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ABSTRACT:

For BPS black holes with at least four unbroken supercharges, we describe how the macroscopic
entropy can be used to compute an appropriate index, which can be then compared with the
same index computed in the microscopic description. We obtain ezxact results incorporating
all higher order quantum corrections in the limit when only one of the charges, representing
momentum along an internal direction, approaches infinity keeping all other charges fixed at
arbitrary finite values. In this limit, we find that the microscopic index is controlled by certain
anomaly coefficients whereas the macroscopic index is controlled by the coefficients of certain
Chern-Simons terms in the effective action. The equality between the macroscopic and the
microscopic index then follows as a consequence of anomaly inflow. In contrast, the absolute
degeneracy does not have any such simple expression in terms of the anomaly coefficients or
coefficients of Chern-Simons terms. We apply our analysis to several examples of spinning black
holes in five dimensions and non-spinning black holes in four dimensions to compute the index
exactly in the limit when only one of the charges becomes large, and find perfect agreement with
the result of exact microscopic counting. Our analysis resolves a puzzle involving M5-branes
wrapped on a 5-cycle in K3 x T°.
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1. Introduction and Summary of Results

In a class of supersymmetric string theories with sixteen or more unbroken supercharges we
now have a near complete understanding of the spectrum of BPS states ([, B, B, @, B, B, [@, B, B,

[d, [T, 13, I3, 14, 13, [6, 17, I8, [}, 2, kT, B2, B3, 4, B3, bd, 7, BY, k9, BT, B1, B2, B3, B4, BT



This makes these theories ideal testing ground for a comparison between the statistical entropy
of an ensemble of states and the thermodynamic entropy of the corresponding BPS black hole.
In particular, given such an exact knowledge of the microscopic degeneracy, one can aim for a
possibly exact comparison with an appropriately defined macroscopic entropy that includes all
subleading corrections. On the macroscopic side the subleading classical corrections arising from
local higher derivative terms in the effective action can be incorporated using the Wald formula
[BE] whereas the subleading quantum corrections, both perturbative and nonperturbative, can
be incorporated using the framework of quantum entropy function [B7, B§]. These can then be
compared with the subleading corrections on the microscopic side after carrying out a systematic
asymptotic expansion of the exact formula.

In carrying out such a comparison one needs to be careful about an important subtlety.
On the macroscopic side, the black hole entropy defined from the first law of thermodynamics
calculates the logarithm of the absolute degeneracy as required by the Boltzmann relation.
On the other hand, on the microscopic side, one normally computes a supersymmetric index
which receives contribution only from BPS states and hence is protected from any change under
continuous deformations of the moduli of the theory. A priori the index and the degeneracy are
not the same, and one could question the rationale behind comparing the degeneracy computed
in the macroscopic side with the index computed on the microscopic side.

One can proceed nevertheless following the dictum that whatever can get paired up will
generically get paired up, and hence in the interacting theory the index equals the degeneracy.
In many examples this strategy has worked very well for the leading entropy. However, there is
no guarantee that it will work also for the subleading corrections. Indeed, there are a number
of puzzles in the context of four-dimensional black holes where an appropriate index in the
conformal field theory describing a system of branes and the macroscopic degeneracy computed
from black hole entropy apparently differ at a subleading order [BY, [J]. In the context of certain
five-dimensional black holes in M-theory on K3 xT? and T° even the leading asymptotics of the
microscopic index apparently disagrees with the black hole entropy since the microscopic index
vanishes [AI]]. One can remedy the situation in some cases by considering a modified index as
suggested in [3, A3, {4, BI, fJ]. However, there are examples such as the one-sixteenth BPS
black hole in AdS5 where no microscopic index appears to have the right asymptotic growth
that agrees with the black hole entropy [A6, {7, {8, 9, p0]. It is thus desirable both conceptually
and practically to develop clear physical criteria for deciding when the black hole degeneracy is
captured by a microscopic index and which particular index is relevant under what conditions.

An argument based on the symmetries of the near horizon geometry of the black hole was
suggested in [BF]. The basic idea is to use the black hole degeneracy as an input to compute
an index on the macroscopic side and then compare this with the index computed on the
microscopic side. This relies on the existence of an AdS; factor in the near horizon geometry
of extremal black holes. The natural boundary condition on the various fields in AdSs is such



as to fix all the charges (including angular momentum) and let the dual chemical potentials
fluctuate. In particular a spherically symmetric horizon, being invariant under rotation, will
represent an ensemble of states all of which carry zero angular momentum. Thus if J denotes
the third component of the angular momentum, and we define an index with the weight factor
(—=1)F := exp (2miJ), then all the states which account for the entropy associated with the
horizon will have (—1) = 1 and hence

Tr(—1)F =Tr (1) . (1.1)

Furthermore, if the black hole preserves at least four supersymmetries, then spherical symmetry
is forced on us since the closure of the symmetry algebra implies that the supergroup of sym-
metries is SU(1,1|2). This contains an SU(2) factor which can be identified with a subgroup
of spatial rotations. Thus for such black holes ([[.])) holds and the index equals the degeneracy.

This general argument needs to be further supplemented by taking into account the possible
contribution from degrees of freedom living outside the horizon, — the hair modes [F1, 7.
These include in particular the fermion zero modes associated with the broken supersymmetry
generators which account for the supermultiplet structure of a BPS state. The end result of
this analysis expresses an appropriate index (helicity trace index) for the full black hole as the
product of the degeneracy associated with the horizon (or horizons in case of multi-centered
black holes) and the same helicity trace index for the hair degrees of freedom [Bg]. Since the
contribution from the hair modes is usually small this explians why the black hole entropy
represents the logarithm of an index to leading order. But this argument also tells us that at
the subleading order we must take into account the effect of the hair modes while comparing the
black hole entropy with the logarithm of the microscopic index. Indeed, without the hair modes
one runs into internal inconsistencies when two different black hole solutions have identical near
horizon geometries [b1, B2

The above line of argument thus gives us a precise route for computing an index from
the macroscopic viewpoint which can then be compared with the microscopic results for the
same index. However, explicit computation of the index on the macroscopic side is often
quite challenging for two reasons. First, computing the entropy associated with the horizon
requires us to carry out a path integral over the string fields in the near horizon geometry
of the black hole. Second this procedure requires us to explicitly identify the hair modes by
analyzing supersymmetric deformations of the (multi-) black hole solution and then quantizing
them. These difficulties have been overcome in special cases in various approximations, often
leading to non-trivial agreement between the macroscopic and microscopic results not only at
the perturbative level [B, B, 1] but also at the non-perturbative level [B3, BY, b4, b3, B9, £q.
Furthermore this formalism also predicts correctly the sign of the index from the macroscopic
side which agrees with the results of the microscopic analysis in a wide class of theories [Bg, F7].



In this paper we develop an alternative line of argument for computing the index on the
macroscopic side in a special limit when only one of the charges carried by the black hole,
representing momentum along an internal circle S* in some duality frame, becomes large. Even
though this does not allow us to access the most general charge configuration, it provides a
practical method for an exact computation for sufficiently general configurations for which all
charges except the momentum can take any finite value. Moreover, by changing duality frames,
one can choose different charges to play the role of the momentum that is becoming large and
thus explore different regions of the charge lattice.

In the limit described above, the near horizon geometry of the black hole coincides with the
near horizon geometry of an extremal BTZ black hole times a compact internal space K |58, B9,
B{]. Furthermore, by taking the limit in which the asymptotic radius of S* approaches infinity,
we can ensure that the full black hole geometry has an intermediate region where the space-time
has the form of AdS3 x KC, and the near horizon geometry is embedded in this geometry as
an extremal BTZ black hole [BI]. In this case, up to some additional contributions described
below, the degeneracy associated with this black hole can be regarded as the degeneracy of
states in the CF'T, dual to the AdSs, and in the limit of large momentum along S* this is given
by the Cardy formula. Thus computation of the degeneracy reduces to the computation of the
central charge of the dual C'F'T5, which, as will be reviewed below, can be computed in terms
of coefficients of the Chern-Simons term in the action of the bulk theory [B0].! Note that this
degeneracy includes the contribution from the black hole horizon, any hair modes which live
outside the black hole horizon but inside the asymptotic AdS3 x K geometry, and also multi-
centered black hole configurations in AdSs (if they exist). This is not a problem since these
must be included in the counting of states anyway. On the other hand this does not include
the contribution from any modes which might live at the boundary of AdS3 x K or between
AdS3; x K and the asymptotic space-time. By an abuse of notation we shall call these the
exterior modes, — these will include for example the analog of the U(1) gauge fields for string
theory in AdSs x S° [B64, b3, B6, [7]. Thus the contribution from these exterior modes need to
be computed explicitly and combined with the C'FT5 contribution to get the full microscopic
degeneracy.

Let us now turn to the computation of the index in the macroscopic theory. For this we
first need to know which index in we should calculate. In order that we can compare the
macroscopic results with the microscopic results it is important that we begin with an index
whose definition does not require any prior knowledge of either the macroscopic geometry or
the microscopic description of the system, but only on the charges and angular momenta of

L Although we are using the language of the holographically dual CF'T,, the computation is based on macro-
scopic analysis since the central charge is calculated from the effective action rather than from a microscopic
calculation. This is also reinforced by the fact that for BTZ black holes Wald’s formula for the entropy
takes the form of Cardy formula [53, (0, 3.



the state which can be measured unambiguously by an asymptotic observer. We shall call
such an index a space-time index. In order that the index can be reliably computed on both
sides we need to pick an appropriate space-time index which receives contribution from the
BPS states under consideration but not from non-BPS states. In four dimensions this involves
computing appropriate helicity supertraces [[[3, {3, 4] whereas in five dimensions one can use
a slightly different version described e.g. in [BI]. In either case this index involves computing
a trace of P multiplied by some polynomial in the angular momenta over states carrying a
fixed set of charges, where P — the analog of (—1)% for the Witten index — is a %, symmetry
generator under which the unbroken supersymmetry generators have odd parity. The role of
the angular momentum factor is to soak up the fermion zero modes arising from the P-odd
broken supersymmetries. In the macroscopic description the contribution to this index comes
from two separate sources: the bulk of AdS; and the exterior modes. By carefully analyzing the
traces over these modes,and taking into account the fact that the fermion zero modes arising
from the P-odd broken supersymmetries are part of the exterior modes, one finds that the full
index involves a trace of P in the C'F'T5 dual to the bulk of AdSs; and the trace of P together
with the angular momentum factors over the exterior modes.

For black holes which preserve at least four supercharges, the AdS3 background that appears
in the intermediate region has at least (0,4) supersymmetry in the associated supergravity the-
ory. Thus the dual CF'T} is actually a (0,4) superconformal theory with an SU(2) R-symmetry
group. Furthermore this R-symmetry group can be identified with the spatial rotation group
or one of its subgroups. One finds that the operator P restricted to this C'F'T; can be identified
as Tr((—1)*/7) where Jx denotes the generator of the U(1) subgroup of SU(2)z. Thus the
relevant C'F'T, index that appears in the expression for the space-time index is T'r((—1)?/%),
with the trace taken over the Ramond sector states of the C'F'T; carrying different values of
Jr but fixed values of (Ly — EO) = p, and fixed values of all the U(1) charges associated with
left-moving currents. This index receives non-vanishing contribution only from the Ramond
sector ground states of the right-moving excitations of the C'F'T5, 1.e. only from states with
Lo =0, Ly = p. Now in the absence of the (—1)2/% insertion in the trace the large p behaviour
of this index is given by the Cardy formula and is determined by the left-moving Virasoro cen-
tral charge ¢y, as well as the levels of various left-moving U(1) current algebras under which the
state carries charges. We shall argue in §f that the insertion of (—1)?/® does not change this
behaviour since the effect of (—1)2/%# under a modular transformation is to introduce a twist
on the right-movers but does not affect the left-moving ground state. Thus the contribution to
the index from the CFTj is given by the Cardy formula. Combining this with the contribution
from the exterior modes we can then recover the full macroscopic index.

While this gives a procedure for computing the index, the explicit computation still suffers
from various technical complications. First of all in this approach we need to identify the
exterior modes and compute their contribution to the index explicity. Furthermore to compute



the contribution to the index from the bulk of AdS3; we need the central charge and the levels of
the U(1) current algebra. While these can be related to the coefficients of various Chern-Simons
terms in the intermediate geometry that contains the AdSs factor, we still need to compute these
coefficients after taking into account the effect of higher derivative and quantum corrections.
There is however a further simplification that allows us to calculate the total index directly
without having to compute separately the exterior and the bulk contribution. We shall argue
that when one combines the contribution to the index from the bulk of AdS; and the exterior
modes to compute the total index, the result is determined in terms of coefficients of Chern-
Simons terms computed in the asymptotic space-time in which the black hole is embedded instead
of in the intermediate geometry containing the AdSj3 factor. The former can be calculated
explicitly, yielding an exact expression for the total contribution to the index in the p — oo
limit. Note that if instead of computing the index we had been computing the degeneracy, then
no such simplification occurs, and we really need to compute separately the contribution from
the bulk and the exterior modes and combine them to get the full result.

Armed with this result, we carry out explicit computation of the macroscopic results for the
space-time index for four and five dimensional black holes in type IIB string theory compactified
on K3xT? T% K3xS!and T® in different limits in which only one of the charges becomes large
keeping the other charges fixed. We then compute the same space-time index on the microscopic
side and compare this with the macroscopic results. For the microscopic computation we use
two different techniques: we can begin with the exact formula for the index in string theories
with 16 or 32 unbroken supersymmetries and study its limit when one of the charges becomes
large, or we can represent the microscopic system as a configuration of M5-brane wrapped on
P x S' where P and S! are appropriate four and one cycles of the compact space and then
calculate its index in the limit of large momentum along S* using a Cardy like formula. Note
that in the latter approach we need to use a generalization of the Cardy formula that determines
the growth of the index rather than the degeneracy. In all cases, we find that the macroscopic
prediction for the index always agrees with the microscopic index in the large momentum limit
even for finite values of the other charges.

The results of our analysis are summarized below in tables [l and . In these tables dpacro
denotes the macroscopic result for the appropriate space-time index and d,,;.., denotes the
result of microscopic computation of the same space-time index. Below we give more detailed
explanation of the various entries in these tables.

e Five-dimensional black holes
Table [] shows the results for spinning five-dimensional black holes in Type-IIB string the-
ory compactified on M x S', carrying Qs units of D5-brane charge wrapped on M x S*,
Q1 units of D1-brane charge wrapped on S', momentum n along S! and angular momen-
tum J. The second column of this table contains information about the limits we consider



M | Limit log domacro log dpicro

K3 Tyé):;é;B 27?\/@1@5 n - ﬁ) 27?\/@1@5 <n - ﬁ)
K3 | TpeliA zﬁ\/c% n+3) (Q1 - i) 27r\/Q5(n+3) (@ - ais)
T T?;QQ;B 27T\/Q1Q5 n - m) 27T\/Q1Q5 (n - ﬁ)

Table 1: Results for five-dimensional black holes for Type-IIB compactification on M x S1.

and the frame that we use for computing d,,.cro in these limits. In particular while in

the Type-1IB Cardy limit (n ) — 00, we carry out the macroscopic computation

J2
 1Q1Qs
directly in the type IIB frame, in the Type-ITA Cardy limit (Ql Qsin— 1)> — 00, We
need to go to a dual type ITA frame where ()1 appears as the momentum.

e Four-dimensional black holes
Table ] shows the results for four-dimensional non-spinning black holes in M-theory com-
pactified on M x T? x S, carrying Q; units of M5-brane charge wrapped on Cy x T2 x S1,
Qs units of Mb-brane charge wrapped on Cy x T? x S, K units of M5-brane charge
wrapped on M x S! and n units of momentum along S'. Here C, and C, denote a pair
of dual 2-cycles of M. The limit we consider is n — oo which corresponds to taking the
Lg eigenvalue large in the boundary CFTs.

M lOg dmacro lOg dmicro
K3 | 2/ (Q1QsK +4K)n | 2m/(Q:1Qs K + 4K)n
T 21/ (Q:1Q5K)n 27/ (Q1Qs K)n

Table 2: Results for four-dimensional black holes for M-theory compactified on M x T? x S*.

The results in both tables clearly show that the macroscopic prediction d,,q¢-, for the space-time
index always agrees with the microscopic prediction d,,;c., for the same index.
There are several novelties in our analysis which are worth emphasizing;:

1. The formulee quoted in the two tables are exact in the limits mentioned, 1.e. they hold
even when the charges other than the one which is taken to infinity are finite. Thus, they
go far beyond the supergravity approximation and incorporate the effects of o/ and string
loop corrections. On the macroscopic side this is achieved by an exact computation of
the coefficients of certain Chern-Simons terms in the action whereas on the microscopic



side this is achieved by the use of an exact microscopic formula for the index evaluated
in the same limits as described above.

2. In all cases, the limits that we consider can be regarded as a Cardy limit of a CFTy in
an appropriate duality frame. If the underlying CFT, is weakly coupled in this duality
frame, we can calculate d, ;..o with the help of the Cardy like formula for the index and
degeneracy. This is the case for the Type-IIB Cardy limit in Table [ However in some
cases, the microscopic configuration may contain a set of NS5-branes and as a result, a
weakly coupled description of the CFTy may not be available. This is the case for the
type ITA Cardy limit in Table [I.

3. Since dpicro is an index which does not change under duality?, one might expect that
dmicro can always be computed in an appropriate duality frame where a weakly coupled
CFT, description is available. Indeed for all the examples in Table [, a weakly coupled
CF'T, description is available in the Type-IIB frame, and this allows us to compute d,;cro-
However, under this duality, the type IIA Cardy limit corresponds to an ‘anti-Cardy’ limit
(Lo eigenvalue fixed and ¢ large) in the Type-I1IB frame. As a result, usual methods of
asymptotic evaluations are not applicable. One can nevertheless compute the asymptotics
in this limit from the exact formula using the methods of [6§, 9] which cleverly exploit
the additional symmetries of the exact counting function.

4. Our result for four dimensional black holes resolves a puzzle raised in [BY, i0] involving
black holes in M-theory compactified on K3 x T°. A naive application of the results of
bQ] without accounting for the different treatment required for the C'F'T5 dual to the
bulk of AdS3 and the exterior modes led to an apparent mismatch between black hole
entropy and the logarithm of the microscopic degeneracy. For example, if one evaluates
the absolute degeneracy in the microscopic theory at weak coupling, then one obtains
27m/(Q1QsK + 6K)n for the logarithm of the absolute degeneracy which differs from
the correct macroscopic answer at sub-leading order. In contrast, our analysis leads

to a perfect agreement between the microscopic and the macroscopic results as shown in
Table B. This example thus underscores the necessity and utility of defining a macroscopic
supersymmetric index from black hole entropy for correct comparisons with microscopic
computations.

5. Our analysis also gives explicit form of the entropy of five dimensional spinning black holes
after taking into account the effect of higher derivative corrections. Previous attempts
to do this involved using a specific set of higher derivative terms in the five dimensional
effective action [[0, [, [[4]. In contrast our analysis relies on the ability to express the
entropy in terms of coefficients of certain Chern-Simons terms in the action, and is exact

2In general, the index can also jump because of wall-crossings but in the A/ = 4 context these are exponentially
subleading corrections not relevant to the present analysis.



in the limit considered. This also agrees with the prediction from the microscopic side
based on the exact formula for the index.

For M5 branes wrapped on S! times a four cycle of a generic Calabi-Yau manifold, ref.
[PO] presented an argument explaining why the microscopic and the macroscopic entropy would
always agree in the Cardy limit. This argument was based on the observation that in a (1+1)
dimensional conformal field theory with (0,4) world-sheet supersymmetry, the Virasoro central
charge cg carried by the right movers is related to the level of the right-moving SU(2) R-
symmetry current. This in turn is related to the anomaly in this R-symmetry current. Using
anomaly inflow and identifying the SU(2) R-symmetry current as (a subgroup of) the spatial
rotation one can relate this to the coefficient of the SU(2) Chern-Simons terms in the effective
action. Furthermore the difference ¢;, — cg between the left- and right-moving central charges
is related to the gravitational anomaly in the world-sheet theory of the brane system which
in turn is related to the coefficient of the gravitational Chern-Simons term in the effective
action of string theory. Using these one can express the central charge c¢; of the left-moving
Virasoro algebra — which controls the growth of the microscopic degeneracy — in terms of the
gravitational and SU(2) Chern-Simons terms in the effective action. The latter in turn controls
the black hole entropy, leading to the equality between the macroscopic and the microscopic
entropy.

In our examples, the Calabi-Yau manifold is either K3 x T2 or T°. Since the systems we
analyze also have four unbroken supersymmetries, it is natural to ask if similar argument can
be used to explain the agreement between the microscopic and the macroscopic entropies in
our systems. The main additional complication that arises in our case is the failure of the
identification of the R-symmetry current of the microscopic theory with the spatial rotation
group. We find that while for the part of the microscopic system that controls most of the
entropy this identification is correct; it fails for a small component.®> A simple example of this
is provided by the scalar modes representing transverse oscillation of the brane. These are non-
chiral modes on the brane world-volume and transform in the (27,2g) representation of the
rotation group SU(2), x SU(2)g in five dimensions and 3 representation of the rotation group
SU(2) in four dimensions. For definiteness let us focus on the five dimensional case. In order to
identify the SU(2)g subgroup of the rotation group in five dimensions as the right-moving R-
symmetry on the brane world-volume this must act trivially on the left-movers. This clearly fails
for the left-moving part of the above scalars which transform in the fundamental representation
of SU(2)g. As aresult the total anomaly in the SU(2) g spatial rotation symmetry is not related
to the level of the SU(2) R-symmetry current in the world-sheet theory, and the growth of the

3A similar mismatch was found in [@] between the modes living on the Coulomb and the Higgs branch of
the D1-D5 system. Here the disagreement is between different components of the CFT at the same point in the
moduli space.



degeneracy of the microscopic system is no longer controlled by the anomaly coefficients which
can be directly related to the coefficients of the Chern-Simons terms in the effective action. A
similar problem occurs in the macroscopic description. For the CFT that is holographically
dual to the bulk of the AdS;3 factor appearing in the near horizon geometry, the R-symmetry
can be identified as the spatial SU(2)g rotational symmetry acting on the space transverse to
AdSs. But this identification need not hold for the exterior modes which might live on the
boundary of AdS; — the analog of the U(1) super Yang-Mills theory for type IIB supergravity
on AdSs x S° — or between AdS; and the asymptotic infinity. In particular these modes include
the transverse oscillation modes of the brane which fail to satisfy the conditions needed for
identifying the R-symmetry with spatial SU(2)g rotation. For this reason the coefficients of
the Chern-Simons terms in the effective action do not directly give us information about the
growth of the degeneracy obtained by combining the black hole entropy with the contribution
from these additional exterior modes. Remarkably however we find that the results on both
sides simplifiy when we focus on an appropriate index rather than the absolute degeneracy.
In the microscopic theory we find that the growth of the index is directly controlled by the
gravitational and rotational anomaly coefficients exactly as they would have controlled the
growth of the degeneracy if the subtle difference between the R-symmetry transformation and
spatial rotation had been absent. On the macroscopic side we find that total contribution to
the index from the black hole living in the bulk of AdS3 and the exterior modes is controlled by
the coefficients of the Chern-Simons terms in the effective action in the asymptotic space-time
in which the black hole is embedded. Since the latter are related to the anomaly coefficients in
the microscopic theory this allows us to establish the equality between the microscopic and the
macroscopic index.

The rest of the paper is organized as follows. In §f] we review the argument relating the
black hole entropy to an index, and give an alternative argument leading to similar results
for special class of black holes whose near horizon geometry contains a locally AdSs factor.
In §f we compute the macroscopic index of a class of spinning five dimensional black holes
and non-spinning four dimensional black holes in appropriate limit in which the near horizon
geometry develops an AdSs3 factor. In §fl] we complement the analysis of §f by including the
effect of the exterior contribution to the macroscopic index. In §f we use the known expressions
for the exact microscopic index of these systems to extract its behaviour in the various Cardy
limits and find perfect agreement with the macroscopic results of §f and . In §f we repeat the
analysis of §f] using the M-theory description for the four dimensional black holes. While in this
description we cannot calculate the index exactly, we can compute it in the Cardy limit and find
precise agreement with the results of §f. Both in §f and §f we also calculate the microscopic
degeneracy whenever there is an underlying two dimensional weakly coupled conformal field
theory, and find that in some cases they differ from the microscopic values of the space-time
index. In §f] we give a general proof of why the microscopic and the macroscopic computation
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of the index must always agree. This argument is a generalization of the argument of [60] by
taking into account existence of degrees of freedom for which the R-symmetry generators of the
world-sheet theory do not always match with the spatial rotation generators — a fact that was
crucial in the argument of [BQ]. This analysis also explains why the degeneracy and index do not
always grow at the same rate. In appendix [A] we describe the computation of the coeffcients of
the Chern-Simons terms which arise from dimensional reduction of gauge invariant Lagrangian
density in higher dimensions. In appendix [J we complement the analysis of asymptotic growth
of the exact microscopic index in §f by demonstrating that some terms, which were ignored in
the analysis of §f, are indeed small compared to the leading terms.

2. Computing the Index in the Macroscopic Theory

In this section we first introduce the relevant indices for counting BPS states in four and five
dimensional black holes and then review the argument of [Bg, [4] as to how the degeneracy of a
supersymmetric black hole, computed by exponentiating the entropy, can be used to compute a
macroscopic index that can be compared with a microscopic index. We then give an alternative
version of this argument that applies to the special case of black holes with locally AdS3 factors
in their near horizon geometry.

We begin by defining the helicity trace index in four dimensions. Due to Lorentz invariance
the number of supercharges in a four dimensional theory is always a multiple of 4; furthermore
the number of supersymmetries preserved by a state is also a multiple of 4. If we consider a
black hole that breaks altogether 4k supercharges, then the standard index for counting these
states is the helicity trace index By defined as [, [, {4

By = ﬁ Tr [(—1)F (2h)*] = ﬁ Tr [ (2h)%] | (2.1)
where h is the third component of the angular momentum of a state in the rest frame, and the
trace is taken over all states carrying a given set of charges. In order that a given state gives a
non-vanishing contribution to this index, the number of supersymmetries broken by the state
must be less than or equal to 4k; otherwise trace over the fermion zero modes associated with
the broken supersymmetries will make the trace vanish. On the other hand if we have states
with precisely 4k broken supersymmetries then Boy, receives contribution from these states, but
not from any other state with more than 4k broken supersymmetries. Since quantization of
each pair of fermion zero modes produces a pair of states carrying h = ﬂ:i, the trace over the
4k fermion zero modes associated with the broken supersymmetries is given by

(e — e=im/2)2k(9h)1 /2% — (—1)*(2k)!. (2.2)
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The (2k)! term arises from the binomial expansion of (2h)?* after expressing h as the sum of
contributions from different pairs. This cancels the similar factor in the denominator in (2.1)),
leaving behind a contribution of (—1)*.

It is easy to find a generalization of this in five dimensions. The spatial rotation group in five
dimensions is SU(2)L x SU(2)g. We shall denote by J;, and Jg their U(1) generators. Among
the set of all the supersymmetry generators of the theory, half belong to (2, 1g) representation
of SU(2) xSU(2) g and the other half belong to the (1, 2g) representation of SU(2), x SU(2)g.
For a state preserving 4 supersymmetries, the unbroken supersymmetry generators can be either
in the (2, 1) or in the (1;,2g) representation; we shall choose the convention in which they
are in the (17,2g) representation. The rest of the supersymmetry generators will be broken,
giving rise to fermion zero modes carrying the quantum numbers of the broken generators. Let
4k be the number of broken generators in the (11,2g) representation. We now consider the
index [BT]

o = S0 1 (1m0 | (2.3)
(2k)!
where the trace is taken over all states carrying a fixed value of J;, and fixed set of charges but
all possible values of Jg. Without the (2Jz)?* factor the trace over the (1z,2g) fermion zero
1

modes carrying (Jr, Jr) = (0,£5) would make the trace vanish. However the (2Jz)* factor

soaks up the 2k pairs of fermion zero modes exactly as in the case of four dimensional black

holes and gives a non-vanishing result. There are also (2, 1) fermion zero modes carrying
(Jr, Jr) = (£3,0), but they do not make the trace vanish since the trace is taken over states
carrying a fixed Jp. It is also easy to see that the non-BPS states do not contribute to this
index. They would have additional fermion zero modes in the (1;,2g) representation and hence
trace over these fermion zero modes would make the index vanish.

As an example, we can consider the BMPV black hole [[3 in type IIB string theory com-
pactified on K3 x S'. This breaks 12 out of 16 supersymmetries. Eight of the broken super-
symmetry generators are in the (21, 1g) representation, four of the broken generators are in
the (1,,2g) representation and the four unbroken generators are in the (17, 2g) representation.
Since there are four broken generators in the (1;,2g) representation the argument given above
shows that the relevant index is Cy. Similarly if we consider BMPV black hole in type IIB string
theory on T% x S! then it breaks 28 of the 32 supersymmetries, with 16 broken generators in
the (21, 1) representation, 12 broken generators in the (1, 2g) representation and 4 unbroken
generators in the (1;,2g) representation. The index required for counting these states is Cg.

Let us now compute the contribution to these indices from BPS black holes with four
supercharges. For definiteness we begin with a four dimensional black hole breaking 4k su-
persymmetries and compute the index Bs,. The net contribution to the index from a black
hole can be expressed as a sum of products of the contributions from the horizon and the hair
[B1, BY, B2); this could involve contribution from multiple horizons for multi-centered black
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holes. Let us first focus on the contribution from single centered black holes. Since the fermion
zero modes associated with broken supersymmetries live outside the horizon and hence are part
of the hair degrees of freedom of the black hole [F1, FZ],* we can express the contribution to
the index from the black hole as

1 .
B2k - W [T"ﬂhor(_]—)2hhor] [Trhair(_]-)2hhaw(Qh'hair)2k:| 3 (24)
where hp,, and hpq;,- denote the helicities carried by the hair and the horizon. For states carrying
a fixed set of charges ¢ this can be expressed as

Bor(q) = Z Bo.hor (Ghor ) Bok:hair (4 — Ghor) » (2.5)
dhor
where
Bogor (@) = Trhorg(—1)""e" (2.6)
and
Bokhair (@) = Trhairsg(— 1) (2R, ) . (2.7)

Here ¢ in the subscript of T'r denotes that the trace is being taken over states carrying a fixed
set of charges ¢. We now argue that if the black hole has 4 unbroken supersymmetries and if its
near horizon geometry has an AdS; factor, then it must carry hy,. = 0. The argument goes as
follows. The closure of the SL(2,R) isometry of the near horizon geometry, and the unbroken
supersymmetries requires that the near horizon geometry has the full su(1,1]2) symmetry
algebra. This includes su(2) as a subalgebra, forcing the horizon to be spherically symmetric
and hence carry zero angular momentum.® This gives

Boor(§) = Trhorg(—1)*"" = Trhori(1) = dpor(q) (2.8)

where dp,.- () is the degeneracy associated with the horizon degrees of freedom for charge ¢. In
the classical limit it is given by the exponential of the Wald entropy, but more generally it can

4The fermion zero mode associated with a broken supersymmetry generator can be constructed as follows.
We make a supersymmetry transformation of the original solution by an infinitesimal parameter that approaches
a constant spinor corresponding to the broken generator at infinity and vanishes for » < a for some constant a.
By choosing a such that the horizon lies at 7 < a we can ensure that such deformations live outside the horizon
and hence are part of the hair degrees of freedom.

5In asymptotically Minkowski space-time or AdSy space-time with d > 4, where the asymptotic boundary
conditions are set by the chemical potentials instead of the charges, the spherical symmetry of the background
will correspond to evaluating the partition function at zero value of the chemical potential conjugate to the
angular momentum. However the path integral over the string fields in the near horizon AdS; geometry that
is used to compute the horizon degeneracy must be carried out over configurations carrying fixed values of the
total charges including angular momentum [@, I@] Thus in this case spherical symmetry implies zero value of
the angular momentum carried by the black hole.
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be computed from the path integral over the string fields in the near horizon geometry [B7.
Using (R.5) and (B.§) we get the contribution to B from the black hole

sz((jj = Z dhor(qhor)B2k;hair(q_ (Thair) . (29)

[i’hor

Boj.hair(¢) can be computed once we have identified the hair degrees of freedom of the black
hole. Thus (R.9) can be used to make a prediction for the index Bgy(q) from the macroscopic
side. Note also that since dp,.(¢) is positive (R.9) makes a definite prediction for the sign of By,
provided we have sufficient knowledge of Boj.pqir. In particular in situations where the only hair
modes are the fermion zero modes associated with broken supersymmetries, we have @qir = 0,
Boghair = (—1)F and hence (—1)*Bagy = dpor > 0. As was shown in [B§, [7], the macroscopic
prediction for the sign of Bg agrees with the result of explicit microscopic computation for
all the N' = 4 supersymmetric string theories for which this index has been computed. The
generalization of (£.9) to multi-centered black holes is straightforward; since each center carries
zero angular momentum due to supersymmetry, the contribution to Bs, will be given by a
formula analogous to (B.9), with dj,, replaced by the product of d,, from each center and we
have to sum over all possible ways of distributing the total charge among the horizon and the
hair.

This argument has a straightforward generalization to five dimensions with h replaced by
Jr. Incidentally, this reasoning also implies the well-known facts that the horizon of a su-
persymmetric black hole cannot carry any spin in four dimensions, and that the horizon of a
supersymmetric black hole can carry only the SU(2), spin in five dimensions. Also this argu-
ment does not generalize to the problematic one-sixteenth BPS black holes in AdSs5 since they
have too little supersymmetry, and the completion of the algebra containing the supersymmetry
generators and the SL(2, R) isometry of AdS; do not force us to have an SU(2) symmetry in
the near horizon geometry.

While this argument explains the relation between the index and degeneracy, applying
this argument to compute the contribution to the index from the macroscopic side requires
identifying explicitly the hair modes of the black hole which is not always an easy task [B1], 57
Also this would require computing dj,, by evaluating the path integral over string fields in the
near horizon background geometry [B7] — another difficult problem. For these reasons we shall
now give an alternative approach to computing the index on the macroscopic side which is in
the same spirit but differs in details. If we consider a black hole for which one of the charges
can be identified as an internal momentum along some circle S*, and if we consider a limit in
which this momentum becomes large keeping all the other charges fixed, then the near horizon
geometry of such a black hole is known to develop a locally AdSs factor by combining the near
horizon AdS, geometry with this internal circle S* [F§, B9. Furthermore if we now adjust the
asymptotic moduli fields in such a way that we take the asymptotic value of the radius of S*
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to infinity keeping all the other moduli fixed, then the solution also develops a global AdSs
factor in the intermediate region, and the black hole solution can now be regarded as the BTZ
black hole living in this asymptotically AdSs space-time [[1, [(8, f1]. The classical entropy
of this black hole has the form of a Cardy formula, with the central charge given by some
specific function of the parameters of the Lagrangian [62, p0, pJ]. Thus the classical black hole
entropy can be reinterpreted as the Cardy formula of the CFT, that is holographically dual to
string theory in this geometry. Since the Cardy formula in CFT; is expected to hold in the full
quantum theory this suggests that we can use Cardy formula as the quantum generalization of
the black hole entropy. The problem of computing the quantum corrected entropy of the black
hole then reduces to the problem of computing the quantum corrected central charge. Since we
do not have direct knowledge of the CF'T, this has to be computed using the data in the bulk
theory after taking into account quantum corrections to the bulk effective action. In this sense
the entropy computed this way is still the macroscopic entropy.

There are however several subtleties overlooked in the above discussion. First of all the
Cardy formula is supposed to count total degeneracy of states in CFTy without caring about
whether they are represented as single or multicentered black holes inside AdSs, or whether
the contribution comes from the horizon or the hair modes. So the above definition of the
black hole entropy includes all of these contributions. This is not a serious problem since
in order to compare the macroscopic result with the microscopic result we need to sum over
all the contributions on the macroscopic side in any case. The microscopic degeneracy may
also receive contribution from configurations with multiple AdSs throat [6]], but this can be
avoided by working in appropriate domains in the moduli space. In any case in theories with
16 or more supercharges the contribution from the multicentered black holes is small and we
shall ignore their contribution in our analysis. The main complication arises from the fact that
the degeneracy of the CF Ty dual to the theory living on the bulk of AdS; does not capture all
the degrees of freedom of the system. There may be additional degrees of freedom living on
the boundary of AdS; (analogous to the U(1) factor for AdSs [[9]), or in the region between
AdS;3 and the asymptotic infinity. This will in particular include the Goldstino fermion zero
modes associated with supersymmetries which are broken by the AdS3 background. We shall
collectively call all such modes exterior modes.® Since in the limit we are considering — taking the
asymptotic radius of S* to infinity keeping the momentum quantum number fixed — the physical

6The need for separating out the exterior modes can be seen as follows. In the microscopic theory where
the dynamics is described by that of an oscillating string there are a set of degrees of freedom associated with
the center of mass motion which are decoupled from the rest of the degrees of freedom. This decoupling in the
infrared limit follows from Goldstone’s theorem and is expected to be exact even in the full interacting theory.
Thus if the CFT dual to AdSs had contained the full set of degrees of freedom of the black hole then this
CFT will be given by a sum of two (or more) CFT’s which do not interact with each other. Thus we can define
two stress tensors and hence there must be two gravitons in the bulk theory, in contradiction to what we see.
Furthermore in the bulk theory the SU(2) R-symmetry group of (0,4) supersymmetry can be directly related
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momentum vanishes, part of the black hole solution lying between the asymptotic space-time
and the intermediate AdS3 region has full 1+1 dimensional Lorentz symmetry. Thus we would
expect the dynamics of the exterior modes to be described by some (1 4 1) dimensional field
theory. Their contribution has to be combined with the Cardy formula to recover the total
degeneracy of states.

So far we have talked about degeneracy, but our real interest is in the index. Let us now
see how the above discussion will change when we try to compute the index instead of the
degeneracy. Again for definiteness we shall first consider four dimensional black holes and
compute the index Byg. Denoting by hpur and heggerior the contribution to h from the degrees
of freedom living in the bulk and the exterior of AdS3, we can express the trace appearing in

(B.1) as

1 : .
sz — W TT |:627Tl(hbulk+hezterzor) (thulk + 2hemteri0r>2k:| . (210)

For simplicity we shall assume that the supersymmetries broken by the black hole are also
broken by the intermediate AdS; region, 1.e. the black hole, when regarded as a solution in
AdS3, does not break any further supersymmetry.” In this case all the fermion zero modes
associated with broken supersymmetry are part of the exterior degrees of freedom, and in
order to get a non-vanishing contribution to the trace in (R.I10) we need to pick the factor of
(2heaterior)?* from the binomial expansion of (2hpuk + 2Rexterior)>*. This gives

1 ; . — — —
B2k = —Tr [e2m(hb“lk+h”t”wr) (Qhemterior>2k] = Z Bbulk(Qbulk)B2k;emtem'or(q - Qbulk) s (211)

2k)!
(2h) q
where By, = Trpupe®™ ™k in a fixed charge sector.

In the Cardy limit one of the charges, which we shall call p, becomes large. We shall denote
by @ the rest of the charges and denote by ~ the Fourier transform of various quantities Bay,

Bo:exterior €tc. with respect to the charge p. For example

§2k(é> 7-) = Z B2k(@> p) 627”;177— ’ (212)

etc. We shall now make the assumption that the exterior modes do not carry any charge other
than p, so that in the sum in (2.11) Qpux is always equal to Q. Then (R.11)) takes the form:

ng(@? T) = ébulk(@, 7—)§2k;6xt67’i07’(7—) . (213)

to the spatial rotation group for four dimensional black holes and the SU(2)g subgroup of the spatial rotation
group for five dimensional black holes. This identification fails to hold for the CFT containing the center of
mass modes, showing again that these modes must live outside the bulk of AdSs3.

"In some cases the unbroken supersymmetry generators get modified when we switch on the charges on the
black hole, e.g. when we switch on M2-brane charges on an M5—brane@, . For the systems we shall analyze
this does not happen.
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Our goal is to compute the behaviour of ng(Q p) for large p. This is controlled by the behaviour
of ng(Q 7) for small 7. To determine this we need to find the small 7 behaviour of Bbulk(Q T)
and B%,emtem?(T). First we focus on Bbulk(Q,T). If instead of the index Bbulk(Q,p) we had
been interested in the degeneracy dbulk(é p) = Tr(1) of left-moving excitations in the CFTs,
then for large p it would grow as exp[2m+/c5%*p/6] according to the Cardy formula, where c5“*

is the central charge of the left-moving Virasoro algebra of the CF'Ty. This implies
Ay (@, 7) ~ exp|mict* /127] (2.14)

for small 7. We shall now argue that for small 7 the behaviour of gbulk(é, T) is given by the same
formula. The argument goes as follows. With the help of a modular transformation in the two
dimensional CF'T, the behaviour of dp,; in the Cardy limit can be related to the ground state
energy of the left-moving sector, and this is what leads to (2.14), with —c%“* /24 interpreted as
the ground state energy of the left-moving sector. Now if instead of iyt We consider the index
Ebulk, then following the same logic we can relate its small 7 behaviour to the ground state
energy in the left-moving sector, but this time with a (—1)2"u* twisted boundary condition
under 0 — o + 27, o being the world-sheet space coordinate. Now quite generally when
the black hole (and the associated AdS3) has four unbroken supersymmetry generators, they
combine with the conformal symmetry of the AdSs to generate a (0,4) superconformal algebra.
This includes an SU(2) R-symmetry current whose global part can be identified as the spatial
rotation symmetry. Due to this identification, hy, can be interpreted as the zero mode of the
U(1) € SU(2) R-symmetry current of the CFT,. Since the twist by the zero mode of the right-
moving U(1) C SU(2) R-symmetry current of the CFTy is not expected to affect the ground
state energy in the left-moving sector, this energy will continue to be given by —ci* /24, and
hence the small 7 behaviour of Ebulk is also given by the Cardy formula:

Byur(Q, 7) ~ exp[mic /127] . (2.15)
We shall see in §ff] that for small 7 ggk;extemr(@ 7) is given by a formula similar to (2:17):®
Bopseaterion(0, T) ~ exp[mics™<ior /127] (2.16)

for some constant cg*/*". Substituting (.14) and (R.16) into (R.13) we get

B(@7) ~ explmicyege/12r],  cpuge = 4 e (2.17)

8We should emphasize here that while the modularity of Egk;bulk (C,j, 7) follows from the fact that in the CFTh
dual to the AdS3 the action of Ay is chiral, the function Egk;eztem'm« (Q, 7) is not a priori a modular form
since the action of Ay, on the exterior modes is not chiral. Hence, to derive this asymptotics it is necessary to
examine the behavior of Egk;emﬁor(ﬂ explicitly as we describe in §H
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and hence, for large p,

BQk(Q,p) ~ exp[27y /cﬁ‘é?}"p/ ]. (2.18)

This is our general expression for the index Bs; for four dimensional black holes computed in

the macroscopic theory. We shall describe the computation of ¢j** and ¢f".7/" in sections

and [l] respectively. We shall in fact see that cr'efy 1s simpler to calculate than the individual
contributions from the bulk and the exterior since the former is directly related to the coefficients
of certain Chern-Simons terms in the effective action in the asymptotic space-time in which the
black hole is embedded.

Let us now consider five dimensional black holes. The analysis goes through more or less
in the same manner with A replaced by Jg provided that all the SU(2),, singlet supersymmetry
generators which are broken by the black hole solution are also broken by the AdS3;. The main
difference arises from the fact that the exterior modes of the five dimensional black holes carry
both J;, and Jr quantum numbers besides the momentum along S*. Since we are summing
over Jg but keeping J;, and the momentum along S* fixed in defining the index, the analog of

(B.1T]) now takes the form

C2k((7) - Z Cbulk((j;)ulk)c2k,e:cterior((j_ Cﬁmlk) 3 (219)

Tbulk

where the charge vector ¢ now also includes the J;, quantum number, and Cy,; denotes the
trace of e*™/r. We now separate out two charges from the set ¢, — the momentum p along S*
and the U(1), € SU(2), charge J, = J/2 — and call the rest of the charges Q. Denoting by ~
the Fourier transforms in the charges p and .J, by 7 and z the variables conjugate to p and J,
and assuming that the exterior modes only carry p and J quantum numbers, we can express

.19 as o L
C2k(Q> T, Z) = Cbulk(@a T, Z)C2k;exterior(7-> Z) . (220)

In order to find the behaviour of Cy;, in the Cardy limit we need to find the behaviour of 5'% for
small 7. The behaviour of C*bulk(@, T, z) for small 7 can be found as follows. First we note that
in CFT, dual to the bulk of AdS3 the SU(2), and SU(2)g spatial rotations can be identified
as the left- and right-moving SU(2) R-symmetry currents. From this it follows that if instead
of Cyyr we had considered the degeneracy dp, . of the left-moving excitations then for large p

and J = /P, Ay (Q, p, J) grows as exp [QW\/ chutk (p - %‘é%” Equivalently for small 7 and

2=1 we have

—

CA[bulk(Q, T,2) = Z dbuzk(@,p, J)e2TTmITE | ey [
p,J

(2.21)
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(E-Z1)) is a consequence of the modular symmetry of the CET5, and the exponen + Khulk ;2

has the interpretation of the ground state energy of the left-moving sector of the CFT with the

i)z ynder ¢ — o + 2m. Now following the same logic as in

boundary condition twisted by e
the case of Bbulk we can argue that for small 7, Cbulk will have the same behaviour as dbuzk,
since under modular transformation the extra insertion of (—1)*/% in the trace will mapped to
a twist by (—1)?/#, and this, being a twist by the zero mode of a right-moving current, should

not affect the ground state energy of the left-moving sector. Thus we get

_ . bulk Jobulk 2
Cour(Q, T, 2) ~ exp [mlc; — 2m } (2.22)
T

Furthermore we shall find in §f that for small 7 and 2 <1, 6’2k;emtmm (7, 2) is given by a similar
formula

~ ﬂ-icimé?fim kemtemor 2
C2k;e:cterior(7_a Z) ~ €XP T — 27 f (223)
Eq.(2:20) now gives
- . Trcmacro kmacroz2
Czk(Q7T7 Z) Nexp Lf‘f _271-1% ,
127 T
macro — bulk exterior macro — bulk exterior
CLeff = +CL£ff ) Leff = = ki kL,éff ) (2.24)
and hence
Cor(Q,p, J) ~exp |27, [cTeff | p— Lomaas ) (2.25)
Leff

Again we shall find that cp¢ff and k7'¢ are given in terms of the coefficients of certain
Chern-Simons terms in the effective actlon in the asymptotic space-time, and hence are easier
to calculate than the individual contributions from bulk and the exterior modes.

3. Macroscopic Results for Four and Five Dimensional Black Holes

In this section we examine the macroscopic formule for the entropy of a certain class of four
and five dimensional black holes in appropriate limits. Much work has been devoted to the
study of corrections to black hole entropy due to a specific class of higher derivative terms
obtained by supersymmetrizing the curvature squared terms, both in four and five dimensions
[B1, B9, B2, B, 4, 1, B3, 70, [1]. However in this approach there is no a priori justification
of including only a specific subset of higher derivative corrections to the effective action for
computing the entropy. Our approach will be based on the method advocated in [B(] where in
certain limits the higher derivative corrections to the black hole entropy can be related to the
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coefficients of certain Chern-Simons terms in the effective action. Since these coefficients are
integers, possible corrections to them are severely limited, and hence can often be computed.
This will allow us to compute the black hole entropy in appropriate limits after including the
effect of all possible higher derivative corrections.

In all subsequent discussions we shall use units in which o’ = 1, normalize the ten dimen-
sional Einstein-Hilbert + dilaton action so that it takes the form

(2m)~7 / d"Vzv/—detGe*® [R+4(VP)?] (3.1)

and normalize the p-form field strength so that its kinetic term has the form

11 _ M,

- - - M- ! .

5 (2m) 7/d10z V—det G e Fyy.pp FM M (3.2)
p!

for some appropriate constant .

3.1 D1-D5-p system in type IIB on K3 x S!

We consider a system of Q5 D5-branes wrapped on K3 x S, (Q1+Q5) D1-branes wrapped on S*
and n units of momentum along S*. We choose the convention in which positive n denotes left-
moving momentum along S and take n to be positive. Since a D5-brane wrapped on K3 carries
—1 unit of D1-brane charge, ) represents the physical D1-brane charge carried by this system.
Besides these charges we also make the system carry angular momentum. In five dimensions
the spatial rotation group is SU(2), x SU(2)g. We shall consider D1-D5-p system of the type
described above carrying U(1), C SU(2) charge J, = J/2. Supersymmetry then forces the
corresponding black hole solution to be invariant under SU(2)g, 1.e. carry zero SU(2)g charge.
The entropy of a supersymmetric black hole carrying these charges, calculated using the two
derivative action of the supergravity theory and the classical Bekenstein-Hawking formula, is

given by [[]]
217\ Q1Qsn — JZ2 : (3.3)

Our goal will be to understand corrections to this formula in two different limits:

1. Type IIB Cardy limit: n — oo with @, Q5 fixed. |J| must be bounded by a term of

order y/n so that Q1Qsn — JTZ scales as n.

2. Type IIA Cardy limit: @1 — oo with @5, n fixed. |J| must be bounded by a term of
order /()1 so that QQ1Qsn — JTZ scales as (1.

The type IIB Cardy limit clearly corresponds to taking the momentum along the circle St to
infinity keeping other charges fixed in a type IIB frame. As we shall see, the type IIA Cardy
limit corresponds to taking the momentum along the dual circle to infinity keeping the other
charges fixed in a dual type ITA frame.

— 20 —



3.1.1 Type IIB Cardy limit

We begin by writing down the near horizon geometry of the black hole [, B4 in the normal-
ization convention of [BY, B1] for the action and the solution:

2 2
ds? = ro% + dy?* 4 ro(dx* + cos 0dp)* + Y dy(dz* + cos 0dp) — 2+/ropdydr
To

+7ro (d6* 4 sin® 0d¢?) + Grndu™du",  y=y+27R

e? = )\,

J\?

F® — v
1672RV

1
€3 + *€3 + dy/\(—dp/\(dx4+cosﬁd¢)+sin9d9/\d¢)} :
P

T'o
by
(3.4)
where dS? denotes the string metric, ® denotes the dilaton, F'® is the RR 3-form field strength,
Gmn is the metric on K3 with volume (27)* V, u™’s are the coordinates on K3, (z*,0, ¢) are the
coordinates labelling a 3-sphere S3, €3 = sin 6 dz* A df A d¢ is the volume form on this 3-sphere
satisfying |, g3 €3 = 1672 and €3 denotes the Hodge-dual of €5 in six dimensions. The attractor
equations determine the near horizon parameters in terms of the charges via the relations

_AGs
4 Y

_ @&

An
o e .

Note that A, labeling the string coupling, is undetermined on the horizon. If @)1, 5, n are

v

To

large but finite then by adjusting A we can keep the string coupling small, and the parameter
ro, that controls the length scale of the near horizon geometry, large. Thus in this case we have
a systematic expansion in o/ and the string coupling, with the leading term in the expansion
given by the Bekenstein-Hawking entropy. We shall try to go beyond this by taking only one
of the charges to be large, keeping the other charges finite.

By a coordinate change

x4_f4_ T2 il T2\ —1/2_ (1 J2 —1/2
— ' T iezrvY VY 25613 R2V? —Y 40,Qsn ’
- J? )1/ ?
T=71(1- ) 3.6
( 10:Qun (3.6)

we can bring the metric to the form

2
ds? = r, <dpL; — p2d%2) + (d§ — /70 pd7)? + Grmdudu™

+ro ((dZ* + cos 0dg)? + db” + sin® 0d¢?) . (3.7)
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Except for the global identification implicit in the periods of the coordinates (z%,0,¢,7) this
metric has no dependence on .J. In fact it has locally an AdSs x S? factor, with the coordinates
(p,7,y) labelling AdSs and (0, ¢, 2*) labelling S® [Bf]. The appearance of the AdS3 x S* factor
allows us to apply the general reasoning given in [B(J which we shall now review.

We begin with the observation that the classical Wald entropy given in (B-J) can be written

in the form [B7, £, B0,
chulk J2
SBH = 27T\/ L6 (n - 4k%ulk) ) (38)

C%ulk = 6(1Qs, k%“”“ = 1Qs. (3-9)

A physical explanation of this formula may be given as follows. If we take the limit in which the
asymptotic radius Ry, of the circle S goes to infinity keeping fized all the quantized charges and

where

adjusting the other moduli so that the asymptotic geometry approaches a finite six dimensional
background, then the black hole solution develops an intermediate region which contains an
AdS3 x S? factor and the near horizon configuration given in (B:4) appears as the near horizon
geometry of an extremal BTZ black hole sitting inside the AdSs [BI].° Furthermore this black
hole carries a U(1)y charge J/2, with the U(1), interpreted as the abelian subgroup of the
SU(2), C SU(2), x SU(2)r gauge group arising out of dimensional reduction on S®. By
AdS/CFT correspondence the states represented by this charged extremal BTZ black hole in
this asymptotically AdSs; geometry can now be regarded as RR sector states with (Lo = 0, Ly =
n) in the holographically dual CFT;. Furthermore in CFTy the SU(2), x SU(2)g rotational
symmetry of S% appears as the zero mode subalgebra of an SU(2);, x SU(2)g current algebra,
with SU(2)., being a left-moving current algebra and SU(2)g a right-moving current algebra.
Thus J/2 represents the charge carried by the global part of the U(1), C SU(2); current
algebra. Eq.(B.§) can now be interpreted as the Cardy formula for the growth of states in the
two dimensional conformal field theory, with c}“* representing the central charge carried by the
left moving component of the stress tensor of the CFTy, and k5“* representing the level of the
SU(2), current algebra.

9The asymptotic boundary of this AdSs space is the (1+1) dimensional space labelled by y and 7, and the
symmetry of the intermediate AdSs x S3 includes the Lorentz transformation in this (14+1) dimensional space
as well as the full rotation group of S3. This may appear surprising since the black hole carries —n units of
momentum along S! which breaks Lorentz symmetry in the y — 7 plane and angular momentum J;, = J/2 which
breaks the SO(4) rotational symmetry of S? to its SU(2) subgroup. The reason that this is not inconsistent
is that if we take R,s to infinity keeping n and J fixed then the physical momentum n/R,s and the angular
momentum per unit length J/R,s both vanish. Since these are the parameters which enter directly the black
hole solution, it is not surprising that from the point of view of an asymptotic observer we recover the Lorentz
invariance in the 7 — y plane as well as the SO(4) rotational invariance in this limit.
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In order to check that this interpretation is correct we must independently compute cb**

and k¥ from first principles and check that the result agrees with (B-9) computed from black

hole entropy. For this it is also useful to introduce the quantities ¢%* which represents the

central charge carried by the right moving component of the stress tensor of this CFTy and k54*

that gives the level of the right-moving SU(2) g current algebra. In the classical limit cu* — cbulk

bulk
grav

and k%% are given by the coefficients of the Chern-Simons terms involving SU(2);, and SU(2)g

is given by the coefficient ¢?“’* of the Lorentz Chern-Simons term in the bulk theory, and k¥
gauge fields in the bulk theory. Furthermore using the supersymmetry of the bulk theory one
finds that the boundary CFTy possesses (0,4) superconformal symmetry.'® Thus the SU(2)g
current algebra can be identified as the R-symmetry algebra of the (0,4) superconformal algebra,
leading to the relation c%'* = 6k%*[B0]. This gives:

bulk _ bulk _ _bulk bulk _ @ 1.bulk
This allows us to express c2“* as
bulk _  bulk bulk
" = Coran T OKR™. (3.11)

In the specific example under consideration, there is no Lorentz Chern-Simons term in the
supergravity approximation. Thus we have cg’,ffl’fj =0 and so % = 6k%*. Eq.(B9) would then
follow if we have kb4 = kbulk — (9,Q5. The proof of this, given in [B§] has been reviewed in
appendix [A] where we also give a generalization of this result.

So far we have just reinterpreted the classical Bekenstein-Hawking formula. But now we
can turn the argument around to give a definition of the black hole entropy in the full quantum
theory in the type IIB Cardy limit defined earlier. The main ingredient is the observation
that for states carrying large Ly the Cardy formula is valid in the CFT5 even in the quantum
theory. Thus we can use (B.§) to compute the full quantum entropy associated with the bulk
of AdSs in the large n limit, provided c5“* represents the left-moving central charge in the
full quantum theory, and k%* is the level of the SU(2); current algebra in the full quantum

theory.!* Furthermore (B.11) will also continue to hold in the full quantum theory. Thus the

bulk
grav*

problem reduces to the computation of k2% kbF and ¢ As argued in §P] these quantities
also determine the contribution to the index from the modes living in the bulk of AdS;. We
still need to compute separately the contribution from the exterior modes to which we shall

come back later.

10Tn fact in this particular example the CFTy has (4,4) superconformal supersymmetry and this allows us to
relate 2% directly to the coefficient k2“* of the SU(2);, Chern-Simons terms in the bulk action via cju/k =
6k%uk. However in order to maintain a uniform discussion of all the cases we shall only make use of the (0,4)
supersymmetry of the CFTs.

HUTf we assume that the effect of quantum corrections can be encoded in a local 1PI action in AdS3, then (@)
can be derived directly in the bulk theory, either via euclidean action formalism [B(] or via Wald’s formula [53.
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Let us now discuss the computation of these quantites after taking into account higher
derivative and quantum corrections. Since the coefficients of the Chern-Simons terms are quan-
tized, coulh kR and k3" are quantized. It then follows from (BIT]) that ¢}** is also quantized.
Thus these coefficients must be polynomial in the charges ()1, ()5 and cannot, for example, carry
any inverse powers in the charges. This severely restricts the form of the corrections. Further-
more, we can use a generalization of the scaling argument of /4] to determine in which order
in perturbation theory a given correction could arise. If we take an extremal black hole car-
rying NS-NS sector electric charges cj(]\?gNS, NS-NS sector magnetic charges d(]\%i%, and RR
sector charges ¢rg, then the argument of [[4] implies that the [-loop contribution to any of the

coefficients cgﬁgj}, Kbulk and kbu* — collectively denoted by by ¢ — satisfies the scaling law:

! (ﬂ%@%v )‘2qNSN.S‘7 AQRR> = N2 (q(Nﬁgaﬁ/)Svd(NgNsﬂRR) : (3.12)
In our example, @)1, Q)5 are RR sector charges. Thus the scaling relation takes the form

DAQ1,AQ5) = N7 cD(Q1,Q5) . (3.13)

Clearly the leading contribution to k%% and k%% given by Q,Qs, satisfies (B-IJ) with
I = 0, showing that this arises at the tree level. A correction to any of the coefficients i
Kbk and k5 linear in @ or Q5 will be suppressed with respect to the leading term by a power
of 1/X under the scaling given in (BI3). According to (B-I3) this must arise at [ = 1/2, 1.e. at
the ‘half loop” order. Since close string perturbation theory includes only contributions from
integral number of loops we see that we cannot get corrections to the central charge which are
linear in (1 or J5. Put another way, a correction that is suppressed by a single power of RR
charges must come from terms in the action involving odd number of RR fields. Such terms
are not present in type IIB string theory. By following the same line of argument we see that a
constant term in the central charge will produce an effect at the one loop order. Thus we might
ask whether one loop correction in type IIB string theory could produce corrections to the
Lorentz, SU(2)., or SU(2)g Chern-Simons term in the theory living on AdSs;. We can consider
two possibilities. The first possibility is that such a term could arise from a one loop correction
to the ten (or six) dimensional effective action integrated over K3 x S* (or S%). Since the term
we are looking for is independent of ()7 and ()5, it cannot involve the 3-form fluxes and must
be purely gravitational in nature. Now in an even dimensional theory it is impossible to write
down a purely gravitational Chern-Simons term. Thus we do not get a constant contribution
to ch“* by integrating a higher dimensional Chern-Simons term on S®. The second possibility
is that there can be one loop contributions to the Lorentz and/or SU(2)g Chern-Simons terms
which arise in the theory after compactification on K3 x S3 and cannot be seen in the ten or
six dimensional type IIB string theory. A priori we cannot rule out such a possibility; so let us
denote such one loop contributions to c?u* = gbulk and kbulk by A B and C respectively. This

grav’
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gives

Btk — 601Q5 + A+ 6C, K= Q,Q5+ B. (3.14)

Bk and Kbk given in (B14) control the contribution to the black hole degeneracy/index
from the bulk of AdS3. To determine the full contribution to the macroscopic index using
(229), (P-29) we must combine this with the contribution from the exterior degrees of freedom
mentioned in the previous section. We shall show in & that the exterior contributions ¢"% /"
and k797" to the index precisely cancel the constant shifts (A 4+ 6C) and B in eq.(B19),

leading to:

crerf = 6Q1Qs, kierf = @Q1Qs . (3.15)
Using (B.27) we now see that the leading supergravity formula for the entropy is the complete
contribution to the index in the Cardy limit:

/ 2
In dmacro(na Qb Q5> ) ~ 2m QlQSn - J_ (316)

Here ~ denotes equality up to corrections suppressed by inverse powers of n. The macroscopic
result (B.16) agrees with the microscopic result (B.20) which will be derived in §f.

3.1.2 Type ITA Cardy limit

Let us turn to the type IIA Cardy limit: @Q; — oo at fixed n,Qs and J=1/Q; [f§. The
strategy will be to examine the black hole in a different duality frame in which ), appears as
a momentum along a circle, and then apply the same line of reasoning to find an exact formula
for the black hole entropy in the limit (); — oo at fixed n, Q5. For this we first make an
S-duality transformation in the ten dimensional type IIB string theory to map this system to
an NS 5-brane, fundamental string, momentum system, and then make a T-duality along the
circle S* to map this into a system in type IIA string theory on K3 x S S with Q@5 NS 5-branes
Wrapped along K3 x Sl n fundamental strings wrapped along S S and (1 units of momentum
along S*. St By following the duality transformation rules and making a change of coordinates
one finds that the near horizon geometry of the black hole in the type IIA variables, denoted
by ~, takes the form

32
ds? = rodi + dy? 4 To(dx* + cos 0dp)? + J{N dy(dz* + cos 0dp) — 2+/TopdydT
p? roRV
+70 (d6? + sin® 0d¢?) + Gundu™du”,  y =y +27R
e® =X,

- N 22 1
H® =7, |e3 + *e3 + J ————=dy A (—dp/\(dx4+cosﬁd¢)+sin9d9/\d¢) ,
1672 RV P

(3.17)
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where H® is the NS-NS 3-form field strength. The near horizon parameters are now given in
terms of the charges and the parameter A via the relations

~_Q5 VL & 1
o= V= )\Q5 R = ot

With the help of the same coordinate transformation (B-f) we can remove the explicit J de-

(3.18)

pendence of the solution except for in the periodic identification of the new coordinates. The
space-time spanned by the coordinates (p,T y,@ ¢, z*) is now locally AdSs x S. If we take
the limit in which the asymptotic radius Rgs of S! goes to infinity keeping fixed the quantized
charges and the six dimensional background, then the solution develops an AdSs; x S® factor
in the intermediate region, and the near horizon geometry described in (B.17) can be regarded
as that of an extremal charged BTZ black hole embedded in this asymptotically AdSs; x S3
geometry. In the holographically dual CFTy the BTZ black hole can now be regarded as an
RR sector state with Ly = Qy, Ly = 0 and U(1);, C SU(2),, charge J/2. Thus the entropy of
the black hole in the limit of large ) should be given by the Cardy formula

Sp ~ 27r\/ gtk <Q1 - i(%gulk)—lﬁ) /6, (3.19)

where now b ghulk - pbulk and bk denote respectively the central charges of the left and

right-moving Virasoro algebras and the levels of SU(2), and SU(2)gr current algebras in the
CFT,. As before, &t = ¢*'* — ci'* is related to the coefficient of the Lorentz Chern-Simons
term in the bulk and k%% and k%4 are related to the coefficients of the SU(2);, and SU(2)x
Chern-Simons terms. Furhermore using the supersymmetries of the bulk theory one can show

that the CFT, has (0, 4) supersymmetry. This leads to the relation &“* = 6 l%?{“lk and gives

bulk chulk 4 6 kbulk (3.20)

grav

Comparison with (B-J) shows that in the supergravity approximation we have ¢“* = 6nQs
and kb* = nQs. Since in this approximation there is no Lorentz Chern-Simons term in the

~bulk ~ o Lbulk _ ~ ~ J.bulk 7.bulk
action, g, vanishes and (B20) gives bz = nQs. Direct computation of k7*** and k"™ can be

performed using the procedure reviewed in appendix [A] and agrees with the values given above.
ghulle - Fbulk

oot and l;;l}%‘”“ due to higher derivative and

Our goal now is to compute the corrections to ¢
string loop corrections.

Since cgﬁfﬁj, kb“lk and kb“lk are all quantized, corrections to them could involve terms linear
in Q)5 and/or n and constant term. Now since n represents an NSNS sector electric charge and

@5 an NSNS sector magnetic charge, the scaling relation (B.17) takes the form

(l)(>\2n’ Q5) — )\2—215(1)(n7 Q5) 7 (321)
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where ¢ stands for [ loop contribution to any of the quantities Egﬁﬁfﬁ,, 12:2“”“ and l%%flk. This
shows that a term linear in n, if present, must arise at string tree level. Since this term would
be linear in n, representing the NS-NS 3-form flux H® through AdSs, it will have to arise
from a six dimensional Chern-Simons term of the form [ ” H® A Qog where Qg is a Lorentz
Chern-Simons 3-form in six dimensions, and P denotes the dual field strength obtained by
taking the Hodge dual of the flux 45 /5?] ) [B9). But tree level type ITA string theory does
not have such a term in the action since the gauge invariant three form field strength in type
IT string theories do not involve a Lorentz Chern-Simons term. This shows that there are no
corrections linear in n. According to the scaling relation (B.21]) the constant term, if present,
must arise at one loop. Since it does not involve any charges, it will have to either come from a
purely gravitational term in ten dimensions which upon dimensional reduction on K3 x S% will
produce a Lorentz Chern-Simons term in AdSs, or arise as a one loop effect in the theory after
compactification on S®. Since there are no purely gravitational Chern-Simons terms in ten or
six dimensions, we can rule out the first possibility. But as in the case of type IIB Cardy limit,
we cannot rule out the second possibility. Let us denote such contributions to 62%’2,, Kbk and
l;;%“k, if present, by 2{, B and C respectively.

Finally a term linear in @5, if present, must arise at one loop order, and come from a term
proportional to [ H® A Qcg in six dimensions. Are there such one loop corrections to the
Chern-Simons term? The ten dimensional type ITA string theory indeed contains a one loop
Chern-Simons term of the form

— /é A T(X), (3.22)

4
sional space and p,, denoting the nth Pontryagin class [PJ]. Upon dimensional reduction on K3

this generates a term proportional to [ H® A Qcg. Thus cbulk

grav’

where B is the NS-NS 2-form field and I5(X) = = <p2(X) — pﬁ(X)), X being the ten dimen-

ik and kY% can all receive
corrections linear in 5. To compute the coefficients of these terms we introduce the quantities
19 and 79 via the relations Iy = dI? and p; = dp?. Since H® has nontrivial flux over S3, the
2-form field B is not well defined. Thus instead of taking the coupling (B.22) we shall take

1 ~
5 / H®O AT (3.23)

by integration by parts. Now the spin connection in the Kaluza-Klein reduction is simply a
direct sum of the connections on AdS; x S® x K3. Using the fact that the total pontryagin class
of a direct sum satisfies p(E @ F) = p(E)p(F), that [,,p1 = 48, and that p; = —dw,(T")/87>
where

2
wo(T) = Try (FAdF+ gmmr) , (3.24)

— 27 —



the trace being taken over the vector representation, we can express the contribution from

(B-23) as ,

3213 J aasyx s
where T’ now stands for the spin connection on AdS3 x S3. Using eqs.(A.14), (AI9) we see that

H® Aw,(T), (3.25)

the effect of (B.29) is to generate the following corrections to cgﬁfl'fj, k:b“”‘C and l;:%“”“:
At =12Q5,  AKR™ =Qs, AR = —Qs. (3.26)

We can check the consistency of the overall sign and normalization by setting ()5 = 1; in this
case the system is equivalent to a fundamental heterotic string which has cyq, = 12. Combining
(B-24) with the leading supergravity results and the constant shifts we arrive at the relations:

bulk Q5(n—|—1)+C kbul’f Qs(n — 1)+B, chulk — 12 Q5 + A,

grav

Clzulk Ghulk +6kbulk =6Qs(n+3) +A+6C. (3.27)

grav

We now need to use (.24), (B.29) to find the asymptotic formula for the index. Again we

shall see in §ff that the net effect of the exterior contribution ¢¢*¥/*" and /%jiﬁf?}w’" is to cancel

the terms proportional to A+6C and B in &4tk and k%“”“. Thus the growth of the macroscopic

index d,qcro in the type ITA Cardy limit @Q; — oo for fixed @5, n will be controlled by the
constants

Rped? = Qs(n—1), ledf =6Qs(n+3), (3.28)
and In dmacro given by
1 1]2
| (i (;? (;? ~ 27( (;2 —I— (;2 e 2
macro(n> 1 5) 5(77, 3) ( 1 1@5(71 1)) ) (3 9)

where ~ implies equality up to corrections suppressed by powers of );. This agrees with the
result found in B3, B for small J and large n computed using a particular four derivative
correction to the ﬁve dlmensmnal effectlve action. Also the result for ¢7'¢y agrees with the one
computed in [PT], P (see also 03, P4]) assuming a specific structure of all the higher derivative
correction to the effective action.'? Most importantly (B:29) agrees with the microscopic answer
(B-27) which will be derived in §f.

3.2 Entropy of some four dimensional black holes

We now consider a four dimensional theory obtained by compactifying type IIB string theory
on K3 x S' x S'. In this theory we take the non-spinning D1-D5-p system analyzed in §B.1]

2Earlier results on this can be found in [0F].
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and place it in the background of K Kaluza-Klein (KK) monopoles associated with the circle
S1. Since for K = 1 this system has the same near horizon geometry as the five dimensional
D1-D5-p system analyzed in §B.0], the macroscopic computation of the index is identical to
that in §B.1] except for the difference in the contribution due to the exterior modes. We shall
however keep K arbitrary and compute the entropy in a different duality frame in which we
regard them as black holes in M-theory on K3 x T carrying Mb-brane charges and internal
momentum. For this we first make a mirror symmetry transformation in K3 to take the D1-D5
system to a D3-D3 system with @ D3-branes wrapped on Cs x S! and Q5 D3-branes wrapped
on a 52 x S! where C5 and 6’2 are a pair of dual 2-cycles of K3. We then make a T-duality
along the circle S' to take the D3-branes to D4-branes and the KK monopoles to NS 5-branes
wrapped on K3 x S'. If we denote by S! the T-dual circle then we have ()1 D4-branes along
Oy x St x S1, Q5 Dd-branes wrapped along Cy x S x S, and K NS 5-branes along K3 x S,
carrying n units of momentum along S'. We can now regard the type IIA string theory as M-
theory compactified on a new circle S}, so that we have M-theory on K3 x 8% x S x S, The
dyon configuration now corresponds to Q; M5-branes along Cy x S x St x S}y, Qs Mb-branes
wrapped along Cy x S* x §1 x SL and K Mb-branes wrapped along K3 x S!, carrying n units
of momentum along S*.

Our goal in this section will be to analyze the black hole solution corresponding to these
charges and find the macroscopic entropy of this system in the limit n — oo, keeping the other
charges fixed. Since the analysis proceeds more or less in the same way as for five dimensional
black holes, our discussion will be brief. As in the case of the D1-D5-p system one finds that
near the horizon the AdS, x S? appearing in the near horizon geometry of the black hole
combines with the circle S' to produce a locally AdSs; x S? factor 60]. Furthermore if we

take the limit in which the asymptotic radius of S approaches infinity, keeping fized all other
quantized charges and the five dimensional geometry in the M-theory frame then the M-theory
background develops an intermediate AdS; x S? geometry, and the near horizon geometry of
the black hole appears as the near horizon geometry of an extremal BTZ black hole embedded
in this asymptotically AdSs x S? space. Thus applying the Cardy formula we see that the

Spp =~ 2my/ & n /6 (3.30)
bulk

where ;" is the central charge of the left-moving Virasoro algebra of the holographically

entropy is given by the formula

dual CFT,. In the supergravity approximation c}“* = 6Q,QsK, reproducing the Bekenstein-

Hawking result 2m/Q1QsKn for the entropy[Pg, P7.

In the limit n — oo with @1, @5, K fixed, the complete contribution to the entropy (and the

bulk

index) from the bulk modes on AdS; continues to be given by (B.30) provided ¢]*'* represents

the exact central charge of the left-moving Virasoro algebra after taking into account higher

liulk bulk bulk of

derivative and quantum corrections. As usual (c7*"" — cx"™") is given by the coefficient cj'0
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the Lorentz Chern-Simons term in AdS3. On the other hand using the supersymmetries of the
bulk geometry one can show that the dual CFTy on the boundary has (0,4) superconformal
symmetry acting on the right-movers. As a result &% can be related to the level k%% of the
SU(2) R-symmetry current in the CFTy via the relation % = 6k%k 13 Since this SU(2)
current in the boundary theory is holographically dual to the SU(2) gauge fields in the bulk
arising from dimensional reduction on S?, k%* is given by the coefficient of the SU(2) Chern-
Simons term in the bulk. This allows us to determine c?* in terms of the coefficients of the
Chern-Simons terms in AdSs via the relations

clplk — btk g itk (3.31)

— “Ygrav

The relevant Chern-Simons terms were evaluated in [Bd] for M-theory compactified on M x
St where M is a general Calabi-Yau 3-fold. In this theory, consider a black hole corresponding
to Mb-brane wrapped on P x S! where P is some general 4-cycle in M. Using the isomorphism
between 4-cycles and 2-forms we can associate with P a 2-form on M which we shall also denote
by P. Then the result of (] for ct“* and cf¥* are:

] ) _
C%le:/ (p/\pAp+§PAc2(M))+AR, C%Ulk:/(P/\P/\P-i-P/\CQ(M))—i-ALa
M M

(3.32)
where co(M) is the second Chern class of M. Note that we have allowed for constant shift
(AL, Ag) in the central charges due to one loop effects arising after compactification of M-
theory on K3 x T? x S? x AdS;. Computation in [BQ] was carried out by integrating the
quantum corrected ten dimensional Lagrangian density on K3 x S3, and ignored possible quan-
tum corrections which could arise after compactification on K3 x S3. Evaluating this for the
configuration we have, we get

R =6K(Q1Qs +2) + Ap, " = 6K (QiQs +4) + Ay (3.33)

Again we shall see in §f] that when we compute the full index in the macroscopic theory
using (217), (BI), the net effect of the exterior contribution ¢f"%/°" is to cancel the Ay term
in 4k giving rise to

Cznf;?fo = 6K(Q1Q5 + 4) . (334)

Eq.(21§) now shows that the index computed in the macroscopic theory grows as

In dmacro(n> Qla QSa K) = 2W\/K(Q1Q5 + 4)77, for large n. (335)

This is in perfect agreement with the microscopic result (5.36) to be derived in §f.

13 Although there is now a single SU(2) we shall label its anomaly coefficient by kg.
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3.3 Black holes in toroidally compactified type I1IB string theory

In this subsection we shall repeat the analysis of the previous subsections for black holes in
toroidally compactified type IIB string theory. Since the analysis proceeds in a more or less
identical manner we shall mainly state the results without going through the details of the
analysis.

First we consider the D1-D5-p system wrapped on T x S1. We shall use the same notation
for the charges as in the case of K3 x S! compactification, except that now Q); represents the
actual number of D1-branes since D5-branes wrapped on 7% do not carry any D1-brane charge.
In the limit when @, @5 are fixed and n becomes large, we get the result:

ln dmacm(n, Ql, Q5, J) >~ TN/ 4@1@571, — J2 . (336)

In the limit of fixed n, QY5 and @ large, we have

Indpacro(n, Q1, @s, J) >~ T/ 4Q1Qs5n — J2. (3.37)

Derivation of (B.30]) is a straightforward generalization of the similar analysis for type IIB on
K3 x S' leading to (B.16). The main difference between the analysis leading to (B.37) and
that leading to (B:29) is that the dimensional reduction of the [ B A Ig term on T* does not
produce any Chern-Simons term. Thus all corrections to ¢5“* and /%%“”f from the supergravity
results, except for possible constant shifts from one loop corrections, vanish. The constant shift
is cancelled by the contribution from the exterior modes due to the results of §fl. Using these
results we arrive at (B.37). This is in perfect agreement with the microscopic result (5.43) to
be derived in §f.

If we now consider a four dimensional black hole obtained by placing this system in the
background of K KK monopoles, and go to the duality frame in which the system is described
by momentum carrying M5-brane wrapped on 77, then we can analyze the macroscopic entropy
of the system following the same procedure as in §B.2. In this case the near horizon geometry is
locally T x AdSs x S%. The central charges ct“* and %% associated with this AdSs are given
by formulee similar to those given in (B:33) except that now [ P A co(M) vanishes. Possible
constant shift in c* due to one loop correction is exactly cancelled by the hair contribution.
This gives

Indnaero(n, Q1, Qs, K) >~ 214/ Q1Q5Kn  for large n. (3.38)

This is in complete agreement with the macroscopic result (5.44).

4. Analysis of the Exterior Contribution

In this section we shall compute the coefficients ¢{"/77*" and EF"7f*" appearing in (2.16) and
(B:23) and show that their effect is to cancel the charge independent constant terms in the
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expressions for ¢7'¢ff and k7'ey which arise from one loop quantum corrections and which

cannot be obtained as the dimensional reduction of the 1PI action in ten dimensions on the
intermediate AdSs geometry. Examples of such terms are A 4+ 6C and B in (B.14). We shall
describe our analysis in the context of the five dimensional black hole, but it will be clear that
the result we derive is also valid in four dimensions, the only difference being the absence of any
reference to the SU(2), symmetry and the associated anomaly coefficient &y, in four dimensions.

We begin by recollecting some relevant results from §f. Recall that c2** is computed in §§

via the relation
Cliulk bulk + 6kbulk : (4_1)

grav

where k"% and )% are the coefficeints of the SU(2)g and Lorentz Chern-Simons terms in
the intermediate AdSs; geomery. On the other hand k%“* was given by the coefficient of the
SU(2) Chern-Simons term in the AdS; geometry. Part of the contribution to these Chern-
Simons terms came from integrating ten dimensional Chern-Simons terms on K3 x S3, but
this left open the possibility of constant one loop corrections to these coefficients which arise
after compactification on S3. Now imagine that instead of doing this reduction on the K3 x S3
that arises in the intermediate AdSs; region, we do this in the asymptotic region where the
geometry is locally K3 x RS.' Let us take a thick spherical shell of large radius around the
origin, bounded by the hypersurfaces r = r; and r = ry for large ry, 9, and regard this space
as locally R® x K3 x S®, with S labelling the angular coordinates and R® containing the
time coordinate, the radial coordinate r and the coordinate along S!. We can now formally
dimensionally reduce the ten dimensional action on K3 x S? to calculate the coefficients of the
Lorentz and SU(2)r x SU(2)r, Chern-Simons terms on R*. The calculation is identical to the
one described in appendix [4 for the intermediate AdSs; geometry, except that this time we do
not expect any additional one loop correction due to compactification on S? since we are really
doing the computation in K3 x R® rather than on K3 x S3 x AdSs;. Thus the result for these
coefficients will be identical to ¢tk = fbulk — bulk /6 and k5% computed in §f and appendix [A]

grav’

except for the constant one loop shifts. We shall denote these coefficients by cgsv?, k5" and
k7" respectively. For completeness we shall list below the values of cj=u, k™" and k™™
for each of the systems analyzed in §f:
1. D1-D5-p system in type IIB on K3 x S* in the type IIB Cardy limit:
Coran” =0, kR =iQs, kLT =Q1Q5. (4.2)
2. D1-D5-p system in type IIB on K3 x S! in the type ITA Cardy limit:
Coran? = 12Qs, kR = Qs(n+ 1), k7Y = Qs(n —1). (4.3)

14Recall that we have taken the asymptotic radius of S* to infinity so that we have a (5+1) dimensional
asymptotic space-time.
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3. Four dimensional black hole in M-theory on K3 x T? x S*:

casvme — 19K, KEU™ = K(Q1Qs +2). (4.4)

grav
4. D1-D5-p system in type IIB on 7% x S! in the type IIB Cardy limit:

Coran " =0, k! = 1Qs, k" = 1Qs - (4.5)
5. D1-D5-p system in type IIB on T* x S! in the type IIA Cardy limit:

Casymp — 0’ kaRSymp — Q1Q57 k}l%symp — Q1Q5 . (46)

grav

6. Four dimensional black hole in M-theory on 7% x S*:

Iy =0, kR = KQ1Qs. (4.7)

We shall now try to express the difference between the Chern-Simons coefficients calculated
in the asymptotic geometry and the intermediate AdS3; geometry in terms of some known
quantities and in the process gain knowledge about the constant terms in the expression for the
Chern-Simons coefficients in the intermediate AdSs region. For this we note that the coefficients
of the Chern-Simons terms can also be interpreted as certain anomaly coefficients. For example
Kbk and kb* reflect the change in the effective action in the bulk theory by certain boundary
terms in the intermediate AdSs; geometry under SU(2)g and SU(2), gauge transformations,
bulk reflects a similar change under local Lorentz transformations. k3™, k7™
coe? reflect similar anomalies under local SU(2)g, SU(2);, and Lorentz transformations in
the asymptotic region. Thus the difference between k™ and k%'* must be accounted for by
the contribution to the SU(2)g anomaly due to the exterior degrees of freedom sitting between

the asymptotic observer and the AdS;. We shall denote this by k%", An identical argument

and ¢ and

holds for k7, and ¢gq,. Thus we have
g
asymp __ 1.bulk exterior asymp __ 1.bulk exterior asymp __ bulk exterior
Jasyme — phulk | pesterior - pasymp _ phulk | pesterior chulk - certerior —(4.8)

Using (£:29), (1)) and (£.§) we get

macro __ _asymp __ _exterior asymp _ j.exterior exterior __ _asymp asymp
CL,eff - Cgrav Cgrav + 6(]{:}% kR ) + CL,eff - Cgrav + 6kR + A )
macro __ 1,asymp
kPeiy = ki +9, (4.9)
where
— exterior exterior exterior __ exterior exterior exterior exterior
A = —6k% — Corav |t Creff = —0Okg — (cf —CR )+, (4.10)
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§ = kiﬂfé;}ior _ kixterior ) (411)

kasymp
L

Now we have already argued that the results for c?5¥? and are identical to those

grav
bulk
grav’

A and 0 vanish, then we would prove that the effect of the exterior contributions is to precisely

kasymp
R

of c K5k and Kbk in §f except for the constant one loop shifts. This if we can show that
cancel these constant shifts in the AdS; central charges.

We shall now show that A and ¢ vanish. For this we shall need to make some assumptions
on the structure of the exterior modes. We make the following assumptions:

1. The exterior modes consist of free massless scalars and fermions belonging to singlet
and/or spinors representations of SU(2), and SU(2)g.

2. The scalar modes which transform in the vector (2,2) representation of the transverse
rotation group SO(4) = SU(2), x SU(2)r are non-chiral. Physically this assumption
stems from the fact that such modes arise from the oscillations of the center of mass
mode of the black string which is non-chiral. Due to this assumption the contribution
to the SU(2)g and SU(2), anomalies from any scalar in the (2;,2g) representation of
SU(2), x SU(2)r always vanishes. Taking advantage of this fact we can assign the
contribution to (kr, kg) from a left-moving (2, 2g) scalar to be (a,b) and a right-moving
(21, 2g) scalar to be (—a, —b) for any arbitrary pair of numbers (a,b). We shall choose
(a,b) = (=1, —1) for convenience.

To this we shall add the information that the (1+1) dimensional conformal field theory of
exterior modes is invariant under (0,4) supersymmetry. This follows from the supersymmetry
of the solution outside the AdSs region. We shall not make the assumption that the SU(2) R-
symmetry current of this superconformal algebra has any relation to the spatial rotation group
SU(2)g. Thus we shall not have any relation between ¢57'¢"°" and kSFterr.

We shall now separately evaluate the contribution to A and ¢ from each type of field that
could appear as part of the exterior degrees of freedom. For this we need to calculate kp, kg,
¢, —CR, creff and kg, .y from each field. This is done with the help of the following observations:

1. The calculation of (kg, kr,cr, — cg) is straighforward since these are given by the contri-
bution to SU(2)r, SU(2)g and gravitational anomalies.

2. The calculation of ¢z .y and kp, .y involves computing the contribution from these fields
to the index C§rierior = Tr(—1)2/7(2JR)%e*™PTH47i/L2 To this end we note that the factor
of (2Jg)? is needed to soak up the SU(2)r doublet fermion zero modes. Thus after taking

2JR627ripT+47riJLz from the

the trace over the fermion zero modes we are left with 7Tr(—1)
oscillator modes. Due to supersymmetry this receives contribution only from the left-

moving modes.
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3. Since (—1)%" = 1 for the SU(2)y singlet fields, the SU(2)g singlet left-moving fields
contribute in the same way to the index and the degeneracy. Thus for them ¢y, .s¢ = cp,
and kL,eff = ]{ZL.

4. SU(2)r doublet left-moving fields have the property that the contribution to 5§§tmm
from a left-moving scalar oscillator, given by (1 — 62’”7”0“”4”“%0“2)_1, can be regarded
as the inverse of the contribution to the partition function from a left-moving fermionic
oscillator, and the contribution to 526,?6”0’" from a left-moving fermionic oscillator, given by
(1 — 2miposemHAmiJL05c%) | can be regarded as the inverse of the contribution to the partition
function from a left-moving bosonic oscillator. Thus their contribution to cr, .r¢ and kr, c5¢
can be computed by replacing the fermions by bosons and vice versa, and including an
extra — sign in front of the corresponding values of ¢, and kj.

This gives the following contribution to A and ¢ from various fields:

left-moving (1., 1g) scalar:

kr=0, kp=0, cg=0, co=1, cregr=1, kpeyy=0 A=0, =0,
left-moving (2, 2g) scalar:

kr=-1, kp=-1, crp=0, cL=4, cres=-2, kper=-1, A=0, §=0,

left-moving (2, 1g) fermion:

1 1
kr=0, kp= o cr=0, co=1, cpep=1, kpess= o A=0, ¢=0,
left-moving (1, 2g) fermion:
1
kR:_§7 ]CL:O, CR:O, CL:17 CL,eff:_27 kL,effzov AIO, 5:07

right-moving (1, 1g) scalar:

kr=0, kp=0, cp=1, c, =0, creyy=0, kpeyy=0 A=1 §=0,
right-moving (21, 2g) scalar:

kr=1, kp=1, cr=4, cp=0, cposp=0, kpop=0 A=-2 &§=—1,

right-moving (27, 1) fermion:

1 1
]{?R:O, kL:__a cr =1, CL:O> CL,eff:O> kL,effZOa A:]-a 5257

2
right-moving (1;,2pg) fermion:
1
/{?R 5, ]{TL:O, CR = 1, CL:O, CL,eff:O, kL,effZOa A= —2, 0=0.

(4.12)

Note that in evaluating the contribution to k;, and kg from the (21, 25) scalars we have exploited
the freedom of choice mentioned earlier. From this table we see that the left-moving exterior
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modes do not contribute to A or . On the other hand since we have supersymmetry acting
on the right-movers, and since the supersymmetry generators are doublets of SU(2)g, a right-
moving SU(2) g doublet scalar must be accompanied by a pair of SU(2) g singlet fermions and a
right-moving SU(2)r doublet fermion must be accompanied by a pair of SU(2) single scalars.'®
From ([-TF) we see that the net contribution to A and ¢ still vanishes for such fields.

Using A =0 and § = 0 we get from ([[L9) that

CLTR = o+ BRET, R = R (4.13)

As already argued before, cis¥? + 6k ™" and k™™ are given respectively by the same com-
putation as 2% and k¥ of §] except that the constant shifts are absent. This proves that
the effect of the inclusion of the exterior contribution is to remove the constant term in the
central charges due to one loop corrections. Note also that in (f.I9) the values of ¢z, and ¢y ¢f¢
differ for several of the modes. Thus if we had focussed on the absolute degeneracy rather than
the index then its growth will not be controlled solely by the anomaly coefficients since for the

contribution due to the exterior modes cy, .s¢ will now be replaced by cy..

5. Microscopic Results

In this section we shall examine the computation of the microscopic indices of certain black holes
in four and five dimensions, and show that these agree with the results of explicit macroscopic
calculations given in §f and §ff]

5.1 D1-D5-p System in type IIB on K3 x S*

In this section we shall examine in detail the microscopic formule for the index of the D1-D5-p
system in type IIB string theory compactified on K3 x S! in various limits. We consider a
system of 1 D5-brane wrapped on K3 x S' and @; + 1 D1-branes wrapped on S*, carrying
n units of left-moving momentum along S' and SU(2);, angular momentum J;, = J/2. Since
a Db5-brane wrapped on K3 carries —1 unit of D1-brane charge, ), represents the physical
D1-brane charge carried by this system. We consider the index:
1

dmicro(na Qb J) = 02(n> Qla J) = _5 Tr [(_1)2JR (QJR)2] 5 (51)
where the trace is taken over all states carrying fixed @1, n and J;, = J/2 but different values
of Jg. The partition function Zsp(p, o, v), defined through the relation

Zsp(p,oyv) = Y X o@D (1) (0, Q) (5.2)
Q1,n,J

15We emphasize that that this does not imply that SU(2)r is the zero mode part of the right-moving R-
symmetry current. As already remarked, the latter acts trivially on all the left-moving fields while the former
has non-trivial action on some left-movers.
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is given by [Bd, BI]

) ' e
Z5D(p’ g, U) = 6_27”0 H (1 — 627”(0k+pl+v])) (4lk—j%)

k. jeZ
k>1,1>0
% {H(l . e27ri(lp+v))—2 (1 _ e27ri(lp—v))—2 (1 _ e2m’lp)4} (_1) (em'v . e—m’v)2
1>1
(5.3)
where ¢(u) are defined via the relations:
F(T, Z) _ Z c(4n _ j2)€2mm—+2mjz. (54)
JMEZL
292(7_a Z)2 193(7_a Z)2 194(7_a Z)2

F =8 . 5.5
(.2) [192 (7,0 " Us(r,02 " a(7,0)? (5:5)

The first line of (B.3) is the contribution from the relative motion between the D1 and D5 branes
[BO) and the second line represents the contribution from the center of mass modes [BI]. Strictly
speaking we should subtract from this the contribution from the half-BPS states carrying zero
momentum, but as long as we use this formula to extract the index of states carrying non-zero
momentum along S*, we shall not make any error. The —(2.Jg)?/2! factor in the trace has been
absorbed by the four fermion zero modes associated with the center of mass motion carrying
(Jr, Jr) = (0,£1), and the factor of —(e™ —e~™")? comes from the contribution from the four
fermion zero modes on the D1-D5 world-volume carrying (Ji,, Jg) = (£1,0).
Eq.(p-3) may be rewritten as

W —mimd N(p)*
VA 0, — _ (priv _ —miv ’ 5.6
0 (6,9 0) (e <) Dio(p, 0, v) (5:6)
where Orio+2mip+2mi omi(ok+pltuvj)) CAlk—5%)
Dig(p,0v) = etmrremerzme [ (1 ettt , (5.7)

kljeZ
k,1>0,5<0fOr k=1=0

is the Igusa cusp form. In going from (f-3) to (B.6) we have used ¢(0) = 20, ¢(—1) = 2. From
(B:2), B.9) we get

)24

1 1 1
dmicro n, ,J = (-1 T / d / dg/ dv e7riv — e_“” ! 6—27ri(pn+UQ1+Jv) L .
(n, @1, J) = (=1) | i ( ) (o)
(5.8)

We shall be interested in studying the behavior of d,icro(n, @1, J) in two different limits:
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2

1. Type IIB Cardy limit: n large at fixed ¢); and Q; — Z—n > K; for some fixed positive

number K.

2. Type ITA Cardy limit [6§: @ large at fixed n and n — % > K for some fixed positive
number K.

Estimates for K;, K, can be found in appendix [B. In both these limits the combination
A = (4Qin — J?) becomes large. In this case the asymptotic expansion of dpicro(n, Q1,J) is
governed by the residue of the integrand in (5.§) on the subspace [, B, B,

po —v*+v =0, (5.9)

where the integrand has a pole. Since the analysis in [, B, B, [§] were carried out in a different
limit where n, ()1 and J were all large and of same order, we have given a careful analysis in
appendix [B showing that even in the two limits we are considering the dominant contribution
comes from this pole. Near this pole

1

W = —(47T2)_1 plo ®_2n(ﬁ)_24 7]((5'>_24 —+ nOH—Singular y (510)

where
po — v? po — (v —1)? po —v* + v

p= , s=t T gy T (5.11)
p p p

Picking up the residue at the pole at (5.9) restricts the three dimensional integral to a two
dimensional subspace. This is best done by changing the variables of integration to (p, &, v),
and using

dpNdo Ndv=—(20—p—0&)3dpAds ANdp. (5.12)

In these variables the residue at the pole at ¥ = 0 can be calculated easily using standard
procedure. Introducing the variables (i, 73) via

p =T+ 1T, 0 =—T|+1T2, (5.13)

we have near the v = 0 subspace:

7 1 2412 2472 1 T T
- o+ O ~2 ;1 2 1 2 O ~2 — st o+ O ~2 )
p oms + —27_22 0+ 0(0%), o=1i o + 372 04+ 0(0%), wv 5 127_2 —27_22 0+ O(07)

(5.14)
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Then the contribution to the integral from the residue at © = 0 is given by [, {, [§]'°

d2
dmicm(n, Ql; J) ~ T—2T e_F(Tl,Tz) , (515)
2

where

F(r,m) = —TE [0+ Qu(r2 + 72) — T J] + 24Inn(my + i) + 24 In n(—m + im)
2

+121n(2m) — 24 Iny [ — ) —41In{ 2cosh [ ~*
27’2 2’7‘2

| L 26+ 2 (1 Qe 4 72) - )+ it + 472 tanh —*
—In|— — (n T+ 1) —T t— ——— +4mr—tanh — > | .
47 Ty i 2 ! Ty 1(i/279) 2

~ in (p.17) implies equality up to exponentially suppressed contributions. Although we have
not been careful to keep track of the sign, this can be done by carefully following each step as in
[[§. The result is that the 1, 75 integrations run along the imaginary 7, 7o directions through
the saddle points of F'(7{, 73) and the integration measure d*7 represents d(Im)d(Im). Thus
the leading contribution to dero(n, @1, J) is positive.

The integration over 71, 7o can be evaluated using the method of steepest descent. First of
all note that if we ignore all terms except the one inside the first square bracket on the right
hand side of (5-I{), the extremum of F(7, 72) lies at

J [4nQy — J?
- = 1
n 2Q, 2 403 (5:17)

If @1, n and J become large at the same rate then (71, 7;) are of order unity and the first term
in the square bracket in (5.16) dominates over the other term. However since we want to take
different limits we need to keep track of the contribution from the rest of the terms.

1. In the type IIB Cardy limit we have n — oo at fixed values of @)1, and ()1 — % > K. In
this case we get from (5.17) 72 ~ /1 and 71 =y/n. Since 7, is large, we have

24 Inn(m+im) ~ 2mi(n+it), 24lnn(—mn+in) ~ 2mi(—71+it), 24 lnn(QL) ~ —47Ty .
T2
(5.18)

161n , E, B] the analysis was carried out for the four dimensional black hole for which the integrand in (@)

involves 1/®1 instead of n(p)?*/®10. Eqs.(f.13), (F.16) are obtained by multiplying the integrand of [f, f, [[§]
by a factor of n(p)?*, and then picking up the residue at ¥ = 0. This procedure is similar to the ones followed

in [@, @], except that we have included in our analysis the contribution from the center of mass degrees of
freedom of the D1-D5-brane system and removed the contribution due to the fermion zero modes associated
with the hair.
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Substituting this into (.16) we see that in the rest of the terms other than those contained
in the first square bracket the terms linear in 71 and 7, cancel, and at (F.I7) the net
contribution from these terms is small compared to the first term in the square bracket.
Thus the leading contribution to — In d,,;., Will be obtained by evaluating the first term
in the square bracket at the saddle point (B-I7). This gives

lndmicm(n, Ql,J) ~ 7T\/47LQ1 - J2. (519)

In this equation ~ denotes equality up to power suppressed corrections. In the rest of
this section ~ in the expression for d,,;.., will denote corrections suppressed by powers of
n (1) in the type IIB Cardy (type IIA Cardy) limit. In principle we can compute these
power suppressed corrections by systematically carrying out the integration over (71, 7o)
about this saddle point.

If we have Q5 D5-branes instead of one D5-brane with ged(Q1,@s) = 1 then by duality
invariance the result for the index depends on the combination @)1Q)5. Thus the result for

general (05 is obtained by replacing ()1 by @1Q5 in (p-19):
In dmicro(n> Qla QSa J) =Ty 4”@1@5 - J2. (520)

The result is valid for large n with Q@5 — % > K. This result is in perfect agreement
with the result of the direct macroscopic calculation given in (B-10)).

It is worth comparing the result for the index with the result for the degeneracy. For
simplicity we shall sum over all the J values keeping the other charges fixed. In this case
the index grows as exp[m/4n@1Qs]. For computing the degeneracy we shall apply the
Cardy formula. Since the relative motion of the D1-D5 system is described by a super-
conformal field theory whose target space is the symmetric product of (Q1Qs + 1) copies
of K3, we get a central charge of 6(Q1Qs + 1) from the dynamics of these modes. The
center of mass motion in the transverse directions will give a superconformal field theory
with target space R*, and gives a central charge 6. Thus the total central charge of this
system is ¢™° = 6(Q1Qs + 2), both for the left and the right-moving modes. Since the
black hole microstates are identified as the left-moving excitations in this CF'T, we get the
expected growth of degeneracy to be exp[2my/c™iron /6] ~ exp[2m/(Q1Q5 + 2)n]. This
is different from the rate of growth exp[2m/nQ1Qs] of the index.

. In the type ITA Cardy limit we have ()1 — oo at fixed values of n, and n — % > K.

Thus (F.17) gives 5 ~ 1/4/Q; and 71 1/4/Q;. Since (7, + iry) is small, it is natural to

define
1

+o; +10g = ——.
! 2 +7m +im

(5.21)
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At (B.17), 02 = 1/4nQ1 — J?/2n. This is large in the limit we are considering, and hence
we have

24Inn(m +ime) ~ 2wi(oy + i09), 24Ilnn(—7 +im) ~ 2wi(—01 + i03),

) MO+ 0Y) (5.22)
27y 09

Each of these terms is of order 1/@Q; at the saddle point and they do not cancel. Since in
the limit of large @1, the terms inside the first square bracket of (p.16)) and the contribution
from the rest of the terms are both of order \/Q;, it is no longer appropriate to neglect

the rest of the terms. Instead we must evaluate the saddle point by taking into account

?

24 Inn(

the contribution from all the terms. We shall proceed with the ansatz that at the saddle
point oy is of order \/Q1; this will be verified at the end to check the self-consistency of
our approximation. With this assumption we can approximate the n functions by (f.29)
and get the leading terms in F'(7,7) to be:

m m(o? 4 o3
—— [Q1 + n(0} + 03) + 01J] — dmos + mloi +03) .

5.23
p p (5.23)

This has an extremum at

01:—2(717(]_1), 0’2:\/<Q1—4(n<]7i1)) /(n+3), (524)

and at this extremum

P —27T\/(n 4 3) (Q1 _ 4(71‘]7;)) | (5.25)

This gives

Indpicro(n, Q1, J) ~ 27r\/(n +3) <Q1 — Zl(njiil)) , (5.26)

up to power suppressed corrections. Furthermore from (p.24)) we see that oy ~ /@1 in
agreement with our ansatz.

We can write down the result for )5 number of D5-branes with ged{Q,Qs} = 1 by
replacing Q1 by Q1Qs in (520):

In dmicro(na Qla Q5> J) = 277—\/(” + 3) <Q1Q5 - Zl(njii]_)) . (527)

ﬁ > K,. This is again in perfect
agreement with the result of the macroscopic calculation given in (B.29).

This result is valid when Q1Q)5 is large, and n —

To first subleading order in an expansion in powers of 1/n and J? this agreement was

found in [F§].
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5.2 D1-D5-p-KK monopole system in type IIB on K3 x T2

We consider now the same D1-D5-p system analyzed in §b.1 and place it at the center of a
Taub-NUT space. This gives a four dimensional black hole, with the asymptotic circle St of
the Taub-NUT space identified as a new compact direction. Since the black hole breaks 12 of
the 16 supersymmetries of the theory, the relevant index is Bg. The Taub-NUT background
has three effects on the index computation: it first of all converts the angular momentum
2J;, = J to momentum along Sl g, it shifts the momentum along S* by —1 units, and it
gives additional contribution to the ‘partition function’ for the index [f]. We shall denote by

dmicro(n, @1, J) the negative of the sixth helicity trace index for these dyons. Then [, B, B, f]

1

1 1 1
dmmo(n, Ql, J) = (—1>J+1 / dp/ dO’/ d’U 6_2Wi(pn+0Q1+‘h’) .
0 0 0 Pyo(

PR (5.28)

We shall be interested in the behavior of this quantity in the limit of large n at fixed values of
Q1, and J = 0. The analysis proceeds as in §5.1 and we arrive at the result [P, b, [§]:

d2
dmicro(nw Qla J = O) = / 7_—27— e_F(Tl’TZ) ) (529)
2

where

T _ .
F(m,m) = - [n + Q1(7'12 + 7‘22)} +24Inn(m +im) +24 In n(—m + i)
9

+121In(27,) — In L% {26 L 2m (n+ Qi +13)) H :

7I T2

(5.30)

Using 71 — —7; symmetry we can set 71 = 0 at the saddle point. To extract the behavior of
this integral for large n we shall proceed with the ansatz that 7, is large, of order \/n at the
saddle point. In this case we can approximate F'(1; = 0,7) by

F(r=0,7) = —TE [n+ Qi73] — 4rry. (5.31)
D)
This has an extremum at

7= /n)(Qr + 4). (5.32)

Thus at the extremum 7, ~ +/n, satisfying our ansatz. Evaluating F'(0,7) at the extremum
we get

In (dpicro(n, @1, J = 0)) =~ —F (0, ) |extremum = 27/ (Q1 + 4)n . (5.33)
We can in fact find the full asymptotic expansion by replacing the —12In(27)
+In [ﬁ {26 + 27—7; (n+ Qu(7 + 7‘22))” factor in the exponent by a multiplicative factor of
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(275)712 [ﬁ {26 + 2 (n+ Qu(rf + 7'22))}] in the integrand and approximating 7(7) by €277/
as in (B31)). The 7y integral then becomes a gaussian integral which can be evaluated, and the
Ty integral gives sum of Bessel functions. Using appropriate identities among Bessel functions
we can bring the integral to the form

—23/4
dmicro = CO ( - ) [23/2 (271' V n(Ql + 4)) ) (534)

Q1 +4

where Cj is a constant independent of n and [, denotes the standard Bessel function with
imaginary argument. This is precisely the leading term in the Rademacher expansion[0d].
The final answer (p.34) can be readily determined directly using standard facts about the

Rademacher expansion of modular forms and Jacobi forms as follows. Doing the ¢ integral first,
we pick up the @;-th Fourier coffecient of the partition function. Since 1/®y is a Siegel modular
form of weight —10, this Fourier coefficient (7, z) is a weak Jacobi form in two variables of
weight —10 and index (). Furthermore, 1 is known to be the partition function of a (0,4)
SCFT of central charge C = 6Q; + 24. For a Jacobi form of weight —k, the index of the

17

Bessel function and the power of the prefactor in the Rademacher expansion'’ is controlled by

(k+3/2) which in our case is 23/2. The argument of the Bessel function and the prefactor are,
on the other hand, given by 274/Cn/6 which in our case gives 2m1/n(Q + 4).

If we take a system with ()5 D5-branes instead of a single D5-brane with ged(Q1,Q5) = 1
then the Bg index must depend on 1 and ()5 through the duality invariant combination ()1Q)s.
This gives

In (dmicm(n, Ql, Q5, J = O)) ~ 271'\/ (Q1Q5 + 4)71 . (535)

What if we have K KK-monopoles instead of a single KK monopole associated with S1?7 As
long as ged(@Qq,@s) = 1 and ged(n, K) = 1, we can find a duality transformation that maps
this charge vector to the one considered above with n replaced by n K [[[00], [[01]. Thus we have

I dpicro(n, Q1, Qs, K, J = 0) ~ 270/ (Q1Q5 + 4)n K . (5.36)

This is in perfect agreement with the macroscopic result (B.39), computed by describing the

system as a black hole in M-theory on K3 x T3, carrying M5-brane charges and momentum
along a circle.

When the above arithmetic condition on (n, K, @1, Qs) fails to hold there is no duality
transformation that maps this charge vector to the one for which we carried out the analysis.
Nevertheless the answer for By for these more general charge vectors is known [[9, R0, BI)| and,
in the limit of large n, differs from (5.36) by exponentially suppressed terms. Thus we can
continue to use (p-30) for the general dyon.

1"The usual Rademacher expansion of weak Jacobi forms assumes that the Jacobi form is holomorphic. In
our case, turns out to be meromorphic because of the poles in partition function and the Rademacher expansion
is modified but by terms that exponentially subleading [@]
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5.3 Black holes in toroidally compactified type II string theory

In this section we shall generalize the analysis of the previous sections to toroidally compactified
type IIB string theory. Since the D1-D5-p system on 7% x S! describes a 1/8 BPS state in a
theory with 32 unbroken supercharges, the relevant index is Cy defined in (B.3). This index
was computed in [BI]. For simplicity we shall set @5 = 1 and denote the corresponding index
Cs(n,Q1,J) by dmicro(n, Q1,J); at the end we can recover the result for general Q5 satisfying
ged(Q1, Qs5) = 1 by replacing @ by Q1Q5. The result of [BI] for the index may be expressed as

S (1) duicro(n, Qu, J) X0 = (e™ — ™) YT N g (M) el (5.37)

J JEZ s|n,Q1,j

where ¢(A) is defined through the relation:

—1 (2|7 5= a4k — 17) it (5.38)
k,l

Y1(z|7) and n(7) are respectively the odd Jacobi theta function and the Dedekind eta function.
The (—1)7 factor in (5.37) appears from the inclusion of an extra (—1)7 factor in the definition
of the index in [B)]. In the limit when @Qin is large only the s = 1 term is important and we
get

U1 (v]7)?
n(r)s
up to exponentially suppressed corrections. We shall evaluate the integral over 7 and v using

the saddle point method. We proceed with the ansatz that at the saddle point 7 is small and
v ~ 1, and verify this at the end. In this case we can express the integrand in (5.39) as

1 1
dmicro(na Qb J) ~ (_1)J—|—1 / dT / d'U e—27riQ1nT—27riJv (ewiv o 6—7riv)4 (539)
0 0

(_1)J e—27riQ1nT—27riJv (ewiv _ e—wiv)4 e—27riv2/7- e27riv/7- (1 . €—2i7rv/7—)2 (-7:7')2 ) (540)

Extremizing the integrand with respect to v and 7 we find the approximate saddle point in the
rangle 0 < Re(v) < 1 at

1 J
v:§—§7'+---, T=1i/y/4nQ1 — J>+ -, (5.41)
where - -- denote subleading terms. The value of the integrand at this saddle point is

exp[my/4nQy — J2 +---]. (5.42)

This gives the leading contribution to dyicro(n, @1, J). We can recover the results for Q5 # 1
with ged(Q1, Q5) = 1 by replacing @1 by Q1Q5 in (p-49). This gives

In dmicm(n, Ql, Q5, J) >~ T/ 471,@1@5 — J2 . (543)
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This is in perfect agreement with the macroscopic result given in (B.3§) and (B.37). Note that

in the microscopic analysis there is no distinction between type IIB Cardy limit (n — oo) and
type ITA Cardy limit (Q; — o0) since the result depends on the combination Qqn.

If instead of using the index we had computed the absolute degeneracy then the results
would change as follows. The motion of ); D1-branes inside a single D5-brane gives us 40,
bosonic degrees of freedom and their 4¢); fermionic partners. Besides this we have four extra
bosonic modes associated with the D1-D5 center of mass motion and four more bosonic modes
associated with the Wilson lines on the D5-brane along 7. Thus we have eight extra bosonic
modes and their fermionic superpartners. This would give a total contribution of 6(Q; + 2) to
the left-handed central charge, and the logarithm of the degeneracy computed from this would
grow as my/4n(Q; + 2) for J = 0. This is clearly different from (5.43) for J = 0.

Finally consider the four dimensional system containing Q5 D5-branes along 7% x S, @,
D1-branes along S' and K Kaluza-Klein monopoles associated with §1, carrying n units of
momentum along S'. This is U-dual to the Mb5-brane configuration discussed in §8.3. We
shall restrict our analysis to the case gcd{Kn,Q1Qs, KQ1, KQs5,nQ1,nQs5} = 1. The exact
Bi4 index of these states is known, and up to exponentially suppressed corrections, the index
is given by B2, B4, Bj

—Byy ~ —c(4Q:1Q5Kn) , (5.44)

with ¢(A) defined as in (B.37). For large A we have [P9]
AA) ~ (—DA A2 exp(nVA) . (5.45)

Eq.(5.44) now shows that the logarithm of the index — By, grows as 2mv/Q1Q5Kn. This gives
the microscopic prediction for the logarithm of the index of the four dimensional black hole:

lndmicro(n>Ql>Q5aK) ~ 27TV QlQSKn~ (546)

This is in perfect agreement with the macroscopic result given in (B:3§).

6. MSW Analysis for M5-branes on K3 x T2 and T”

In 8B we described a black hole whose microscopic description contains M5-branes wrapped
on a 5-cycle of K3 xT? or T7. However while computing the microscopic index of this system in
§6.9 we used an indirect method by mapping it to a D1-D5-p-KK monopole system in type IIB
string theory. In this section we shall directly compute the microscopic index of the Mb5-brane
system following [[0Z], and show that the results agree with those obtained in §5.2.
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6.1 Mb5-brane on K3 x T3

We begin by recalling the system of Mb5-branes described in §B.3. We consider M-theory on
K3 x St x St x S, and take a brane configuration consisting of @; M5-branes along Cy x
St x St x S, Qs Mb-branes wrapped along Cy x S* x S! x S, and K M5-branes wrapped
along K3 x S, carrying n units of momentum along S*. The Bg index of this configuration can
be calculated following the procedure described in [[03, ]]. In order to follow the notation of
[[0F], we introduce some new notation for the charges, denoting the electric charges by (go, ¢a)
and magnetic charges by (p°,p®). The charge gy corresponds to momentum along the circle
S! while g, corresponds to exciting the self-dual antisymmetric tensor field on the 5-brane,
carrying charges corresponding to wrapping M2-branes on various 2-cycles of K3 x St x Si,.
The magnetic charge p° corresponds to a Kaluza-Klein monopole associated with the circle S*.
The other magnetic charges are associated with an M5-brane wrapping P x S! with P a four
cycle of K3 x St x Si;. For the configuration we are considering, p and g, for a # 0 vanish,
the charges p® can be identified with the triplet ((Q)1, @5, K) and the charge gy can be identified
with n. Using the isomorphism between 4-cycles and 2-forms we can associate with P a 2-form
on M which we shall also denote by P. In this case we can write the magnetic charge vector
in cohomology language, i.e, P = p*S, with 3, € H2(M,Z), M = K3 x S' x S1,.

If we take the limit in which the circle S* has a size much larger than the size of K3x 5% x S
then the low energy limit of the effective theory describing the dynamics of the 5-brane on P x S*
is a two dimensional (0,4) CFT. The BPS states in this theory involve left-moving excitations
and the growth of degeneracy of these states for large momentum is determined in terms of the
left-moving central charge ¢ via the Cardy formula. ¢} in turn is given by NP + iNF
where NP and NI are the numbers of left-handed bosons and fermions respectively. If instead
of the degeneracy we consider the helicity trace index Bg, then the computation proceeds as
follows. The requirement of unbroken supersymmetry forces the right-movers into their ground
state. The (2h)° factor in the trace is soaked up by the 12 fermion zero modes associated with
the broken supersymmetry generators. Thus we are left with the trace over the left-handed
bosonic and fermionic non-zero mode oscillators, weighted by (—1)" where F denotes fermion
number. The growth of this trace for large momentum along S is controlled by a Cardy like
formula, but with an effective central charge

cpuif = Nf — Nf . (6.1)
This follows from the fact that the insertion of (—1)f into the trace does not affect the contribu-
tion to the partition function due to a bosonic oscillator, but the contribution to the partition

function due to a fermion is now given by the inverse of the contribution from a boson. Note
that if N/ = 0 then ¢J%? = ¢, but otherwise they are different.
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Now the numbers of left and right-moving bosons are given by [[[0Z]

Ni = dy(P) + by (P) +3,
N§ = d,(P) + by (P) + 3. (6.2)
Here d, is the dimension the moduli space of deformations of P inside M, 3 accounts for the

center of mass translations and b, , b5, denoting the number of anti-self-dual and self-dual two
forms of P, count the scalar fields arising from the reduction of the 2-form field living on the

5-brane. For fermions we have [[[03,

N[ = 4hio(P),

N, = 4hyo(P)+4. (6.3)
Under the assumption that the Calabi-Yau 3-fold M does not have 1-cycle and that the 4-cycle
P is ample, the authors of [[03] gave a formula for d,(P) and used it to compute the number
of left- and right-moving fermions and bosons. We however have a Calabi-Yau manifold with
two 1-cycles S! and S3,, and hence the formula of [[0Z are not directly applicable. Thus we

need to proceed a little differently following [0]. On a compact Kahler manifold we have the

relations:
bg = b; + b2_ = 2h2,0 + h1,1> b2_ = h171 —1. (64)

Substituting this into (f.9) and (6.3) we get
Ng — N = dp(P) = 2hao(P). (6.5)

Now since supersymmetry acts on the right-movers, the number of right-moving bosons and
fermions must be equal. This gives

0y(P) = 2 (P). (6.6)
This agrees with the result given in [I]. Substituting this into (p.2) and (p-3) we get [E]]]
NE = 2h2,0(P> + hl,l(P) +2= beven(P>7 Ng = 4h’l,O(F)) = bodd(P) ) (67)

where beyen (P) and byqq(P) are the dimensions of the even and odd cohomologies of P. Thus

micro

Crlefy given in (B.1)) is just the Euler character of P. This in turn has a simple expression in
terms of the 2-form P representing the 4-cycle P [I07:

G = x(P) = /M (PANPAPA+PAc(M)). (6.8)

Evaluating this for the particular brane configuration we have, we get

CZiecf; =6K (Q1Q5 + 4) . (69)
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This is in perfect agreement with the formula for the index of the D1-D5-p-KK system given
in (5.30), which in turn is in agreement with the macroscopic result given in (B-34)). If instead
we had calculated the central charge that controls the growth of absolute degeneracy, then we
would get the result

1

: 3
2N5 = U+ SNL =6 (KQiQs +4K +1), (6.10)

micro __ B
CL = NL —+ 9

since N} = 4hyo(P) = 4h1o(M) = 4. As noted in [B9, {0}, (B-10) fails to agree with the
macroscopic result (B.34). Thus we see that the apparent puzzle in [B9, [id] arose from comparing
the microscopic degeneracy with the macroscopic index, and there is no disagreement as long
as we compare the index on both sides.

6.2 M5-brane on 77

We shall now repeat the analysis of §F.1 with K3 replaced by T*, 1.e. directly compute the
microscopic index of the system of M5-branes wrapped on 77 without mapping it to the D1-
D5-p-KK monopole system. Let us label the 77 by coordinates 1-7. In this theory we consider
a configuration with ); Mb5-branes wrapped along 12345 directions, )5 Mb-branes wrapped
along 12367 directions and K Mb-branes wrapped along 14567 directions, carrying momentum
n along the 1-direction. This configuration breaks 28 out of 32 supersymmetries of the theory
and hence the relevant helicity trace index is Byy. Following the analysis of §b.1 we arrive at
the same result (B.§) for the effective central charge ¢'s7¢. However since ¢, vanishes on T,
we get

;= 6QQs K, (6.11)
and hence

lndmicm(n,Ql,Qg),K) = 271'\/ Q1Q5Kn. (612)

This agrees with the result (5.46) computed from the D1-D5-p-KK monopole system, in agree-
ment with the duality symmetry. More importantly for us, it agrees with the macroscopic
prediction (B.3§). If instead of using the effective central charge we had used the actual central
charge computed in the limit of free theory, we would get 7" = 6(Q, Q5K + 3) since we now
have hy o(P) = hyo(M) = 3. This would not agree with the macroscopic result.

7. Why do the Microscopic and Macroscopic Results Agree?

So far we have computed the index of various systems in the macroscopic and the microscopic
sides and shown that they agree. However given that on the macroscopic side the index is
expressed in terms of the coefficients of the Chern-Simons terms in the action, one might hope
that this agreement can be proved in general without having to explicitly compute the index
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in each case. We shall now show that this is indeed the case. This argument is closely related
to the one given in [B(], but takes into account the additional subtlety that arises due to the
failure of the identification R-symmetry group of the brane world-volume theory with the spatial
rotation group. For definiteness we shall present the argument for five dimensional black holes;
the only change in four dimensions will be that we need to drop all references to the SU(2).
part of the spatial rotation group and interprete SU(2)g as the full rotation group.

The argument goes as follows. For black holes of the type considered here, the low energy
dynamics of the system of branes underlying the microscopic description of the black hole is
described by a (0,4) superconformal field theory. We shall divide the system into two parts.
One part which we shall call the regular part has the property that the right-moving SU(2) R-
symmetry current, associated with the (0,4) superconformal symmetry on the world-sheet of the
branes, can be identified with the SU(2)g subgroup of the spatial rotation group. Furthermore
the action of the SU(2), subgroup of the spatial rotation group on the regular part must
correspond to the group generated by the zero modes of a left-moving SU(2) current algebra
on the brane world-sheet theory. The second part does not satisfy this property, and will be
called the irregular part. This in particular will contain the center of mass degrees of freedom
for which the non-chiral scalars are charged under both SU(2);, and SU(2)gr. Clearly this
decomposition is not unique since we can include part of the regular modes into the irregular
part, and we can utilise this freedom to choose the irregular part to our convenience. We can
now express the total contribution to the index as a combination of the contribution from the
two parts as in 8@, treating the regular part in the same way as the modes associated with the
bulk of AdS3 and the irregular part in the same way as the exterior modes. In particular if we
denote by CZ“EC}’}) and kfle‘;l"l? the quantities which control the growth of the microscopic index,
we have the relation analogous to (E.24)):

L= s R = R R 7.
As in §f, we shall denote by ki, kg and cyq, the contribution to SU(2)g, SU(2)., and gravita-
tional anomaly from various fields on the brane world-volume. In ([I]) we have used the fact
that for the regular part the identification of the R-symmetry group with the spatial rotation
group allows us to conclude, as in the case of the bulk modes, that the quantities which control
the growth of the index are the same as the ones which control the growth of degeneracy, that
is the central charge ¢ of the left-moving Virasoro algebra and the anomaly k7 of SU(2).'®
Furthermore we also have the relations:

reg __ ,reg _ reg reg reg
Coraw = Cp° — CR", cp’ =6k (7.2)

18 An indirect evidence for the presence of the irregular part follows from the observations of §ﬁ, §E that in

the microscopic theory the index and degeneracies do not always agree. Since for the regular part the index
and the degeneracy grow in the same manner, the difference can be attributed to the presence of the irregular
part. Later we shall explicitly see examples of irregular parts of the microscopic system.
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Let us denote by k7cre fmicro and ¢™icre the total contribution to the SU(2)r, SU(2)g and the

grav
gravitational anomaly from all the microscopic degrees of freedom. Then we have the relations:

micro __ 1.7€g irreg micro __ 1.T€g irreg micro __ .reg irreg

grav grav grav
Using (T0)-(T.3) we get

micro micro micro micro micro
CLeff = Cgrav + 6kR + Apicros kL,eff = kL + Omicro » (74)
where
) — __plirreg _ irreg irreg ___ pparreg o grreg irreg irreg
Amw“’ - 6kR Cgrav + CL,eff - 6kR (CL Cr ) + CL,eff ’ (75)
__parreg irreg
6micro - kL,eff - ka . (76)

These are the analogs of egs.({.1() and (f.I]]) in the macroscopic theory. We can now proceed
in the same way as in §f] to show that A,,;cro and 6,mero vanish. For this we need to make the
same assumptions on the structure of the irregular modes as we had to do on the structure of
the exterior modes in §f]. Thus we get

czmecfj‘? = c;’”;ffg" + 6k, kzmecfrj? = fero (7.7)
Finally we make use of the observation that the coefficients of the gauge and Lorentz Chern-
Simons terms in the bulk theory are related to the gauge and gravitational anomalies on this
brane configuration [[03, pJ]. This allows us to conclude that ™o kmicro and k7ere must

grav

be equal to czvm? Y™ and k7Y™ — the coefficients of the Lorentz, SU(2)gr and SU(2)

grav

Chern-Simons term in the effective action. Thus from ([E13)) we get

CLeff = CLeff> FLeff = FLeff -

micro macro maicro macro (7 8)

This establishes the equivalence of the macroscopic and the microscopic index.

We shall now explicitly compute the coefficients c;’";’fgo, kmiere and k7 in some examples
by computing the anomalies due to the world-volume fields and show that the results agree
with the explicit microscopic results for the index given in §f and §ff. During this analysis we
shall also identify the irregular modes in various systems. We begin with the D1-D5-p system
on K3 x S'in the type IIB Cardy limit, For simplicity we shall take Qs = 1. Since a D5-brane
wrapped on K3 carries —1 unit of D1-brane charge, we need (@1 + 1) Dl-branes to produce
(1 units of D1-brane charge. In this case the world-volume bosonic degrees of freedom consist
of 4(Q1 + 1) scalars describing D1-brane motion along K3 and 4 scalars describing the overall
motion of the D1-D5-brane system in the transverse direction. The former are all neutral under
the SU(2)L x SU(2)g rotation group in the space transverse to the D1-D5-brane world-volume,

while the latter are in the (2, 2g) representation of SU(2), x SU(2)g. Since these scalars are
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non-chiral they do not contribute to SU(2); x SU(2)r anomaly. In order to determine the
SU(2)r x SU(2)gr quantum numbers of the fermions we can use the (4,4) supersymmetry of
the world-volume theory. Since the left /right moving modes are paired by supercharges which
are doublets of SU(2).,/SU(2)g, the fermionic partners of the 4(¢Q); + 1) neutral scalars consist
of a total of 4(Q; + 1) left-moving fermions in the representation (2, 1z) and 4(Q; + 1) right-
moving fermions in the representation (1,2g). On the other hand the fermionic partners of
the (21, 2g) scalars representing the transverse motion will consist of 4 left-moving fermions in
the representation (17, 2g) and 4 right-moving fermions in the representation (2, 1z). Thus as
far as the SU(2),, group is concerned, we have altogether 4(Q; + 1) left-moving fermions and
4 right-moving fermions belonging to the doublet representation of SU(2),. This gives a total
contribution of @Q; + 1 — 1 = @ to the SU(2);, anomaly coefficient k7. A similar counting
gives k" = ;. On the other hand since the spectrum on the brane is left-right symmetric,
the gravitational anomaly ¢/ vanishes. Eq.([7) now gives ¢f's7? = 6Q; and k"s7? = Q1.
This is in agreement with the microscopic result (5.19).

This analysis also throws some light on the origin of the discrepancy between c?’ecﬁ =60 —
the quantity that controls the growth of the index on the microscopic side, and ¢7"" = (Q;+2)
— the quantity that controls the growth of the microscopic degeneracy at weak coupling. As
argued before, for regular part ¢, = ¢ ¢fs; so the difference must be due to the irregular part. In
this case the irregular part comes from the (2, 2g) scalars representing the transverse motion of
the brane and their fermionic partners. As argued above these include 4 left-moving fermions in
the representation (1;,2g) and 4 right-moving fermions in the representation (2, 1gz). Now the
SU(2) R-symmetry current on the brane world-volume, associated with the (0,4) superconformal
algebra, is right-moving. Hence all the left-moving fermions and bosons must be neutral under
it. In contrast we see that the left-moving components of the (21,2g) scalars and the left-
moving (17,2g) fermions are in the doublet representation of the SU(2)r spatial rotation.
Thus on these fields the SU(2) R-symmetry action cannot be identified as the action of the
SU(2)r spatial rotation, and they must be considered as part of the irregular modes. Indeed

micro

by carefully examining the computation of ¢}"(7? given above one can easily see that it is due to
the presence of these irregular modes that ¢7(77 and ¢7*" differ. Similarly for regular modes
we also require that the spatial SU(2), rotation acts as the zero mode of a left-moving SU(2)
current algebra. Thus all the right-moving regular modes must be neutral under SU(2). This
fails for the right-moving (2, 2g) scalars and (21, 1g) fermions, showing that they must also
be part of the irregular modes.

The explicit computation of ¢ and k7™ for the D1-D5-p system on 7% x S' in the
type IIB Cardy limit is almost identical. In this case the D5-brane on 7% does not carry any
D1-brane charge and we have 4(); bosons associated with the motion of the D1-brane inside
the D5-brane and 4 extra bosons associated with Wilson line on the D5-brane along T*. All of
these are neutral under SU(2), x SU(2)g. We also have four transverse bosons in the (2r,2g)
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representation of the SU(2), x SU(2)g. Thus the total spectrum of bosons is identical to that
in the case of D1-D5-p system on K3 x S!, and due to supersymmetry the fermionic spectrum
is also identical. Thus we still have k™ = Qy, k" = Q1, cjrar® = 0, and eq.([[7]) leads to
cpedy = 6Q1, in agreement with the microscopic result for the index given in (p.43).

For the D1-D5-p system in the type IIA Cardy limit the underlying microscopic system is

the system of Q5 NS5-branes and (); fundamental strings. The dynamics of this system is not

micro k,mzcro and k,mzcro

well understood and hence we do not have an independent calculation of ¢,

from the computation of anomalies in the microscopic theory. Nevertheless the macroscopic
results for these quantities, as well as the exact results for the microscopic index derived in the
dual type IIB frame, tells us what these anomaly coefficients should be.

A similar analysis can be carried out for the MSW string [i(] analyzed in §f. We consider
M-theory on M x S* where M can be either K3 x T2 or T and take an M5-brane wrapped on a
four cycle P in M times S'. According to Egs.([.2)-(6.1) the number of left- and right-moving
bosons and fermions are given by:

NP = 2hgo(P) + hi1(P) + 2, N{ = 4hyo(P),
NE = 4hyo(P) + 4, N, = 4hyo(P) +4. (7.9)

This gives the gravitational anomaly coefficient in the microscopic theory to be

Coran’ = N + %Nf ~ Ng — %Nf{ = h11(P) = 4hoo(P) + 2h10(P) — 4. (7.10)
Next we turn to the computation of A% — the anomaly in the spatial rotation symmetry.'?
The chiral bosons associated with the component of the 2-form field along the M5-brane world-
volume are neutral under SU(2) and hence cannot contribute to the SU(2) anomaly. The
non-chiral bosons of course also do not contribute to the SU(2) anomaly. The N} right-
moving fermions are doublets of SU(2) and give a contribution of Nk /4 to k%" whereas the
N left-moving fermions are also doublets of SU(2) and give a contribution of —N}'/4. Thus
the net contribution to k%"’ is given by

- 1
ke = 4(NR N{) = hoo(P) — hio(P) + 1. (7.11)
Using (7-7), ((-I0) and ([[.I1)) we get
T = e + 6k = hi(P) + 2hgo(P) — 4hio(P) +2 = x(P). (7.12)

This agrees with the microscopic result for ¢7"7¢ given in (B§).

9Note that in this case there is no SU(2), symmetry since we are considering a black hole in 341 dimensions.
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Note that ([[.12) does not agree with the microscopic central charge
- 1
szcro = NE + §Nf = hl’l(P) + 2h2,0(P) + 2h1,0(P) + 2. (713)

Again the difference can be traced to the contribution from the irregular modes. For example
there are 4h o(P) left-moving fermions which transform as doublets of the spatial SU(2) rotation
group. Since the left-moving fermions must be neutral under the right-moving R-symmetry
current, on these fermions the R-symmetry and spatial rotation act differently. Thus they must
be considered as part of the irregular modes.
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A. Chern-Simons Contribution from Higher Derivative Terms

In this section we describe, following [B], how to compute the gauge and Lorentz Chern-
Simons terms in AdSs; by starting with a six dimensional action and dimensionally reducing it
on AdSs x S3. The six dimensional theory will be assumed to have metric and a 2-form field
B as the fundamental fields, but inclusion of other fields in the discussion is straightforward.
We shall denote by H = dB the 3-form field strength. First consider a theory with manifestly
gauge and general coordinate invariant Lagrangian density given as a function of H, g,,, the
Riemann tensor and covariant derivatives of these fields. Dimensional reduction of the metric
on 5% produces SO(4) gauge fields. When all the fluctuating fields around the AdS; x S®
background, including these SO(4) gauge fields, are set to zero then the background 3-form
field on AdS; x S? takes the form:

H3:%€3+b*€3, (Al)

where €3 is the unit 3-sphere volume form, normalized so that f g3 €3 = 1672, * denotes Hodge
dual in six dimensions and a and b are two constants. We shall normalize the 2-form field so
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that | Hj is quantized in integer units. The quantized electric and magnetic charges @ and P
associated with this background are now defined through the equations:

Hs = 47° P, (A.2)
S3

/ga (%) N % (A.3)

where Sy is the action obtained by integrating the gauge and diffeomorphism invariant la-
grangian density over AdS; x S3. Eq.(A&X]) gives

and?°

a=P. (A.4)

b is related to () but this relation depends on the form of the action S.
Let us now consider the effect of switching on the fields describing fluctuations around

the AdSs; x S3 background. Dimensional reduction of the metric on S* produces a set of
SO(4) = SU(2) x SU(2)g gauge fields Ar, Ag on AdS;. When these gauge fields are non-zero

we need to replace (A7) by [BY]
Hs = 47%a (e3(A) — x3(A)) +bx*es. (A.5)

Here e3(A) is 3-form on AdS; x S* defined in [BY] and has the property that [, es = 1 and
that when the SO(4) gauge fields are set to zero e3 reduces to e3/16m%. y3 is the Chern-Simons
term for the SO(4) gauge fields:

X3 = g (W(Ar) —w(AL)) , (A.6)

R
82
w(A)=Tr (A/\dA+§A/\A/\A) . (A7)

The trace is taken over the fundamental representation of SU(2). Note that since [, e3 = 1 and
X3 is directed along the AdSs; component, the background (A-F) continues to carry magnetic
charge P = a defined via (R-J). Now one can show that e3(A) is invariant under SO(4) gauge
transformation [Bg], but due to the presence of x3 in (A7), H; is no longer gauge invariant.
Under an SO(4) gauge transformation denoted by §, we have

§Hy = —4rm*ady, = —47* P dxs, (A.8)

20While regarding 659/dH3 as a 3-form, we need to lower the indices using the ¢ tensor as (6So/dH3),, =
(650/6(H3)apy)eapyuvp-
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where x5 is defined via the equation:

dxs = dxz. (A.9)
The variation of the action under this gauge transformaion is then given by
0S50
§Sy = 4m*P [ d — . Al
So ™ / X2 A < 5 Hg) (A.10)

Now since dx» has components only along AdSs3, we must pick the component of (%) along

S3. Using (B23) we now get?!

0S5y = 21 PQ dxo, (A.11)
AdS3
which is the gauge variation of a three dimensional Chern-Simons terms
PQ
27 PQ X3 = — [—w(AL) +w(AR)] . (A.12)
AdS3 T JAdS;

Using the standard relation between the coefficients of the Chern-Simons terms and the level
(Khutk kbulk) of the current algebra in the boundary theory [B0, [04, [09] we get from (A-13)

k't = kp = PQ. (A.13)

For the case of D1-D5 system in type IIB Cardy limit it follows from (B.2), (B:4), (A3) and
(A3) that we have P = @5, @ = @1 and hence PQ = Q1Qs. In the type IIA Cardy limit the
system is an NS5-brane fundamental string system and we have P = @5, @ = n and hence
PQ = Qsn.

So far we have assumed that the six dimensional Lagrangian density is gauge and diffeomor-
phism invariant. Let us now discuss the effect of the Chern-Simons term in the six dimensional
action of the form

Hg/\wv(f‘) ﬁ

— = wv(l") /\Hg, (A14)
3273 AdS5x S3 323 AdS3xS3

Scs =
where I is the six-dimensional spin connection, and w,(I') is the Lorentz Chern-Simons term
2
we(T) =Tr, <F/\dF+ gFAF/\F) , (A.15)

the trace being taken over the vector representation of SO(6). For field configurations of the
type we are considering we have

wU(F) = WU(FAdSS) + WU(A), (A16)

*'We are using the sign convention that [, oo Baass A Ags = ([gs Ass)([ 445, Badss) for 3-forms A and
B on S? and AdS; respectively.
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where I 445, denotes the spin connection in AdSs; and A denotes the SO(4) gauge fields associ-
ated with the compactification on S3. After integrating over S® the Chern-Simons term (A:19)
reduces to

% P /Ads3 [wy (T adss) + wu(A)] . (A.17)

Now the gauge field A can be decomposed into SU(2),, and SU(2)g parts A, and Ag, and the
trace over the vector representation of SO(4) will give twice the trace over the fundamental
representation of SU(2), and SU(2)g. This enables us to write ([AI7) as

/AdS |ig—7TwU(FAdSS) + i—ﬂ'w(AR) + i—ﬂw(AL) , (A18>

where in computing w(Agy) = Try (AL g ANdAL g+ 2A R NAL R A ALR) We compute the
trace in the fundamental representation. Using the standard relation between the Chern-Simons
coefficients and the central charges [p(], [04], [0F] we now get the following one loop corrections
to the various central charges:
Adr =128P,  AKR™* =8P, AR = —pBP. (A.19)
Finally we shall briefly discuss possible effect of Chern-Simons terms on the definition of the
charges. For this we note first that the correct definition of the electric and magnetic charges
is via eq.(B32) and (A3), but with the S* located at infinity instead of in the intermediate
AdS5 region. Thus the question is whether the value of the integrals change as we move the
integration surface from the intermediate AdSs region to asymptotic infinity. Since Hs = dB,
the integral (JA.9) does not change. On the other hand due to the presence of the Chern-Simons
term in the action we have from the equation of motion of B,

0S50
d|{ — Tr(RAR A.20
(F) 7oA R, (A.20)
where R is the six dimensional Riemann tensor. Since the topology of the region bounded by
asymptotic infinity and the intermediate AdS; geometry has the form of IR x S3, integral of
Tr(R A R) over this region vanishes. Thus we see that the presence of the Chern-Simons term
does not change the definition of the electric charge either.?

22Note that if instead we place the system at the center of Taub-NUT space to get a four dimensional black
hole]7 then the near horizon geometry and hence the entropy remains the same, but the charge of the system
receives an additional contribution from the Chern-Simons term [@] This can be seen in two ways; by integrating
Tr(R A R) between the horizon and the asymptotic space, or by dimensionally reducing the action on a circle
so that the Chern-Simons term takes a covariant form and the contribution of this term to the charge can be
calculated using the entropy function formalism.
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B. Asymptotic Expansion

In this appendix we shall analyze carefully the behavior of the index associated with the D1-
D5-p system in various limits and check that possible corrections to the results derived in §f
are indeed subleading. Our starting point is the integral representation for the index

1 1 1
dmicro(nu le J) = (_1>J+1 / dpl / dal / dvl e—27ri(pn+oQ1+JU) f(/), g, U) 3 (Bl)
0 0 0

where (p,0,v) = (p1 + ipa, 01 + 109, v1 + ivg) are three complex parameters and f(p,o,v) =
(e — e7™)Ap(p)?* /D1o(p, o,v) for five dimensional black holes and 1/®19(p, o, v) for four
dimensional black holes. While carrying out this integral we fix (po, 09, v2) at

pr= A ’

1 n
, Og=AN————r, vy=-AN——m————
VIO, — 2 0 anQ, -2 2\/4nQ; — J2
where A is a large positive number. For four dimensional black holes this choice gives the
degeneracy of single centered black holes [I7]).

(B.2)

We now consider a family of contours

pr= A ’

1 n
P S R G
VAo, — 2 Q-2 2\/4nQ; — J2

where A is a real number. At A = A we recover the original contour. But we now deform

(B.3)

the contour by reducing A. As long as the contour does not cross any pole of the integrand
the value of the integral remains unchanged. Now the poles of the integrand are given by the
divisors of the function ®1¢(p, o, v) which are the surfaces

na(po —v?) + ju+noc —mip+my =0, (B.4)
where j is any odd integer and the 5 integers (mq,ms, ny1, no, j) are constrained to satisfy
j2 + 4(m1n1 + m2n2) —1=0. (B5)

no can be chosen to be non-negative. The intersection of the codimension 3 subspace given in
(B-3) and the codimension 2 subspace given in (B.4)) describes a one dimensional curve in the
six dimensional space spanned by (p,o,v). For fixed (p2, 09, v9) it is an easy exercise to find
this curve in the (py, o1, v1) space and we arrive at the result:

Ty 1 mq ]
pr=————19p2|01—— | —20 (v —5—
Ny 02 Mo 2n9
p my\” J 2 v m J 1
2 1 2 1 9
Bly -2 A R L) == —2).
09 (Ul N9 ) + (Ul 2712) 09 (Ul N9 ) (Ul 2712) 471,% (p20'2 U2)
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The last equation describes an ellipse in the (o, v;) plane for (psoy —v3) < (4n3)~2 and has no
solution otherwise. Using (B-3) the condition for the absence of a solution to (B.§) reduces to

A > 1 . (B.7)
12
This shows that as long as A is larger then 1, none of the poles of the integrand intersect the
contour and hence the integral will have the same value for all A > 1. We shall however deform
the contour to A = % + € where € is a small positive number. During the deformation of A from
A to % + € the contour crosses the no = 1 poles. The contribution from the residue at this pole
was analyzed in §5.23 Our goal will be to analyze the contribution from the contour at A = %+e
and argue that this integral is subdominant compared to the residue at the ny = 1 pole.
Our strategy will be to estimate each term appearing in the integrand separately and then
multiply the results to estimate the integrand. First consider the exponential factor in (B.).
For the choice of (ps, 02, v2) given in (B-J) with A = £ + ¢, this factor is given by

exp [(% + e) m/4nQ — Jz] , (B.8)
up to a phase.

Next consider the (€™ — e~ ™)%y(p)?* factor that is present in the five dimensional index.
Since for (B-3) | — e7™@|* ~ 1 and |n(p)| < 1, we can drop this while estimating an upper
bound for the integrand. This will allow us to study the corrections to the four and the five
dimensional degeneracies together since they differ only due to the presence of the n(p)?* factor.
This will also have the advantage that for the five dimensional black holes once we estimate
the correction term in the type IIB Cardy limit, we can get the result for the type ITA Cardy
limit by exchanging n and (), since the only term in the integral that breaks this symmetry is
the n(p)* factor.

Finally we turn to an estimate of 1/®;5. On the subspace (B.J) paoe — v2 is finite, but in
the two limits we are interested in, either ps or oy becomes small. We do not have a way to
find a direct estimate of ®1q in this region; so we shall use an intuitive reasoning. First of all
note that if A = 1/ny then the equations (B.3), (B.§) have a unique solution:

i ny TEHTE M j . T

[ — — V= — —

27127'2 N9 ’ 27127'2 N9 2712 27127'2 )

J [4nQ, — J?
— =, == < B.1
n 2Q, e 4Q3% (B.10)

23For ny = 1 we can use the three shift symmetries p — p+1,0 — o+l andv — v+1toset ny = my = mo =0
and j = 1 [.

(B.9)

where
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This represents the unique point on the surface (B.3) with A = 1/n, which also lies on the
divisor (B4). Thus 1/®,o diverges there. For \ = niz + € the surface (B.3) does not intersect
the divisor (B4), but for sufficiently small € the two subspaces come close near a point near
(B9). Since 1/®;, has a double pole near the divisor (B.4) we expect that as we move along
(B3), 1/|®10| reaches a local maximum near the point of closest approach to the divisor (B-4),
which in turn is close to (B.J). Assuming that the dominant contribution to the integral comes
from near this local maximum, we can estimate 1/®;y by its behavior near this divisor. This
was analyzed in [53, b4]. We shall here follow the notation of [54] where the analysis was carried
out for general value of ny. The analysis uses the fact that all the divisors lie in an orbit of
Sp(2,7) under which the ®q is a Siegel modular form of weight 10. At the diagonal divisor
v =0,
1 1 1

m T T 4n2 2 124 (p) 24 (o) +0@") . (B.11)

One then finds the explicit Sp(2,Z) transformation which maps the divisor v = 0 to the generic
divisor (B.4), and then uses the modular property of the function ®4 to find the residue at the

generic pole. Thus near such a generic pole we shall have
1 1
[@10(p,0,v)[ |vg n**(po) n*(00)]

where (po, 09, vg) are related to (p,o,v) by this specific Sp(2,Z) transformation. In writing
(BI3) we have ignored some additional factors related to the modular weight of ®¢, but they

~ exp [~21n o] — 24 1n [ (po)n(o0) ] - (B.12)

do not affect the estimate to leading order. The dominant contribution to the exponent comes
from the —241n |n(po)n(oo)| terms. Thus our goal will be to estimate this term. For sufficiently
small € we can estimate this by evaluating py and o at the point (B.9). This in turn requires
knowing the Sp(2, Z) transformation that relates (p, o, v) to (po, 0o, Vo).

Before we proceed we need to define some number theoretic quantities. First, define r =
ged(ng, ng), so we can write r = kony — kyng for some kq, ko € Z. Since (BF) is satisfied, r
must divide (52 — 1)/4. We can then uniquely decompose r = riry into a product of relatively
prime factors, where 7 divides (j+1)/2 and 75 divides (j — 1)/2. In this convention the result

of [B4] for (po, 0p) are

.2 _ 2 _
po =061 + (=71 +im), 09 =0+ (11 +im), (B.13)
No U

where 0; and &9 are constants determined in terms of m;, n;, j. In the type IIB Cardy limit we
get from (B.10) that 7 is large. In this limit we get

27 2T dn@Qq — J?
|77_24(p0)17_24(00)| ~ exp —(r% + T%)TQ ~ exp —(7’% + 7’%) 7621 5 ) (B.14)
No na 4@1
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Let us now focus on the case ny = 2 since our goal is to estimate the integrand on the contour
A =1+ e Since 77y is a divisor of na, for ny = 2 we have r + r3 < 5. Thus (B:I4) gives

_ —
7o) S exp [5m | T (B.15)

The result for the type IIA Cardy limit may be obtained by exchanging ¢, and n in (B.I59):

_ < 4n@)y —
24((70)|Ne:><;p 57 T

Combining (B-§) with (BI5), (B-IG) we arrive at the following estimates for the correction
Odmicro 10 the Index dyicro at A = % + €. In the type IIB Cardy limit we have

( ) VAnQ, — J2+5,/%] (B.17)

( )\/m+5 L] (B.18)

Comparing (B.17) with the result given in (5.19) we see that the correction terms are smaller

than (p.19) if
J2
\/Ql — 2@1 Q1 — — (B.19)

—24(

(B.16)

1™ (po)n

<
5 dmicro exp

and in the type ITA Cardy limit

<
5 dmicro exp

This holds for Q1 > 5. Slmllarly comparing ( Wlth the result given in (f.26) we see that
the correction terms are subdominant in the reglon.
J? 1 J? 5 J?
N(l——oo) > -+ — - —. B.20
\/(n+ (- wim@) 7 3y e (8.20)
This can be easily satisfied for example by requiring
J2
n——>717. B.21
10, > (B.21)

Neither of these are the best bounds possible, particularly since we have dropped the (n(p))*!
factor from the integrand in estimating the correction term. However this analysis shows the
existence of the constants K, K, appearing in the definition of the type IIB and type IIA
Cardy limits beyond which our result for the asymptotic behavior of the microscopic index
holds. Finally the leading contribution to the four dimensional index in the n — oo limit, given
in (B.33), is always larger than the five dimensional index (5.19) in the type IIB Cardy limit,
and hence will dominate over the correction given in (B.I7) when Q; > 5.
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