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Abstract

Single centered supersymmetric black holes in four dimensions have spherically symmetric

horizon and hence carry zero angular momentum. This leads to a specific sign of the helicity

trace index associated with these black holes. Since the latter are given by the Fourier expansion

coefficients of appropriate meromorphic modular forms of Sp(2, ZZ) or its subgroup, we are led

to a specific prediction for the signs of a subset of these Fourier coefficients which represent

contributions from single centered black holes only. We explicitly test these predictions for the

modular forms which compute the index of quarter BPS black holes in heterotic string theory

on T 6, as well as in ZZN CHL models for N = 2, 3, 5, 7.
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1 Introduction

Classical single centered black holes in four dimensions are spherically symmetric and hence

carry zero angular momentum. Since the black hole breaks part of the supersymmetry of the

theory, supersymmetric excitations around the black hole include a set of fermion zero modes,

and hence quantization of these fermion zero modes impart certain angular momentum on the

black hole. However these fermion zero modes live outside the horizon, and the horizon of

the black hole continues to remain spherically symmetric as a consequence of supersymmetry.

Given the folklore that black holes describe average properties of an ensemble one might tend

to conclude that spherical symmetry implies zero average angular momentum carried by the

black hole, – with the individual members of the ensemble carrying different angular momen-

tum. However using AdS2/CFT1 correspondence it has been argued in [1] that a spherically

symmetric horizon implies that the black hole represents a microcanonical ensemble of states

all of which carry zero angular momentum. Thus the only source of angular momentum carried

by the black hole is from the fermion zero modes associated with broken supersymmetry. This

in turn implies that the helicity trace index of the black hole, defined as [2, 3]

B2n =
1

(2n)!
Tr((−1)F (2h)2n) , (1.1)

is given by (−1)n dhor where dhor is the degeneracy of the ensemble represented by the horizon of

the black hole. Here F denotes fermion number, h denotes the third component of the angular

momentum carried by the black hole in its rest frame, the trace is taken over all states carrying

a given set of charges, and 4n is the number of supersymmetries broken by the black hole,

which is equal to the number of fermion zero modes on the black hole. The result quoted above

follows from the fact that quantization of each pair of fermion zero modes produces a pair of
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states with h = ±1
4
and hence Tr{(−1)F (2h)} = Tr{e2πih(2h)} = i. Thus 2n pairs of fermion

zero modes will give a contribution to B2n of the form i2n = (−1)n. The factor of 1/(2n)!

in the definition of B2n cancels against a combinatoric factor that appears when we write 2h

as the sum of the contribution from individual pairs of fermion zero modes and carry out a

binomial expansion of (2h)2n, picking up the term that contains one factor of 2h for each pair

of fermion zero modes. Once the trace of the fermion zero modes has been performed, we just

need to evaluate Tr(−1)F over the rest of the degrees of freedom, and the horizon contribution

to this is the same as the degeneracy dhor since (−1)F = 1 for all the states represented by the

horizon [1, 4].

We shall focus on quarter BPS black holes in N = 4 supersymmetric string theories which

break 12 out of 16 supersymmetries and hence the relevant index is B6. The analysis given

above predicts that B6 = −dhor. dhor can be calculated in principle using quantum entropy

function formalism [5], but for our argument the only relevant fact about dhor will be that being

a degeneracy it must be positive. This in turn implies that B6 must be negative [1].

There are several effects which could potentially destroy this prediction.

1. For given set of charges and a given point in the moduli space of the theory the index

may receive contribution not only from single centered black holes but also multi-centered

black holes. Since multi-centered black holes can carry angular momentum from the fields

living outside the black hole horizons [6–10] there is no longer any guarantee that the

contribution to B6 from these black holes will be negative. This problem can however

be easily avoided by working in a chamber of the moduli space bounded by the walls of

marginal stability that contains the attractor point. In this chamber only single centered

black holes contribute to the index [11, 12] and our prediction for the sign of B6 holds.1

We shall refer to this chamber of the moduli space as the attractor chamber.

2. Another source of breakdown of our argument is the possible existence of additional

supersymmetry preserving fermionic excitations outside the horizon (hair modes [14,15])

besides the fermionic zero modes associated with broken supersymmetry. Quantization

of these modes would give both (−1)F odd and (−1)F even states, and this could turn

1In a subspace of the moduli space where a multi-centered configuration can be embedded in an N = 2
supersymmetric string theory, there exist a family of solutions known as scaling solutions [10] which continue
to exist even at the attractor point. At a generic point in the moduli space of N = 4 supersymmetric string
theory we do not expect these solutions to exist since they cannot be embedded in an N = 2 supersymmetric
theory where they have been constructed [13].
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a positive contribution to Tr(−1)F from the horizon into a negaive contribution. This

can in principle be avoided by going to a duality frame in which all the charges carried

by the black hole correspond to some kind of brane charges rather than momenta along

compact circles. Since the hair modes described in [14,15] come from excitations carrying

momentum along some compact directions, this type of hair modes can be avoided if the

black hole does not carry any net momentum along any of the internal directions.

3. The final source of breakdown of our argument arises from the possibility that in a

given charge sector the contribution to the index could come from horizonless smooth

solutions besides the black hole. Indeed a wide class of smooth solutions have been

constructed in supergravity theories (see e.g. [16] and references therein). If such solutions

exist then their contribution to the index must be added to that from the black hole

[17] and this could potentially change a negative B6 of the black hole into a positive

value. However it is not obvious that these smooth solutions, even if they exist at a

generic point in the moduli space, would contribute to the index. Typically in N = 4

supersmmetric theories it is difficult to construct classical solutions which contribute to

the index except in very special cases. As an example one can mention multi-centered

black holes or two centered black holes at least one of whose centers is quarter BPS.

These exist as supersymmetric classical solutions in a subspace of the moduli space of

the theory where the solution can be embedded in an N = 2 supersymmetric theory.

But their contribution to B6 must vanish as can be seen from the fact that one can

find a continuous path in the moduli space of N = 4 supersymmetric string theory

that does not hit any wall of marginal stability and yet reaches a point where these

solutions do not exist [18]. Physically the vanishing of the index can be understood as

due to the difficulty in aligning the supersymmetries of different parts of the solution

[13, 19]. The essential point is that since a quarter BPS solution breaks 12 out of 16

supersymmetries, each part of the solution aligns its 4 unbroken supersymmetries in

a certain way in the space of 16 supersymmetries. In order that the full solution is

supersymmetric the supersymmetries of different parts must be compatible, ı.e. the four

unbroken supersymmetries of different parts must align appropriately inside the space of

16 supersymmetries. This is a stronger requirement in N = 4 supersymmetric theory

than in N = 2 supersymmetric theory since in the latter case the full theory has 8

supersymmetries and hence the four unbroken supersymmetries of different parts need to
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be aligned inside the space of 8 supersymmetries.2 Due to this reason having a classical

solution that contributes to the B6 index in N = 4 supersymmetric theories is more

unlikey than in its N = 2 counterpart, and we shall assume that such solutions do not

exist for the range of charges for which a single centered black hole solution exists.

So we shall proceed with the assumption that there exists some duality frame in which only

single centered black hole solution – whose only hair are the fermion zero modes associated

with broken supersymmetry – contributes to B6 in the attractor chamber. As a result B6 must

be negative. We shall now try to test this prediction using known microscopic results.

2 The result for the index

The index B6 has been calculated in a wide class of N = 4 supersymmetric string theories for

a wide class of charges [20–39] (see [40] for a recent survey of the results). It is convenient to

label the charges carried by the state by a pair of (electric, magnetic) charge vectors (Q,P ) in

a frame where we represent the theory as (an orbifold of) heterotic string theory compactified

on T 6. We shall denote by Q2, P 2 and Q ·P the continuous T-duality invariant inner products

of Q and P in this duality frame. Then in the ZZN CHL models [41,42], obtained by taking an

appropriate ZZN quotient of heterotic string theory on T 6, the result for B6 takes the form:3

B6( ~Q, ~P ) =
1

N
(−1)Q·P

∫

C

dρ dσ dv e−πi(NρQ2+σP 2/N+2vQ·P ) 1

Φ̃(ρ, σ, v)
, (2.1)

where for any given N , Φ̃(ρ, σ, v) is a known function, transforming as a modular form of certain

weight under a subgroup of Sp(2, ZZ) [43–52], and C is a three real dimensional subspace of the

three complex dimensional space labelled by (ρ = ρ1 + iρ2, σ = σ1 + iσ2, v = v1 + iv2). Eq.(2.1)

encompasses the N = 1 case that describes heterotic string theory on T 6. The contour C takes

the form:

ρ2 = M1, σ2 = M2, v2 = −M3,

0 ≤ ρ1 ≤ 1, 0 ≤ σ1 ≤ N, 0 ≤ v1 ≤ 1 , (2.2)

2This argument can be made more precise in terms of alignment of central charges, – the central charge in
an N = 2 supersymmetric theory is a two dimensional real vector while in an N = 4 supersymmetric theory it
is a six dimensional real vector. Clearly it is easier to align several two dimensional vectors compared to several
six dimensional vectors [13].

3Note that this result does not hold for all dyons but a subset of dyons belonging to specific duality orbits
in these theories.
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Figure 1: A schematic diagram representing the chamber R in the upper half τ plane, bounded
by the walls of marginal stability, for ZZN orbifolds of heterotic string theory on T 6 for N =
1, 2, 3. The shapes of the circles and the slopes of the straight lines bordering the chamber
depend on the charges and other asymptotic moduli, but the vertices are universal.

where M1, M2 and M3 are large but fixed real numbers. The choice of (M1,M2,M3) is governed

by the chamber in the moduli space in which we want to compute the index [53, 54] – there

being a one to one correspondence between the chambers in the moduli space separated by

walls of marginal stability and the domains in the (M1,M2,M3) space separated by poles. The

jump in B6 across a wall of marginal stability is given by the residue of the integrand at the

pole that separates the corresponding domains, and is in accordance with the wall crossing

formula [11, 55].

For large charges the contribution from single centered black holes is the dominant contri-

bution in all chambers [13, 18] and hence the argument presented in §1 will imply that B6 is

negative in all the chambers [1]. This has been explicitly verified by analyzing the behaviour

of (2.1) for large charges [33]. Our goal is to verify the prediction for the sign of B6 for finite

charges, and for this we must work in the attractor chamber. There are several approaches we

can follow. For a given (Q,P ) we can determine the values of (M1,M2,M3) when the moduli

are at the attractor point, – a general algorithm for finding this has been given in [11]. One

can also try to first define a generating function for single centered black holes starting from

(2.1) and use it to extract the B6 indices for single centered black holes [56]. We shall follow

a third approach which we find most practical. Fig. 1 shows the shapes of the some of the

walls of marginal stability in the heterotic axion-dilaton moduli space labelled by the complex

field τ taking values in the upper half plane, for fixed values of the other moduli [53]. We shall

denote by R a specific chamber that lies just to the right of the wall that connects 0 to i∞ in

the τ plane, determine the constraints on the charges that makes the attractor point lie inside
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the chamber R, and verify that B6 in R is negative for all these charges. Since for heterotic

string theory on T 6, and for ZZ2 and ZZ3 CHL models, every chamber can be mapped to R by

an S-duality transformation [53], this would prove that for all single centered black holes B6

is negative, provided the charges carried by the black hole fall on the duality orbit for which

(2.1) holds. Whether there exist duality transformations mapping every chamber to R is not

known for the ZZ5 and ZZ7 CHL models. Nevertheless the negativity of B6 for single centered

dyons in R is a necessary condition which can be tested even in these models.

The choice of (M1,M2,M3) corresponding to the chamber R is [30, 53]:

M1,M2 >> 0, M3 << 0, |M3| << M1,M2 . (2.3)

In practical terms this means that to extract B6 in this chamber we first expand 1/Φ̃ in powers

of e2πiρ and e2πiσ and then expand each term in this expansion in powers of e−2πiv. This is best

done using the product representation of Φ̃. For the ZZN CHL models with N = 1, 2, 3, 5, 7 we

have [26, 28, 30]

Φ̃(ρ, σ, v)−1 = e−2πi(ρ+σ/N+v)

×
1∏

b=0

N−1∏

r=0

∏

k∈zz+ r
N

,l∈zz,j∈2zz+b

k,l≥0,j<0 for k=l=0

(1− exp (2πi(kσ + lρ+ jv)))−
∑N−1

s=0 e−2πisl/Nc
(r,s)
b (4kl−j2) ,

(2.4)

where the coefficients c
(r,s)
b (u) are defined as follows [26]. First we define4

F (0,0)(τ, z) =
8

N
A(τ, z) ,

F (0,s)(τ, z) =
8

N(N + 1)
A(τ, z)−

2

N + 1
B(τ, z)EN(τ) for 1 ≤ s ≤ (N − 1) ,

F (r,rk)(τ, z) =
8

N(N + 1)
A(τ, z) +

2

N(N + 1)
EN

(
τ + k

N

)
B(τ, z) ,

for 1 ≤ r ≤ (N − 1), 0 ≤ k ≤ (N − 1) ,

(2.5)

where

A(τ, z) =

[
ϑ2(τ, z)

2

ϑ2(τ, 0)2
+

ϑ3(τ, z)
2

ϑ3(τ, 0)2
+

ϑ4(τ, z)
2

ϑ4(τ, 0)2

]
, (2.6)

4A different but equivalent description of the functions F (r,s) can be derived from the general result of [38].
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B(τ, z) = η(τ)−6ϑ1(τ, z)
2 , (2.7)

and

EN(τ) =
12i

π(N − 1)
∂τ [ln η(τ)− ln η(Nτ)] = 1 +

24

N − 1

∑

n1,n2≥1
n1 6=0modN

n1e
2πin1n2τ . (2.8)

Then c
(r,s)
b (u) is defined via the expansion:

F (r,s)(τ, z) ≡
1∑

b=0

∑

j∈2zz+b,n∈zz/N
c
(r,s)
b (4n− j2)e2πinτ+2πijz . (2.9)

For terms in (2.4) with either l or k non-zero, the procedure of expansion is straightforward;

we simply expand the
(
1− e2πi(kσ+lρ+jv)

)−∑N−1
s=0 e−2πisl/N c

(r,s)
b (4kl−j2)

term in a power series in

e2πi(kσ+lρ+jv). Special care needs to be taken for the the k = l = 0 term which, together with

the e−2πiv factor in the front, is given by e−2πiv/(1 − e−2πiv)2. The contour prescripton for

chamber R, corresponding to the choice of Mi given in (2.3), requires us to expand this factor

in powers of e−2πiv. This gives a completely well defined prescription for expanding 1/Φ̃ and

computing B6 in the chamber R.

3 Kinematic constraints on the charges

Now that we have described the algorithm for calculating B6 in the chamber R, the next

question we need to ask is: for which charges (Q,P ) the attractor point in the moduli space lies

insideR? Once we determine these charges, our previous argument will tell us that B6(Q,P ) for

these charges, computed inside the chamber R, must be negative. There are various approaches

to answer this question, we shall describe one of them.

We begin with the N = 1 model, ı.e. heterotic string theory on T 6. First consider the wall

that connects 0 to i∞. For reasons which will become clear soon, we shall assign an orientation

to this line which we take to be directed away from 0 and towards the point at i∞. A necessary

condition that the attractor point lies inside R is that it lies to the right of the wall going from

0 to i∞. Now if we denote by M the symmetric SO(6, 22) matrix valued moduli of the string

theory (SO(6, 22) will be replaced by SO(6, r) for some other integer r for CHL models), by L

the O(6, 22) invariant matrix of signature (+6−22), and by

QR =
1

2
(M + L)Q, PR =

1

2
(M + L)P, (3.1)
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then at the attractor point

Q2
R = Q2, P 2

R = P 2, QR.PR = Q.P , (3.2)

τ1 =
Q.P

P 2
, τ2 =

√
Q2P 2 − (Q.P )2

P 2
. (3.3)

On the other hand the wall of marginal stability joining 0 and i∞ is described by the equation

[53]

τ1 +
QR.PR√

Q2
RP

2
R − (QR.PR)2

τ2 = 0 . (3.4)

If we choose M and τ2 to be at their attractor values given in (3.2), (3.3) then the value of τ1

computed from (3.4) is given by −Q.P/P 2. Thus in order that the attractor point lies to the

right of this wall, we need τ1 given in (3.3) to be larger than −Q.P/P 2, ı.e. have Q.P/P 2 ≥ 0.5

Since we shall always consider the range in which Q2, P 2 > 0, (Q.P )2 < Q2P 2 (non-singular

supersymmetric black holes exist only in this range) we must have

Q.P ≥ 0 . (3.5)

Since the equations for the other walls of R are also known [53, 57] we can use similar

method to determine the condition on the charges which will ensure that the attractor point

lies inside R. But we shall now describe a simpler method for determining this using S-duality

transformation that acts simultaneously on the charges and the τ -moduli as

τ ′ =
aτ + b

cτ + d
,

(
Q′

P ′

)
=

(
a b
c d

)(
Q
P

)
,

(
a b
c d

)
∈ SL(2, ZZ) . (3.6)

If we consider the wall from 0 to 1 in the τ -plane then the SL(2, ZZ) transformation by(
1 0
−1 1

)
maps it to a wall from 0 to i∞ in the τ ′ plane. Now in order that the attrac-

tor point corresponding to the charge (Q,P ) in the τ plane lies inside R it must lie to the

left of the wall from 0 to 1. Thus in the τ ′ plane the attractor point for (Q′, P ′) must lie to

the left of the wall from 0 to i∞. From our previous analysis this requires Q′.P ′ ≤ 0. Now

from (3.6) we have (Q′ = Q,P ′ = P − Q) and hence the condition Q′.P ′ ≤ 0 translates to

Q.P ≤ Q2. Similarly mapping the wall from 1 to i∞ to the wall from 0 to i∞ by the transfor-

mation τ ′ = τ − 1 we get the third condition Q.P ≤ P 2. Together with these three conditions

we must add the conditions Q2, P 2, {Q2P 2 − (Q.P )2} > 0 since classical black hole solutions

5For Q.P = 0 a two centered black hole carrying charges (Q, 0) and (0, P ) may exist, but its contribution to
the index, being proportional to Q.P , vanishes. For this reason we have used ≥ instead of >.
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with non-singular event horizon exists only when this condition is satisfied. Thus we would

conclude the for heterotic string theory on T 6 the B6 index in R must be negative when all of

the following conditions are satisfied:

Q.P ≥ 0, Q.P ≤ Q2, Q.P ≤ P 2, Q2, P 2, {Q2P 2 − (Q.P )2} > 0 . (3.7)

Similar analysis can be performed for the CHL models obtained by taking the ZZN orbifold

of heterotic string theory on T 6. Let us first consider the case of N = 2 for which the region R

is bounded by four walls shown in Fig.1. In this case the S-duality group is Γ1(2). As before

the wall connecting 0 and i∞ gives the condition Q.P ≥ 0. Now the other walls from 0 to

1/2, 1 to 1/2 and 1 to i∞ can all be mapped to the wall from 0 to i∞ with the help of Γ1(2)

transfrmations6 (
1 0
−2 1

)
,

(
−1 1
−2 1

)
,

(
1 −1
0 1

)
, (3.8)

respectively. This can be used to derive the following conditions on (Q,P ) for the attractor

point to lie inside the region R:

Q.P ≥ 0, Q.P ≤ 2Q2, Q.P ≤ P 2, 3Q.P ≤ 2Q2 + P 2, Q2, P 2, {Q2P 2 − (Q.P )2} > 0 .

(3.9)

The same analysis can be repeated for N = 3. The walls from 0 to 1/3, 1/2 to 1/3, 1/2 to 2/3,

1 to 2/3 and 1 to i∞ are mapped to the wall from 0 to i∞ via the Γ1(3) transformations

(
1 0
−3 1

)
,

(
−2 1
−3 1

)
,

(
−2 1
3 −2

)
,

(
1 −1
3 −2

)
,

(
1 −1
1 0

)
. (3.10)

The conditions on (Q,P ) for the attractor point to lie inside the region R is

Q.P ≥ 0, Q.P ≤ 3Q2, Q.P ≤ P 2, 5Q.P ≤ 6Q2 + P 2, 5Q.P ≤ 3Q2 + 2P 2,

7Q.P ≤ 6Q2 + 2P 2, Q2, P 2, {Q2P 2 − (Q.P )2} > 0 . (3.11)

To summarize, our argument of §1 predicts that B6 computed in the region R must be

negative for (Q2, P 2, Q.P ) satisfying the constraints (3.7) for heterotic string theory on T 6,

6Even though we have used Γ1(N) transformations to map the walls bordering R to the wall connecting 0
and i∞, this is not necessary. The walls are results of kinematical constraints and transform covariantly under
any SL(2, R) transformation. Thus given a wall connecting a point τ = a to τ = b with b > a, we can use the

SL(2, R) transformaton (b− a)−1/2

(
1 −a

−1 b

)
to map it to the wall connecting 0 and i∞. The constraint on

(Q,P ) in order that the point lies above the wall connecting p and q now translates to (Q− aP ).(bP −Q) ≤ 0.
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(Q2, P 2)\Q.P -2 0 1 2 3 4

(2,2) -209304 50064 25353 648 327 0

(2,4) -2023536 1127472 561576 50064 8376 -648

(4,4) -16620544 32861184 18458000 3859456 561576 12800

(2,6) -15493728 16491600 8533821 1127472 130329 -15600

(4,6) -53249700 632078672 392427528 110910300 18458000 1127472

(6,6) 2857656828 16193130552 11232685725 4173501828 920577636 110910300

Table 1: Some results for −B6 in heterotic string theory on T 6 for different values of Q2, P 2

and Q.P . The boldfaced entries are for charges which satisfy the constraints (3.7). We have
given the results only for Q2 ≤ P 2 since the results are symmetric under Q2 ↔ P 2. Note
that some of the entries are the same; this is a consequence of a ZZ3 subgroup of S-duality
transformation τ → 1− τ−1 which maps R to R but changes the charges as (Q2, P 2, Q · P ) →
(P 2 +Q2 − 2Q.P,Q2, Q2 −Q.P ).

the constraints (3.9) for the ZZ2 CHL model, and the constraints (3.11) for the ZZ3 CHL

model. Since various mathematical properties of Φ̃ have been analyzed in [12,58–61], it will be

interesting to see if these predictions follow from these properties.

For N > 3 the number of walls bordering R becomes infinite [53] and so there are infinite

number of constraints. The wall from 0 to i∞ still gives the constraint Q.P ≥ 0. Thus if we

can show, for the range of (Q2, P 2) for which we carry out the analysis, that B6 is negative for

all Q.P satisfying

Q.P ≥ 0, (Q.P )2 < Q2P 2, Q2, P 2 > 0, (3.12)

then it will imply that B6 is negative for single centered dyons in this range of charges. Note

that this test is sufficient but not necessary; if we find a positive B6 value for some charges

satisfying (3.12) then it may still be consistent with our result if the charges fail to satisfy any

of the other conditions associated with the other walls of R.
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(Q2, P 2)\Q.P -2 0 1 2 3 4

(1,2) -5410 2164 360 -2 0 0

(1,4) - 26464 18944 4352 160 0 0

(2,4) -124160 198144 67008 6912 64 0

(1,6) -114524 125860 36024 2164 52 0

(2,6) -473088 1580672 671744 101376 4352 -16

(3,6) - 779104 15219528 7997655 1738664 149226 2164

Table 2: Some results for −B6 in the ZZ2 CHL model for different values of Q2, P 2 and Q.P .
The boldfaced entries are for charges which satisfy the constraints (3.9). We have only given

the results for 2Q2 ≤ P 2, since due to a symmetry of Φ̃ the B6 index has a symmetry under
P 2 ↔ 2Q2 [28].

(Q2, P 2)\Q.P -2 0 1 2 3 4

(2/3,2) - 1458 540 27 0 0 0

(2/3,4) - 5616 3294 378 0 0 0

(4/3,4) -21496 23008 4912 136 0 0

(2/3,6) - 18900 16200 2646 54 0 0

(4/3,6) - 70524 128706 37422 2484 6 0

(2,6) - 208584 820404 318267 37818 801 0

Table 3: Some results for −B6 in the ZZ3 CHL model for different values of Q2, P 2 and Q.P .
The boldfaced entries are for charges which satisfy the constraints (3.11). We have only given

the results for 3Q2 ≤ P 2, since due to a symmetry of Φ̃ the B6 index has a symmetry under
P 2 ↔ 3Q2 [28].
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(Q2, P 2)\Q.P -2 0 1 2 3 4

(2/5,2) - 392 100 1 0 0 0

(2/5,4) - 1120 460 20 0 0 0

(4/5,4) - 3200 2280 240 0 0 0

(2/5,6) - 2940 1720 125 0 0 0

(4/5,6) - 8380 9180 1460 20 0 0

(6/5,6) - 21660 39960 9345 390 0 0

Table 4: Some results for −B6 in the ZZ5 CHL model for different values of Q2, P 2 and Q.P .
The boldfaced entries are for charges which satisfy the constraints (3.12). We have only given

the results for 5Q2 ≤ P 2, since due to a symmetry of Φ̃ the B6 index has a symmetry under
P 2 ↔ 5Q2 [28].

(Q2, P 2)\Q.P -2 0 1 2 3 4

(2/7,2) - 162 36 0 0 0 0

(2/7,4) - 396 138 3 0 0 0

(4/7,4) - 968 564 40 0 0 0

(2/7,6) - 918 444 18 0 0 0

(4/7,6) - 2244 1916 210 0 0 0

(6/7,6) - 5184 6892 1152 18 0 0

Table 5: Some results for −B6 in the ZZ7 CHL model for different values of Q2, P 2 and Q.P .
The boldfaced entries are for charges which satisfy the constraints (3.12). We have only given

the results for 7Q2 ≤ P 2, since due to a symmetry of Φ̃ the B6 index has a symmetry under
P 2 ↔ 7Q2 [28].
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4 Test of positivity of the index

As already mentioned, the negativity of B6 has been proved explicitly in the limit when all the

charges become large keeping the ratios Q.P/P 2, Q2/P 2 fixed [33], not only for heterotic string

theory on T 6 but all N = 4 supersymmetric string theories where the answer for B6 is known.

In this section we shall try to test this for finite charges. Note that due to the (−1)Q.P factor

in (2.1), negativity of B6 means positive (negative) sign for the Fourier coefficients of 1/Φ̃ for

odd (even) powers of e2πiv.

We begin with heterotic string theory on T 6. The results for −B6 in R for a range of values

of Q2, P 2 and Q.P have been shown in table 1. Clearly the entries have positive and negative

values. But for charges which satisfy the restrictions given in (3.7) we have represented the

entries by bold faced letters, and as we can see, all the bold faced entries are manifestly positive.

We have in fact checked that up to all values of Q2 and P 2 up to 10 and all values of Q.P , the

positivity of −B6 inside R holds whenever (3.7) holds.

Similar analysis is possible for ZZN CHL models. We have checked the positivity of −B6 for

several charges in these models and the result is again in accordance with the general prediction

from the black hole side. Some of the results are shown in tables 2, 3, 4 and 5. We have in

fact tested the required positivity of −B6 for all values of NQ2, P 2 ≤ 10 and all allowed values

of Q.P . We have not gone to very high values of the charges, but it is more important to test

this for low charges since we already know that the prediction holds in the large charge limit.

In all the tables we have specifically displayed the results for Q ·P = −2 sector to emphasize

the need for focussing on single centered black holes for the positivity test of −B6. Due to a

v → −v symmetry of Φ̃ the index for negative Q.P values in the chamber R can be related

to the index for positive Q.P values in the chamber L lying to the left of the wall from 0 to

i∞. Thus the results for Q.P = −2 given in the tables can be reinterpreted as the results for

Q.P = 2 in the chamber L, and the difference between Q.P = −2 and the Q.P = 2 entries

in the tables can be accounted for by the wall crossing formula across the wall connecting 0

to i∞. As we move from R to L across this wall new two centered configurations of a pair of

half-BPS states, carrying charges (Q, 0) and (0, P ), appear. As can be seen from the tables,

the negative contribution to −B6 from these states overwhelm the positive contribution from

single centered black holes for low values of the charges.
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