall be most interested in is whether V(T') has a (local)
minimum, and if it does, then how does the theory behave around this minimum?
The answer to this question is summarized in the following three ‘conjectures’
[1,3,7-11] [11a]:

(1)

V(T) does have a pair of global minima at T = +Tp for the non-BPS D-
brane, and a one-parameter (a) family of global minima at T = Tye'® for
the brane—anti-brane system. At this minimum the tension of the original
D-brane configuration is exactly canceled by the negative contribution of the
potential V(T'). Thus

V(To) + &, =0, (5)
where
& = 7~;, for non-BPS Dp-brane (6)
P 27, for Dp-Dp brane pair

Thus the total energy density vanishes at the minimum of the tachyon po-
tential. This has been illustrated in figure 1. Since V(T') + &, denotes the
total energy density of the system, it is more natural to call this the tachyon
potential. From now on we shall adopt this convention and denote this sum
by V(T).

Since the total energy density vanishes at T' = Ty, and furthermore, neither
the non-BPS D-brane nor the brane—anti-brane system carries any RR charge,
it is natural to identify the configuration T' = Ty as the vacuum without any
D-brane. This in turn implies that there are no physical perturbative open
string states around the minimum of the potential, since open string states
live only on D-branes. This is counterintuitive, since in conventional field
theories the number of perturbative physical states do not change as we go
from one extremum of the potential to another extremum.
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Figure 1. The tachyon potential on an unstable D-brane or brane—anti-brane
system in superstring theories.

Figure 2. The kink solution on a non-BPS D-brane.

(3) Although there are no perturbative physical states around the minimum of
the potential, the equations of motion derived from the tachyon effective
action Seg(T,...) does have non-trivial time-independent classical solutions.
These solutions represent lower-dimensional D-branes. Some examples are
given below:

(a) The tachyon effective action on a non-BPS Dp-brane admits a classical
kink solution as shown in figure 2. This solution depends on only one
of the spatial coordinates, labeled by xP in the figure, such that T ap-
proaches Ty as P — oo and —Tj as #? — —oo, and interpolates between
these two values around zP = 0. Since the total energy density vanishes
for T = +Ty, we see that for the above configuration the energy density
is concentrated around a (p — 1)-dimensional subspace zP = 0. This can
be identified with a BPS D-(p — 1)-brane in the same theory [9,11].

(b) There is a similar solution on a brane-anti-brane system, where the
imaginary part of the tachyon field is set to zero, and the real part takes
the form given in figure 2. This is not a stable solution, but describes a
non-BPS D-(p — 1)-brane in the same theory [1,3].

(¢) Since the tachyon field T on a Dp-Dp-brane system is a complex field,
one can also construct a vortex solution where T' is a function of two of
the spatial coordinates (say zP~' and zP) and takes the form:
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T =T, f(p)e”, (7)
where
p=+/(2P=1) + (a?)?, 6 =tan"'(a?/2""), (8)

are the polar coordinates and the function f(p) has the property:
floo)=1, f(0)=0. (9)

Thus the potential energy associated with the solution vanishes as
p — oo. Besides the tachyon the solution also contains an accompa-
nying background gauge field which makes the covariant derivative of
the tachyon fall off sufficiently fast for large p so that the net energy
density is concentrated around the p = 0 region. This gives a codimen-
sion two-soliton solution which can be identified as a BPS D-(p—2)-brane
in the same theory [3,12].

If we take a pair of non-BPS D-branes, then the D-brane effective field
theory around 7' = 0 contains a U(2) gauge field, and the tachyon trans-
forms in the adjoint representation of this gauge field. At the minimum
of the tachyon potential the SU(2) part of the gauge group is broken to
U(1) by the vacuum expectation value of the tachyon. As a result the
theory contains 't Hooft—Polyakov monopole solution which depends on
three of the spatial coordinates. This describes a codimension 3-brane
and can be identified as a BPS D-(p—3)-brane in the same theory [11,12].
If we consider a system of two Dp-branes and two Dp-branes, all along
the same plane, then the D-brane world-volume theory has a U(2) x U (2)
gauge field, and a 2 x 2 matrix values complex tachyon field, transforming
in the (2,2) representation of the gauge group. Let A,(}) and AELZ) denote
the gauge fields in the two SU(2) gauge groups. Then we can construct
a codimension 4-brane solution where the fields depend on four of the
spatial coordinates, and have the asymptotic behaviour:

T ~TU, A} ~ig,UU™, AP =0, (10)

where U is an SU(2) matrix valued function, corresponding to the iden-
tity map (winding number one map) from the surface S* at spatial infin-
ity to the SU(2) group manifold. This describes a BPS D-(p — 4)-brane
in the same theory [3,12].

Quite generally if we begin with sufficient number of non-BPS D9-branes in
type-IIA string theory, or D9-D9-branes in type-IIB string theory, we can de-
scribe any lower-dimensional D-brane as classical solution in this open string
field theory [10-12]. This has led to a classification of D-branes using a branch
on mathematics known as K-theory [10,11]. This has also led to the sugges-
tion that perhaps we can give a non-perturbative formulation of string theory
in terms of open string field theory on space-filling D-brane system. For this
to work, we need to also find ways of describing closed strings and Neveu—
Schwarz (NS) 5-branes in this open string field theory. This has not yet been
achieved to complete satisfaction.
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So far we have only discussed time-independent solutions of the tachyon equations
of motion. But one could also ask questions about time-dependent solutions. In
particular, given that the tachyon potential on a non-BPS Dp-brane or a Dp-Dp
pair has the form given in figure 1, one could ask: what happens if we displace
the tachyon from the maximum of the potential and let it roll down towards its
minimum? If T had been an ordinary scalar field then the answer is simple: the
tachyon field 7" will simply oscillate about the minimum 7" of the potential, and
in the absence of any dissipative force (as is the case at the classical level) the
oscillation will continue for ever. The energy density Tpp will remain constant
during this oscillation, but other components of the energy—momentum tensor, e.g.,
the pressure p(2°), defined through T;; = pd;; for 1 <i,j < p, will oscillate about
their average value [12a]. However, for the case of the string theory tachyon the
answer is different and somewhat surprising [13,14]. It turns out that in this case
the energy density remains constant as in the case of a usual scalar field, but the
pressure, instead of oscillating about an average value, goes to zero asymptotically.
The evolution of the pressure follows the curve:

p(z°) = =&, f(z°), (11)

where &, is given by (6), and the function f(2°) depends on the initial energy
density Too of the system. In order to specify the form of f(z°) we need to consider
two different cases:

(1) Too < &p: In this case we can parametrize the solution by a parameter Py
defined through the relation

Toy = %(1 + cos(27X)). (12)

Too includes the contribution from the tension of the D-brane(s) as well as the
tachyon kinetic and potential energy. Since the total energy density available
to the system is less than &£, the energy density at the maximum of the
tachyon potential describing the original brane configuration, at some instant
of time during its motion the tachyon is expected to come to rest at some
point away from the maximum of the potential. We can choose this instant

of time as ° = 0. The function f(z°) in this case takes the form:

fa°) = . + :
1 4 eV22° gin? (Xﬂ') 1+ e~ V220 gin? (Xﬂ')

~1. (13)

From this we see that as 2% — oo, f(2°) — 0. Thus the pressure vanishes
asymptotically.
Note that for A = %, both Ty and p(z°) vanish identically. Thus this

solution has the natural interpretation as the tachyon being placed at the
minimum of its potential. The solution for A = % + € is identical to the one

at X = % — €, thus the inequivalent set of solutions are obtained by restricting

X to the range [-1,1].
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(2) Too > &p: In this case we can parametrize the solution by a parameter A
defined through the relation

Too = %(1 + cosh(27X)). (14)

Since the total energy density available to the system is larger than &, at
some instant of time during its motion the tachyon is expected to pass the
point T' = 0 where the potential has a maximum. We can choose our initial
condition such that at 2 = 0 the tachyon is at the maximum of the potential

and has a non-zero velocity. The function f(z°) in this case takes the form

fa®) = - + :
1+evV2° sinh>(Ar) 14 e~v22° ginh?(Ar)

~1. (15)

As 2% — oo, f(2Y) — 0, the pressure vanishes asymptotically. This result can
be trusted for || < sinh™' 1.

The assertion that around the tachyon vacuum there are no physical open string
states, implies that there is no small oscillation of finite frequency around the min-
imum of the tachyon potential. The lack of oscillation in the pressure is consistent
with this result. However, the existence of classical solutions with arbitrarily small
energy density (which can be achieved by taking A close to 1/2 in (12)) still poses
a puzzle, since it indicates that quantization of open string field theory around the
tachyon vacuum does give rise to non-trivial quantum states which in the semi-
classical limit are described by the solutions that we have found. These states are
either new states in string theory, or provide an alternative description of closed
string states. At present the precise interpretation of these solutions is not known.

If we are considering the rolling of the tachyon on a non-BPS Dp-brane (and not
on a Dp-Dp-brane pair), then, besides producing the energy-momentum tensor,
the rolling tachyon solutions described above also act as source of the massless RR
p-form field Ci._,. In the first case this source term is proportional to [15]

e 02’ /V2 o=’ /V2
sin(A) [1 + sin?(Ar)eV2® 1+ sin? (Xﬂ')e—ﬂxo] (16)
whereas in the second case it is proportional to
e o2’/ V2 o—7°/V2
sinh{Am) [1 +sinh?(Om)evZ® 14 sinh2(X7r)e—ﬂw°] an

All the results stated above are derived using conformal field theory methods and
are exact at the open string tree-level. However, it is natural to ask: is there an
effective action involving the tachyon field which reproduces some of these results,
at least qualitatively? It turns out that there is such an effective action, given by
[15-20]
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S = /dea:C,

L=-V(T)V—detA, (18)
where

A, =1 +0,70,T, (19)
and

V(T) ~ e~ TIV2 for large T'. (20)

V(T) denotes the tachyon potential including the brane tension. It has a maximum
at T' = 0, and in this parametrization has its minimum at infinity. The energy—
momentum tensor computed from the action (18) is given by [20a]

V() 1 VT F 70, TOT. (1)

T - vV(T)0,T0,T
" /1 +n79,T9,T
We shall first verify that the action (18) produces the correct large z° behaviour

of the pressure for spatially homogeneous, time-dependent field configurations. For
such configurations the conserved energy density for large T is given by

Too = V(T)(1 = (80T)%) /% ~ e T/V2(1 = (9, T)%) 112, (22)

Since Tyo is conserved, we see that for any given Ty, as T — oo, T — 1. In
particular, for large x° the solution has the form

T =2+ Ce V2" 4 O(e2V2") . (23)

In order to see that (23) gives the correct form of the solution we simply need to
note that the leading contribution to Ty computed from this configuration remains
constant in time:
1
TO[) >~y . (24)
2v2C

The pressure associated with this configuration is given by

p=Ti=-V(T) (1= (BT)*)"? ~ —1/2v/2Ce~ V" . (25)

This is in precise agreement with (13) for large x°.

Note that at late time 9,0,T — 0 and 7' — oco. Since it is at late time that the
results of the effective field theory agree with those of string theory, the natural
guess would be that the effective action given above is a valid description of the
system for large 7" and small 0,,0,T.

Next we need to verify if this action reproduces the conjectured static properties
of the tachyon effective action. First of all, note that V' (T") vanishes at the minimum
by construction, thus the first conjecture is automatically satisfied. We shall soon

410 Pramana — J. Phys., Vol. 62, No. 2, February 2004



Tachyon dynamics in string theory

analyse the spectrum of perturbative states around the tachyon vacuum and verify
the second conjecture. However, the verification of the third conjecture involves
construction of the kink and other topological soliton solutions. Since such solutions
contain regions in which 7' is finite and 9,0, T is finite or large, the effective action
given in (18) is not a valid approximation in this case. Thus, we cannot verify the
third conjecture using this effective action.

Let us now demonstrate the absence of perturbative states upon quantization of
the theory around the tachyon vacuum. Since a priori it is not clear how to quantize
a non-linear theory of this type, we shall use a pragmatic definition of the absence
of perturbative states. Since in conventional field theory perturbative states are
associated with plane wave solutions, we shall assume that absence of perturbative
quantum states implies absence of plane-wave solutions (which are not pure gauge)
and vice versa. Thus we need to show the absence of plane-wave solutions around
the tachyon vacuum in this theory.

This leads us to the analysis of classical solutions in this theory. Since around
the tachyon vacuum V(T') = 0 and hence the action (18) vanishes, it is more con-
venient to work in the Hamiltonian formalism [15,21-25]. Defining the momentum
conjugate to T' as

35S _ V(T)o,T
8(00T(z)) \/1 — (00T + (ﬁT)z ’

we can construct the Hamiltonian H:

I(z) = (26)

H:/dpw(ﬂagT—E) E/dpw’H,

H="Too = /II2 + (V(T))2\/1+ (VT)2. (27)

The equations of motion derived from this Hamiltonian take the form

o) — -7 o, (VT2 )

0T (x) V1+ (VD)2

V(T)v'(T) =2
RV e V1+(VT)2, (28)

0H 1 =
= = 14+ (VT)2. 29
M@~y VD 29
In the limit of large T' (i.e., near the tachyon vacuum) at fixed I, we can ignore the
V2~ V2T term, and the Hamiltonian and the equations of motion take the form

00T (x)

H= /d”x /1 + (§7)2, (30)
onti(a) = 0, (1] 22— ). 61)
14+ (VT)?
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II

80T(£E) = ﬁ

1+ (VT)2. (32)

From (32), we see that in this limit we have (8,7)% — (VT)2 = 1.
These equations can be rewritten in a suggestive form by defining [15]

u, = —0,T, e(z)=[M(x)|/\/1+ (VT)2. (33)
Equations (31) and (32) then take the form

" uuu, = =1, 0,(e(z)u?) =0. (34)
Expressed in terms of these new variables, T, given in (21) take the form:

Ty = €(z)uyu, , (35)

where we have used the small V(T') approximation and used the equations of motion
(31), (32). These are precisely the equations governing the motion of non-rotating,
non-interacting dust, with wu, interpreted as the local (p + 1)-velocity vector [15],
and e(x) interpreted as the local rest mass density. Conversely, any configuration
describing flow of non-rotating, non-interacting dust can be interpreted as a solution
of the equations of motion (31), (32).

It is now clear that there are no plane-wave solutions in this classical theory. A
system of non-interacting dust, if compressed, remains in that compressed state
without responding back. Thus if we begin with an initial static configuration with
an inhomogeneous distribution of energy, this disturbance will not propagate. On
the other hand a plane-wave solution always propagates. Thus the particular field
theory described here does not have any plane-wave solution, and is not expected
to have any perturbative physical state upon quantization.

During last year there has been many attempts to use the tachyon effective field
theory for describing various aspects of cosmology. Clearly one needs a much better
understanding of the effect of quantum corrections before one can have a complete
understanding of tachyon cosmology. However, I would like to conclude by saying
that brane—anti-brane annihilation process is likely to have taken place in the early
Universe, and it will be interesting to see if we can find any signature of such
processes in the present day cosmology.
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