arXiv:1103.1887v1 [hep-th] 9 Mar 2011

Preprint typeset in JHEP style - HYPER VERSION

A fixed point formula for the index of
multi-centered N = 2 black holes

Jan Manschot!, Boris Pioline?, Ashoke Sen®

L Institut de Physique Théorique, CEA Saclay, CNRS-URA 2306,

91191 Gif sur Yvette, France

2 Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589,
Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex 05, France

3 Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211019, India

e-mail: jan.manschot@cea.fr, pioline@lpthe. jussieu.fr, sen@hri.res.in

ABSTRACT: We propose a formula for computing the (moduli-dependent) contribution of
multi-centered solutions to the total BPS index in terms of the (moduli-independent) indices
associated to single-centered solutions. The main tool in our analysis is the computation
of the refined index Tr(—y)?’* of configurational degrees of freedom of multi-centered BPS
black hole solutions in N' = 2 supergravity by localization methods. When the charges
carried by the centers do not allow for scaling solutions (i.e. solutions where a subset
of the centers can come arbitrarily close to each other), the phase space of classical BPS
solutions is compact and the refined index localizes to a finite set of isolated fixed points
under rotations, corresponding to collinear solutions. When the charges allow for scaling
solutions, the phase space is non-compact but appears to admit a compactification with finite
volume and additional non-isolated fixed points. We give a prescription for determining the
contributions of these fixed submanifolds by means of a ‘minimal modification hypothesis’,
which we prove in the special case of dipole halo configurations.
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1. Introduction and summary

In NV = 2 supersymmetric string vacua, BPS states in suitable large charge limits can be
represented as multi-centered black hole solutions of N' = 2, D = 4 supergravity [1, 2, 3]. To
compute the moduli-dependent index Q(v;t) associated with such configurations, one needs
to combine two independent sets of data.

The first part of the data are the indices 2°(v) associated with single centered BPS black
holes carrying electromagnetic charges 7. In the supergravity approximation, the index is
given by the exponential of the Bekenstein-Hawking entropy [4, 5], and is independent of the
asymptotic values of the scalar fields ¢ (within a given basin of attraction) by virtue of the
attractor phenomenon [6, 7, 8]. Effects of classical higher derivative corrections to the low
energy effective action can be incorporated by using Wald’s modification of the Bekenstein-
Hawking formula [9, 10, 11, 12], while quantum corrections to the index can in principle be
computed using the quantum entropy function formalism [13, 14, 15].

The second part of the data is the index of the supersymmetric quantum mechanics de-
scribing multi-centered black hole configurations. In this description, the centers are treated
as pointlike, entropy-less particles carrying (in general, mutually non-local) electromagnetic
charges ay, ..., ay,, and kept in equilibrium by balance of forces [1]. The space of solutions of
this mechanical problem is a 2(n — 1)-dimensional symplectic space M, with an hamiltonian
action of the rotation group SO(3), which can be quantized by the standard procedure of
geometric quantization [2, 16]. Unlike the first part of the data, the index of these con-
figurational degrees of freedom, which we denote by g({a;};t), depends sensitively on the
asymptotic values of the scalar fields t. In our previous work [17], reviewed in [18], we showed
how to compute the jump of this index across a wall of marginal stability by localization
with respect to a U(1) subgroup of SO(3) corresponding to rotations along the z-axis. In
this work, we extend the techniques of [17] to compute the configurational index away from
the walls of marginal stability, and propose a formula to combine this result with the indices
associated to single-centered black holes in order to compute the total BPS index.

The approach of [17] was based on several simplifying facts. First it was shown that
since identical centers do not interact, one can replace the Bose-Fermi statistics carried by
the centers by Boltzmann statistics, provided the index Q(«;) carried by the centers — or
more generally the ‘refined index’! Qc¢(ay,y) = Tr'(—y)?%, where J3 denotes the generator

'Here Tr’ denotes the trace over states carrying a fixed set of charges after removing the contribution
from the fermion zero modes associated with broken supersymmetry generators. While Tr’(—y)?/s is in
general not a protected index away from y = 1 (except in rigid N/ = 2 field theories), it is essential to



of rotations along the z axis and y is a real parameter — is replaced by an effective rational
index Quer(, y) [19, 20, 17, 21]. Thus, even when some of the a;’s are identical, one may still
treat the centers as distinguishable. Second, it was assumed that the ‘refined index’ of this
quantum mechanical problem is related to the equivariant volume (i.e. the integral of y2’3
over M,,) by a simple overall multiplicative renormalization required for consistency with
angular momentum quantization. Third, it was important that, in the case of loosely bound
constituents relevant for wall-crossing, the phase space M,, was compact and the action of J3
had only isolated fixed points, corresponding to collinear multi-centered solutions along the z-
axis. Under these circumstances, the localization theorem of Duistermaat and Heckman [22]
can be used to express the configurational index g({«;},t), or rather its refined generalization
g({ai};y,t), as a finite sum over the fixed points of J3. This result was found to match the
prediction of the known wall crossing formulae from supergravity [23, 24| and mathematics
[19, 20] in all cases where it was tested. As we shall show in this work, provided M,, is
compact and the fixed points are isolated, the multiplicative renormalisation postulated in
[17] can in fact be derived from the Atiyah-Bott Lefschetz fixed point theorem [25, 26, 35, 34],
a quantum-mechanical version of the Duistermaat-Heckman formula.

In this paper, we show that the same approach can be used to find the spectrum of
multi-centered black hole solutions at a generic point in the moduli space, given the indices
associated to single-centered black holes. There are however some important differences:

1. The set of collinear multi-centered solutions must not only satisfy the BPS equilibrium
conditions of [1], but also lead to a regular metric. This condition was automatically
satisfied for loosely bound states near a wall of marginal stability, but needs to be
checked when computing the index at a generic point in moduli space and for generic
charges. This condition is expected to rule out all but finitely many decompositions of
the total charge v into a sum » " | a; [23]. It can also rule out certain connected com-
ponents of M,, even when the decomposition v = >""" | «; is allowed, see §3.3.1 for an
example. A necessary (but not sufficient) condition is that the collinear configuration
be regular along the z-axis.

2. For some range of charges carried by the centers, the phase space includes ‘scaling
solutions’, i.e. regions where the relative distances between a subset (or all) the centers
can become arbitrarily small [2, 27, 28, 23, 29]. As a result, the space M,, is non-
compact, and the sum over regular collinear configurations fails to produce a sensible
answer. In particular, it does not have a finite limit as y — 1, and cannot be interpreted
as a sum of characters of SO(3) (nor of its double cover SU(2)). However, despite being
non-compact, M, turns out to have a finite symplectic volume, suggesting that it may
admit a compactification. In the case of ‘dipole halo’ configurations, introduced in
[16, 29], it is straightforward to construct the compactification explicitly. The resulting
space M,, still admits an hamiltonian action of SO(3), but the fixed points of J; are
no longer isolated, in particular there is a codimension 4 submanifold of fixed points

allow for y # 1, at least as the intermediate steps, in order for localization methods to apply. It would be
interesting to understand the dependence of Tr’(—y)2’s on the string coupling and other hypermultiplet
fields.



where the total angular momentum vanishes, and which parametrizes scaling solutions.
We shall assume that M,, always admits a compactification M,,, although we shall
not require the details of its construction.

3. Due to the fact that the action of J; on M,, has non-isolated fixed points, the equiv-
ariant volume and equivariant index are no longer related by a simple multiplicative
renormalization. While the ‘refined index’ could still be in principle computed by lo-
calization using the Atiyah-Bott theorem, this would require a complete understanding
of the compactification M,, which we have not achieved so far. Instead, we propose a
‘minimal modification hypothesis’ which determines the contribution of these scaling
regions from that of the regular, well-separated collinear fixed points. Our prescrip-
tion amounts to requiring that scaling solutions contribute with the smallest possible
angular momentum compatible with the final result being a character of SU(2). This
prescription is motivated by the fact that classically (ignoring angular momentum
quantization), scaling solutions carry zero total angular momentum. While we do not
have a proof of this hypothesis, we shall demonstrate that it is consistent with wall-
crossing and with the split attractor flow conjecture [23]. For a special class of ‘dipole
halo’ configurations, where the moduli space of multi-centered solutions is fully under-
stood, we shall verify that our prescription agrees with the geometric quantization of
M, performed in [16, 29], for an arbitrary number of centers.

We shall now summarize our proposal. We denote by Q7 .(a,y) the index Tr'(—y)?’s

carried by a single centered black hole with charge o (here, Tr’ denotes the trace after
factoring out the bosonic and fermionic zero modes). Since single centered black holes carry
zero angular momentum[30, 31], we expect that Q5. (a,y) is independent of y. However we
shall not make use of this information in our analysis, and proceed with general Q5. («,y).
Let us denote by Quet(7,7) = Tr’(—y)?’* the total contribution to the index from single and
multi-centered black hole solutions carrying total charge v, and by

—1
_ y Y
ref 7 y Z m ! “m ref( /m Yy ) (11)

m|y

First consider the case when there are no scaling solutions. Then our proposal for Qref(’y, Y)
is:
ref '7 y Z Aut {az gref(Oéh sy Qg y) Qref(ah ) Q1ref(057l7 y) (12)

{a;€l}
i ap=y

Here I' is the charge lattice, Aut({«;}) is the symmetry factor appropriate for Maxwell-
Boltzmann statistics,? and Q2 («a,y) is the ‘rational refined index’, related to the refined
index by

-1
_ y Y
ref Q y Zm ! ref(a/m Yy ) (13)

mla

2Aut({a;}) is defined as the order of the subgroup of the permutation group of n elements which preserves
the ordered set (a,..., ), for a fixed (arbitrary) choice of ordering. Thus if the set {a;} consists of
copies of (1, 2 copies of 5 etc. then [Aut({a;})| =[], 7x!-



The coefficient g is the refined index of the configurational degrees of freedom of n-centered
BPS black hole solutions. By localization, it evaluates to

gref(oq, e, O y> — (_1)Zi<j a;j+n—1 <y . yfl)lfn Z s(p) yZKj a;j signfzj—z;) ’ (1_4)

where a;; = (o, a;) is the (Dirac-Schwinger-Zwanziger) symplectic inner product between
a; and o, the sum over p represents sum over all collinear solutions to the BPS equilibrium
conditions (2.24), (2.10), and s(p) takes value +1 as determined from eq.(2.29). As mentioned
above, the set of possible decompositions of v that contributes to the sum (1.2) is expected
to be finite [23]. We can recover the integer invariant . from the rational invariant Qyor
using the inverse formula [17]

et (1,9) = Y p(m)ym ™y —y )™ —y™) " Ques(y/m, y™) (1.5)

m|y

where p(m) is the Mobius function. Expressing this in terms of Q3. using (1.2), (1.3) we
can arrive at an expression of the form

Qrer (7, y) = Z G{Bi}, {mi};y) HQif(ﬁiaymi)a (1.6)

{B;€T},{m; €L}
m; 21,57 mgBi=y

for some function GG. This expresses the total index in terms of the indices of single centered
solutions. Of course, the sum in (1.6) also includes the contribution from single centered
black holes given by Q3.(v,y).

In the presence of scaling solutions, (1.6) cannot be the full answer for the following
reason. If we follow the procedure outlined above ignoring the presence of scaling solu-
tions, and denote the corresponding functions G by Ge,, we shall find that the functions
Geon({Bi}, {m;};y) are not Laurent polynomials in y, i.e. finite linear combinations of y*™
with integer m. Hence the corresponding expression (1.6) cannot be interpreted as the gen-
erating function of the spectrum of a quantum mechanical system with quantized angular
momentum. Qur prescription for taking into account the effect of scaling solutions is to
modify (1.6) to

Dty ) = > Gean({Bi}, {mitiw) [ (580 0™) + Qucating (B, y™)) » (1.7)

{Bi€T},{m; €2} 7
m;>1, %0 my B =

where Qgcating (@0, y) is given by

Qscaling<047 y) = Z H<{6z}7 {mz}a y) H Qfef(ﬁia ymi) 9 (18)
(en) ) i

for some function H({3;}, {m.};y). To determine H we substitute (1.8) into (1.7) to express
the latter equation as

Qet(vy) = Y GBI} {mi}sy) H Qe (B y™) (1.9)

{B;€T},{m;cz}
mi>1, 35 miBi=



for some functions G. We fix H by requiring that G({f;}, {m.};y) be a Laurent polynomial
in y. The ambiguity of adding to H a Laurent polynomial is resolved by using the minimal

I and

modification hypothesis, which requires that H must be symmetric under y — y~
vanish as y — co. An iterative procedure for determining the functions H and hence G has
been described in §5.

One advantage of our construction compared to the split attractor flow conjecture of
[23] is that it allows us to compute the contributions from scaling solutions. Since the
latter are usually stable across walls of marginal stability (as illustrated for three centers
in §2.3 and Fig.1 below), their contributions cannot be obtained from attractor flow trees.
This advantage is however mitigated by the fact that we do not know how to determine
a priort which decompositions v = > «; lead to regular multi-centered solutions, except
by checking (2.10) numerically. It should also be emphasized that in cases where the BPS
spectrum is described by some quiver quantum mechanics with non-zero superpotential,
the configurational degrees of freedom carried by scaling solutions do not exhaust, by far
[29], the exponentially large number of states present on the Higgs branch [23]. These Higgs
branch states have macroscopic entropy and should be included as part of the single-centered
configurations counted by Q2 (7).

The rest of the paper is organized as follows. In §2, we review the structure of the
phase space of multi-centered BPS solutions in N' = 2 supergravity, establish the finiteness
of its symplectic volume, and compute the classical and quantum refined index (also known
as equivariant volume and equivariant index) by localization. In §3, we investigate several
examples of three-centered solutions in a simple one-modulus supergravity, paying attention
to the regularity condition (2.10) and to the contributions of scaling solutions. In §4 we
describe our proposal for the index of multi-centered black hole configuration when there are
no scaling solutions, and show the consistency of this formula with wall crossing and with
the split attractor flow conjecture. In §5 we describe our proposal for modifying the result
of §4 in the presence of scaling solutions. In §6 we prove the validity of our prescription
in the solvable case of dipole halo configurations. Further technical details are relegated to
appendices: in appendix A we provide a detailed analysis of certain sign rules which govern
the contributions of collinear fixed points. In appendix B we prove that in the absence of
scaling solutions the right hand side of (1.4) can be expressed as a Laurent polynomial in
y. Explicit computations of the equivariant volume and index for dipole halos with 4 and 5
centers can be found in appendix C.

2. The phase space of multi-centered configurations

We begin by reviewing some relevant properties of supersymmetric multi-centered black hole
solutions in N = 2 supergravity. Such solutions fall into the stationary metric ansatz

ds® = —e?¥ (dt + A)? + e 2V di* (2.1)

where the scale function U, the Kaluza-Klein one-form A and the vector multiplet scalars
t* a=1,...,n, depend on the coordinate ¥ on R3.



2.1 Equilibrium and regularity conditions

Let T" denote the charge lattice. Locally in the moduli space of the theory a charge vector
a € T may be split into its electric and magnetic components (p*,qs). Given two such
vectors o and o we can define a symplectic product

(a,ay = gap™ — dyp*. (2.2)

For n centers located at 771, ..., 7,, carrying electromagnetic charges aq, ..., a,, in the charge
lattice I', the values of the vector multiplet scalars and of the scale factor U are obtained by
solving the “attractor equations” [1].

27V Im [y ((19( B+Z lﬁ — ¢ = arg Z,, (2.3)

where Y (%) = —e®/2(XA(t), Fi(t)) is the symplectic section afforded by the special geometry
of the vector multiplet moduli space, K = —Ini(FyX* — FAX?"), and Z, is the central charge

Zy = (1,Y (t)) (2.4)

associated to the total charge v = a;+- - -+ a,. Y (fx) denotes the value of Y at infinity. The
constant vector 5 on the right-hand side of (2.3) is determined in terms of the asymptotic
values of the moduli at infinity 2 by

B=—=2Im[e Y (ts)] . (2.5)

The locations 7; are subject to the equilibrium conditions (also known as integrability equa-
tions) [1]

— =G, 26

= 2.6

o
where r;; = |75 — 7|, ay; = (0, @), and the real constants
ci=2Im(e?Z,,) (2.7)

depend on the the asymptotic values of the moduli. Since ¢ = arg Z,, these constants satisfy
>, ¢ = 0. Finally, A is given by

*3dA:< Z|T_ﬁ.,6+z|r_ﬁ|> (2.8)

where 3 denotes Hodge dual in 3 flat dimensions. The conditions (2.6) guarantee the exis-

tence of a Kaluza-Klein connection A such that the above configuration is a supersymmetric
solution of the equations of motion.

It follows from (2.3) that the scale factor U is given by evaluating the Bekenstein-
Hawking entropy function S(v) on the harmonic function appearing on the right-hand side

of (2.3) [3],
e 20 (5 + Z ) (2.9)



In order for the solution to be physical one must require that the scale factor be everywhere
real and positive [23]3,

S + ﬁ >0, Vre R3 , 2.10

ST o

where 7; is the location of the i-th center. This is necessary to ensure that there exists a
regular solution to the attractor equations (2.3) at all points in R3.

2.2 Symplectic structure and equivariant volume

Leaving aside the regularity condition (2.10) for now, let us denote by M, ({a;;};{c;}) the
space of solutions {7, ..., 7, } to the equilibrium conditions (2.6), modulo overall translations
of the centers. M,, is a (possibly disconnected) 2n — 2-dimensional submanifold of R*" ™3\ A,
where A is the locus in R3™3 where two or more of the centers 7; coincide. R3*"73\A is
equipped with the closed two-form*

1 ededre Adrlre, 1 .
i<j i<J

where 0,5, ¢;; are the polar angles parametrizing the direction of the vector 7;; with respect
to a fixed unit vector u, for example @ = (0,0, 1). For generic values of ¢;, the restriction of
w to M, is non-degenerate®, and provides M,, with a symplectic structure [16].

By construction, the symplectic form w is invariant under SO(3) rotations. The moment
map associated to infinitesimal rotations is the angular momentum

Lo S P

2%
i<j

where the second equality follows by using (2.6). After some further algebraic manipulations,
the norm of J can be written as [16]

. = 1
j=VJ2= —ZZCZ- Ty (2.13)

i,]
i#]

3This condition is somewhat too strong, since it rules out the ’empty hole’ configurations representing
e.g. the BPS states which become massless at the conifold point [1]. A more accurate requirement would be
that regions with S < 0 are shielded by a shell where the moduli lie at singular conifold-type points, such
that the regions inside the shell can be replaced by flat regions with constant values of the scalars. To avoid
this complication we shall restrict to charges «; which satisfy D(«;) > 0, where D is the quartic polynomial
such that S = v/D/ in the large volume limit.

4Our normalisation differs by a factor of two from the one used in [16]. This ensures that w/2 has integer
periods, see §2.5.

5A notable exception occurs when ¢; = 0, where the space of solutions admits an exact dilation symmetry
r;j — €r;j, along which the two-form w becomes degenerate. This case corresponds to multi-centered
solutions asymptotic to AdS, x S2, and will become relevant in the analysis of scaling solutions below.



For n > 3 centers, the orbits of the SO(3) action are generically 3-dimensional, except on
the two-dimensional subspace M,,.con C M,, corresponding to collinear configurations. Re-
moving this locus, the quotient of M,,\\M,,.con by the SO(3) action is a (2n — 5)-dimensional
Poisson manifold M,,. Let J = j (M,,) C RT be the range® spanned by the total angular
momentum j on the space of configurations M,,. The symplectic leaves of M,, are the hy-
persurfaces Mn( j) with fixed total angular momentum j € J. If one so wishes, one may
parametrize M,, by 2n — 5 relative distances 7;; (suitably chosen among the n(n — 1)/2 radii
ri;, and subject to triangle inequalities), and the leaves M,,(j) by their projectivization.
Using Euler angle coordinates 6, ¢, on SO(3), the symplectic form on M, may then be
decomposed into

w=7jsinfdd Adep —dj A (do + cosfdg) + @ , (2.14)

where & is the symplectic form on the symplectic leaf M(5). Eq. (2.14) follows by requir-
ing the invariance of w under the vector fields 0,, 0y, (0, — cos00,)/sin6, generalizing the
argument in [16] to an arbitrary number of centers.

Our goal in this work will be to determine the ‘refined index’ Tr'(—y)?” of the super-
symmetric quantum mechanics of n-centered BPS configurations, where J3 is the angular
momentum operator along the z-axis.” We defer to §2.5 a detailed discussion of this quan-
tum mechanics, and focus for now on the classical version of the refined index, the phase
space integral [17]

_ (_1)ZL<J @it 2vJs , n—1
gclassical({oﬁ};y> = (271')”_1(71 — 1)' & w s (215)

where throughout this paper, we denote
v=lny . (2.16)

Such integrals over a symplectic manifold of the exponential of the moment map of some
Hamiltonian action are well studied in the mathematical literature under the name of ‘equiv-
ariant volume’ (see e.g. [32] for a survey). The convergence of the integral (2.15) will be
addressed in §2.3. The sign (—1)%i<i %"+ in (2.15) is inserted for reasons which will be-
come clear in §2.5. Leaving aside this sign, the equivariant volume (2.15) is expected to be
a good approximation to Tr’y*’ in the classical limit, where all symplectic products «;; are
scaled to infinity and y — 1 (this last condition ensuring that the function y>’* varies slowly
on the phase space).
Using the description of M,, as SO(3) x M, we can rewrite the integral (2.15) as

({ } ) (_1)Zi<j06ij_n+1 / ,d,/ . 9d9d¢d Ql,jcosg/
Gelassical \ Qi §3 Y) = - Jay sin oe
2m)"tHn=3)! Js 50(3) Mo (5)

n—3

&

(2.17)

In general, J is bounded, and consists of a set of intervals in R*. The regularity condition (2.10) may
rule out certain intervals in 7.

"We shall use the symbol J; to denote both the quantum angular momentum operator as well as the
classical angular momentum (2.12). The correct interpretation should be clear from the context.



Carrying out the angular integral, we arrive at

Ceiiem . sinh(2vy
gclassical({ai}; ?J) = <_1)ZZ<J * +1/ dj #
J

gclassical({ai}a.j) (218>

where

i . 1 s
Jetassical ({ i}, J) = o = 3)1 / @ (2.19)

Mo (j)

is the symplectic volume of the leaf M,,(5).

2.3 Scaling solutions and finiteness of the equivariant volume

In order to assess the convergence of the equivariant volume (2.15), it is useful to start with
the simplest three-body case, which was discussed in detail in [16]. Recall that the solutions
to the equilibrium conditions

(650 13 12 23 13 93
—t— =, ——+t—=C, —— — — =C3=—C —Co (2.20)
T12 13 12 23 13 23

can be parametrized by [16]
12 23 @31

o = ——, T3 = , T3 = ) (2-21)
p—C

where p runs over the subset of R satisfying r;; > 0 and the triangular inequalities rjy; <
r13 + To3, ro3 < T1o + 713, T13 < 719 + ro3. In general, the allowed range of p consists of
at most two intervals, possibly reaching +o0o, whose finite endpoints correspond to collinear
configurations (see Fig. 1 for a pictorial determination of the allowed range of p as a function
of the constants ¢;). Trading p for the total angular momentum j using (2.13), one finds
that the range J of the latter is always a bounded interval [j_, j].

When a1, ass and ag; are positive and satisfy the same triangular inequalities, the
region p — oo is included in the allowed range, and corresponds to scaling solutions where
the three centers come arbitrarily close to each other[16]. From the second equality in (2.12)
it follows that such configurations have vanishing total angular momentum j in the strict
limit p — oo, hence j_ = 0.

Even though the space M3 is non-compact when such solutions are allowed, its equivari-
ant volume gepassical ({0 }; ) (in particular, its symplectic volume) is in fact finite. To see this,
note that the reduced symplectic space Mg( j) consists of a single point when j € [j_, j4],
or is empty otherwise. Thus,

1 o COSh(2v71 ) — cosh(2vj_
gclassical(ala a2’a3;y) — 5(_1)04124-&234- 13 ( jJr) V2 ( J ) (2.22)
In the presence of scaling solutions, j_ = 0, but the integral is still convergent. In fact the

space M3 may be compactified by adding one point , corresponding to scaling solutions in
the strict p = oo limit. Since j = 0 in this limit, this point is fixed under the action of
SO(3).

We now turn to solutions with arbitrary number of centers. In the special case where
the centers can be ordered via a permutation o of {1,...,n} such that a,(;),(;) > 0 whenever

— 10 —



>0 |

".3H5C3<0_

C350“;

18 10 = n = n 14

Figure 1: Phase diagram for 3-center configurations, in the plane (z,y) = (—3(co+c3), ‘/7§ (ca—c3)).

The shaded area corresponds to the values of ¢; 719 reached by varying the position of the third
center, keeping the position of the centers 1 and 2 and «;; fixed. The range of 712 (and therefore,
of the parameter p in (2.21)) at fixed values of ¢; can be determined by intersecting the shaded
area with a radial line extending from the origin through the point ¢; (Thus if the radial line
passing through 0 and & meets the boundary of the shaded region at &) and @2, then the range
of ri is from |&@M|/|@ to |&@?)|/|d. On the other hand if the origin falls inside the shaded region
then the range of r1o varies from 0 to |&1)|/|¢]). The blue, red and yellow lines correspond to
collinear configurations in order 132, 213, 321 (or their reverse), respectively. The lines with
arg(x + iy) = 7/2,—5m/6,—7/6 denote the locus where ¢; = 0,¢c2 = 0,c3 = 0, respectively. i)
a1g > 0,03 > 0,13 > 0: solutions exist in the sector ¢; > 0,¢3 > 0 ii) a2 > 0,03 > 0,13 < 0,
a2 > a1 + agg (non-scaling regime): solutions exist in the sectors ¢; > 0 or ¢y < 0 iii) ago >
g > 0,013 < 0, a2 < agy + a3 (scaling regime): solutions exist for all values of ¢;. The figures
were produced using (a2, aos, a13) = (1,3,2), (6,3, —2), (1,3, —3) in cases i), ii), iii), respectively.

i > 7, it is straightforward to see that the 7;;’s are bounded from below by a non-zero ryy,
therefore scaling solutions do not exist. Away from walls of marginal stability or threshold
stability?, the r;;’s are also bounded from above, and the phase space M,, is therefore
compact. In such cases, the equivariant volume (2.15) is manifestly finite.

If on the other hand, the centers cannot be ordered such that as, ).y = 0 whenever

i > j, then there may exist a subset A of (1,...,n) for which there exist vectors 7; € R?
(1 € A) satisfying
%0, V¥V i€A. (2.23)
— |7l

J#i

8This is equivalent to the condition that the associated quiver (with n nodes and |a;;| arrows from i to
J if a;; > 0, or from j to ¢ if ;; < 0) contains no oriented closed loop. This condition is sufficient for the
absence of scaling solutions, but not necessary, as illustrated by the 3-center case. It is in particular obeyed
when all charges «; belong to a positive cone in a two-dimensional charge lattice, the case studied in [17].

9Walls of marginal or threshold stability correspond to loci where > icaci = 0 for a proper subset A of
{1,...,n}, such that the centers in the subset A can move off to infinity. Threshold stability corresponds to
the special case where the charge v4 = ;. 4 a; of the subset A and the charge v — 74 of its complement
are mutually local [33].
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In this case the centers in the subset A may form a scaling solution, i.e. may come arbitrarily
close to each other. In this case, the space M, is non-compact. However, we shall now outline
a proof that the equivariant volume (2.15) is in fact finite even in this case.

We start by considering potential divergences from ‘maximally scaling solutions’, where
all centers come arbitrarily close to each other. Since from eq.(2.11) the symplectic form w

"1 is superficially expected to behave

is invariant under r;; — er;;, the volume element w
as de/e in the region ¢ — 0, suggesting a logarithmic divergence of the equivariant volume.
However, notice that in the ¢ — 0 limit, the symplectic form w becomes degenerate in
the direction corresponding to overall dilations of the configuration (as noted in footnote 5
above). This dilation is an exact symmetry of the equilibrium equations (2.6) at ¢; = 0, but
is broken for finite € at non-zero ¢;. Thus, the naive estimate w"™! ~ de/e must be modified
by an integer power'!® & > 1 of the dimensionless parameter ce (where ¢ denotes a function
of the ¢; homogeneous of degree one). In this case the volume element w"™! ~ (ce)kde/e
vanishes at ¢; = 0. Thus, the contribution of the region ¢ — 0 to the equivariant volume is

finite, and there is no divergence coming from ‘maximally scaling solutions’.

We should also consider situations where m of the n centers come arbitrarily close to
each other. The phase space near this configuration is locally a product of the phase space
of an (n — m + 1) centered configuration, in which all the m close-by centers are regarded
as a single center, and that of a m-centered scaling solution. The symplectic volume of the
former is manifestly finite, while the symplectic volume of the latter is finite by the argument
given earlier. This can be easily generalized to the cases where there are several subsets, each
containing a set of centers which come close to each other. Thus, this reasoning indicates
that the equivariant volume (2.15) is finite even in the presence of scaling solutions. In §6,
we shall verify this claim in the case of dipole halo configurations, where the phase space
admits a natural compactification into a toric symplectic manifold, whose volume can be
evaluated explicitly. It is an important problem to construct a compactification of M,, in
the general case involving scaling solutions.

2.4 A fixed point formula for the equivariant volume

Having established that the equivariant volume (2.15) is finite, we shall now evaluate it by
localization. For this purpose, we need to determine the fixed points of the action of J3 on
M.,,. In general, the fixed points correspond either to collinear solutions along the z axis,
or to the coinciding limit of scaling solutions approaching a point on this axis. First we
restrict to the case where the charges a; do not allow for scaling solutions. In this case, M,,
is compact and all fixed points are isolated.

Collinear solutions lying along the z axis satisfy a one-dimensional version of the equi-

0Tn fact, using the decomposition (2.18) of the equivariant volume and the second relation (2.12), one
finds that the volume element jdj along the angular momentum direction scales as c?ede. If the symplectic
volume of the reduced phase space Mn( 7) has a finite non-zero value at j = 0, which is the case for general
3-centered configurations or for dipole halo configurations with an arbitrary number of centers, it follows
that the volume element goes as ede near € = 0.
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librium conditions (2.6),
e — (2.24)
Z |2 — z]\ ;
J?él

where the second equation fixes the translational zero-mode. These equations then select
the critical points of the ‘superpotential” [17]

WA A{z}) Z ag;signlz; — 2] Inz; — 2| — Z(Cl —A/n)z; (2.25)
1<J [

as a function of n + 1 variables A, z1,--- z,. In the vicinity of one such fixed point p, the
angular momentum J3 and the symplectic form w take the form

= %Z ai; sign|z; — 2] — iMz‘j(p) (Tizj +yiy;) +-- 0 w= % Mij(p) do; Ady; + -+
i<

' (2.26)
where M;;(p) is the Hessian matrix of W (A, {z;}) with respect to 21, ..., z,, and (z;,3;) are
coordinates in the plane transverse to the z-axis at the center i, subject to the condition
> % = > y; = 0. Except for the overall translational zero-mode, the matrix M;; is non-
degenerate, and the critical points are isolated. Since M, is compact, we have a finite set
of collinear fixed points p. It will be useful to note that det M = —det M , Where det M
denotes the determinant of the (n — 1) x (n — 1) matrix M with the first column and first
row removed (i.e. the Hessian of W as a function of 29y ...y 2Zn), and M is the Hessian of W
as a function of the n + 1 variables A, zq,..., 2, [17].

Since M, is compact and the fixed points are isolated, the Duistermaat-Heckman for-
mula [22] allows to express the equivariant volume (2.15) as a sum over fixed points. The
contribution of each fixed point p is given by the formal Gaussian integral'! obtained by
replacing the moment map by its quadratic approximation around p, and the symplectic
form by its value at the same point. Thus the net contribution is given by

(_1)Zi<j ajj+n—1

de M
(27r)n71 Z /dez dy, ;n 1( ))

Jclassical ({O% } ; y) -

. (2.27)
_ v
exp {V > aysign(z; — 2] — B Z M;;(p) (i + yiyj)} -
WG NS
After carrying out the Gaussian integral over x;, y;, we arrive at [17]
(—1)2i<s distn=l S s signfz;—z;
) 1. _ i< Qi sign(z;—z;) 2.98
gclasswal({al}7 y) (2 ln y)n,1 ; S(p) Yy J ) ( )
where the coefficient s(p) is given by

s(p) = signae\t]\/[(p) — —signdet M(p) . (2.29)

"1 This Gaussian integral is ill-defined since the quadratic form is in general not positive definite, but the
Duistermaat-Heckman formula guarantees that formal Gaussian integration leads to the correct result.
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—s(p) is recognized as Morse index of the critical point p of W. It is worthwhile noting that
the prefactor (2v)"! in the denominator of (2.28) originates from the determinant of the
quadratic form in the 2n — 2 transverse directions to the fixed point.

In the presence of scaling solutions, M,, is non-compact and the Duistermaat-Heckman
formula does not apply directly. In the examples that we shall study in §6, it appears
that M,, admits a natural compactification Mn, which introduces additional, non-isolated
fixed points. Their contribution can in principle be evaluated using a suitable generalization
of the Duistermaat-Heckman formula [34]. For lack of a complete understanding of the
compactification Mn, we shall not pursue this approach. Instead, one may give a ‘minimal
modification prescription’ which determines the contribution of the non-isolated fixed points
by requiring that the Fourier transform of the equivariant volume fR Gelassical ({vi }, V)™ dy
becomes a piecewise polynomial function of m with compact support, as must be the case
for any compact symplectic manifold with a Hamiltonian action [22]. Since our interest lies
eventually in the equivariant index rather than the equivariant volume, we shall not explain
this prescription here, referring to §6 and §C for direct computations of the equivariant
volume for dipole halo configurations, and identifications of the corresponding fixed points.

Finally, we return to the regularity condition (2.10). In the case considered in [17],
namely multi-centered solutions whose charges all lie in a positive cone of a two-dimensional
lattice, it appears that this condition is automatically satisfied near the wall. In general, this
need not be so. On physical grounds, we do not expect that this condition should cut out
regions of a given connected component of M,,. On the other hand, it is quite possible that
this condition could forbid certain connected components of M,, altogether. In this case,
we simply need to omit the corresponding fixed points from the sum (2.28). We shall see an
example of this phenomenon in §3.2 below.

2.5 A fixed point formula for the refined index

We now turn to the problem of quantizing the configurational degrees of freedom of n-
centered black hole solutions and the computation of the refined index Tr’(—y)?’3, of which
(2.28) is supposed to be the classical approximation.

We start by recalling and expanding upon some general aspects of the quantization of
BPS multi-centered black hole solutions, first laid out in [2, 16]. As in these references, we
assume that the Hilbert space of BPS states, in principle obtained by first quantizing the
full configuration space of N' = 2 supergravity (or more generally, string theory) and then
restricting to the subspace annihilated by 4 supercharges, can be alternatively obtained by
first restricting to classical solutions annihilated by the same number of supercharges, and
then quantizing.

Since each BPS solution of the type (2.3) preserves 4 supercharges, one expects that the
locations 7; should be quantized into operators in a quantum mechanics with A" = 4 super-
symmetries, such that the classical supersymmetric vacua are in one-to-one correspondence
with solutions to the equilibrium conditions (2.6). The final result should not be sensitive
to the details of the potential in this quantum mechanics as long as the space of classical
supersymmetric vacua is given by (2.6). One way to obtain the Lagrangian is to consider
the Coulomb branch of an N/ = 4 supersymmetric quiver quantum mechanics with n vec-
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tor multiplets (each including 3 real scalars 7, a U(1) gauge field A; and four fermions ;)
and, for each pair of centers i, j, |a;;| chiral multiplets with charge sign(c;;) under A; and
—sign(a;;) under A;. On the Coulomb branch'?, the chiral multiplets are massive and can
be integrated out at one-loop. The result is an N = 4 supersymmetric Lagrangian for the
positions 7; and their fermionic partners 1;, with a potential which vanishes when the 3n
scalars satisfy the equilibrium conditions (2.6). In addition, there is a first order coupling
| A to the one-form|[2]

1 e re drl uc 1
)\:— Qi — _”L] ’L‘_{ - = < Qiq 1_COSQ7;‘ d i s 230
22] M| (7] + 7 - ) QZJ i ( i) doi; (2.30)

1<J e

where # is the same unit vector used in (2.11). The degrees of freedom associated to the
center of mass motion are decoupled and can be removed by setting >, 7 = > . ¢; = 0, so
that the bosonic configuration space consists of (R** 3\ A), where A is the coinciding locus.
Quantum mechanically, the Hilbert space consists of square integrable sections of S® L over
R3*=3\ A, where S is the trivial bundle of rank 22"~2 over R¥ 3 obtaining by quantizing
the 4(n — 1) fermionic modes v%, and £ is a complex line bundle with first Chern class'?
cl([',) = w = d\. BPS states correspond to supersymmetric ground states of this N' = 4
quantum mechanics.

For the purposes of studying these ground states, one may return to the classical
Coulomb branch Lagrangian, integrate out the fluctuations transverse to the zero-energy
submanifold M,, C R3>"73, and then quantize the system. While we have not studied this
problem in detail, we assume, in the spirit of [16], that BPS states correspond to harmonic
spinors on M, i.e. sections of S ® £ annihilated by D, where S is the total spin bundle'* of
M., L is the restriction of £ to M,, and D is the Dirac operator for the metric 9w induced
from the flat metric on R¥ 3\ A twisted by the line bundle £. The Dirac operator D decom-
poses as D = Dy + D_, where Dy maps Sy to Sz where S = S; @ S_ is the decomposition
into spinors with positive and negative chirality. Moreover, the action of SO(3) on M,, lifts
to an action of SU(2) on S+ ® L. The refined index Tr'(—y)?’* is then given by

gref<{ai};y) = Tr KerD+(_y)2J3 + Tr KerD,(_y)ZJ3 . (231)

We shall assume that KerD_ = 0, so that the refined index gef({c}; y) reduces to

)2J3

gref({ai};y) = TrKerD+(_y - Tl"KerD,(—?J)QJ3 . (2~32)

12The quiver quantum mechanics also has a Higgs branch. In some cases, including the wall-crossing
problem considered in [17], the BPS spectra on the Coulomb branch and Higgs branch are identical, but this
is not so in general, and the Higgs branch states cannot always be viewed as multi-centered black holes.

13The normalisation chosen in (2.11) ensures that w € H?*(R3"73\A,Z), moreover R*"~3\A is simply
connected so £ is uniquely defined. The unit vector @ in (2.30) correspond to a choice of Dirac strings for
the line bundle L.

14We assume that M, admits a spin structure, unlike a generic symplectic manifold which only admits a
spin. structure [35]. By integrating out the massive fermions around the supersymmetric vacua, it should
be possible to construct the spin bundle S as a rank 2"~ subbundle of S, but we have not investigated this
in detail.
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When M,, is Kahler, as is the case for n = 2,3 or for the dipole halo configurations
studied in §6, and «;; large enough, the fact that KerD_ = 0 can be proved as follows.
In this case S, and S_ are isomorphic to A (T M,,) @ KV/2 and ATV M,) ®
K2, respectively, where K is the canonical bundle of M,,, i.e. the complex line bundle
of (n — 1,0) forms (the square root exists since M,, is assumed to be spin). In this case
the Kodaira vanishing theorem states that the cohomology groups H9(M,,, £ ® K'/?) all
vanish except for ¢ = 0. This shows that KerD_ = 0. In general, we do not how to prove this
assumption, but it is supported by the fact that it leads to results in agreement with wall-
crossing. Since the refined index Tr'(—%)2” is not protected!® in N' = 2 supergravity, for
the purposes of computing the index Tr’(—1)*’# it suffices to make the weaker assumption
that Trgep_(—1)? = 0.

Under this assumption, g.f({;}; —y) reduces to the equivariant index of the Dirac op-
erator D. Using the Lefschetz fixed point formula established in [25, 26, 38, 34]'% | assuming
that M, is compact, the equivariant index can be written as the integral

gref({ai};—y):/ Ch(ﬁ,y)fl(/\/ln,l/ﬂn_l (2.33)

n

where Ch(L, v) is the equivariant Chern character of the line bundle £, and A(M,,, v) is the
equivariant A-genus of M,,, defined by

1 A WL + +R
Ch(L = 2vJ. — A n, V) = det 2m . 2.34
(£,v) = exp ( vist 27rw> ’ (M, v) ¢ (2 sinh% (2VL + %R)) ( )

Here, J3 is the moment map of the action of rotations around the z axis, L is the endomor-
phism of the holomorphic tangent bundle 7MY M,, induced by the same action, R is the

curvature two-form on 7% M,, and A|, denotes the degree 2p part of a multi-form A. The
integral (2.33) can be evaluated by localization [38], leading to

~

Ch(L,v) A(M,,v)

re iy = 2.35
g f({a } y) //\/[ﬁxcd Eu(Nnged) v ( )
where M M, denotes the fixed point locus, of dimension 2p, and
1
Eu(N M) = det (QVL + 2—72) (2.36)
s

is the equivariant Euler character of the normal bundle of M/fixed,
In the absence of scaling solutions, M, is compact and all fixed points are isolated, so
NMiixed — T'A, and the Euler character cancels the numerator in the A-genus. Moreover,

In N' = 2 gauge theories at low energies, it may be possible to compute the protected spin character
(PSC) [36] by quantizing the space of classical multi-centered Abelian dyons along the lines of [37]. Since
the PSC is protected, it is plausible that the configurational index will be directly equal to the equivariant
index (2.32), without the need to assume that KerD_ vanishes. The vanishing of KerD_ = 0 in this context
is closely related to the weak positivity conjecture of [36].

6We are grateful to M. Vergne for guidance into the math literature.

— 16 —



J3 =3 >icj ijsign[z; — z;] and the operator L, representing the action of J; on TAO(M,,),
has eigenvalues +1, with det L = s(p). This leads to the following explicit formula for the
quantum refined index:!'”

gui({asti—y) =y — 1y 3 s(p) ySoes enti==l (2.37)
P
Hence, after changing!® y — —v,
(—1>Ei<j a;j+n—1
(y = 1/y)!

In particular, the refined index (2.38) is related to the equivariant volume (2.28) by an overall

gret({ui}1y) = D s(p) yri<a szl (2.38)

p

n=1 This multiplicative renormalization was postulated

rescaling by a factor of (v/sinhv)
in [17] on the basis of angular momentum quantization. As the present derivation shows,
this multiplicative renormalization in fact follows from the Atiyah-Bott Lefschetz fixed point
formula for the equivariant index of the Dirac operator on M,,.

Eq. (2.38) will be our main tool for computing the index of multi-centered black holes
in the absence of scaling solutions. Although it was derived under various assumptions, we
shall carry out various consistency checks which build our confidence in this formula. In the
presence of scaling solutions, the space M,, is non-compact and its compactification includes
non-isolated fixed points for the action of J3. Our limited understanding of the geometry of
the fixed submanifold M4 prevents us from computing the index using (2.35), nevertheless
in §5 we shall give a prescription for computing the contributions from these non-isolated
fixed points, from the knowledge of the isolated ones.

3. Case studies in a one-modulus supergravity model

In this section, we analyze several examples of three-centered solutions in the context of a
simple N/ = 2 supergravity model with a single modulus. This model, introduced in §3.1,
arises by compactifying type ITA string theory on a Calabi-Yau 3-fold X with by = 1 in the
large volume limit. The first example in §3.2 illustrates the importance of the regularity
condition (2.10), while the second example in §3.3.1 shows the necessity of including contri-
butions from fixed points associated with scaling solutions. This example is a particular case
of a general class of dipole halo configurations which will be discussed further in §6. The
example in §3.3.2 illustrates the role of the regularity condition (2.10) in deciding whether
a given scaling solution is physical or not.

3.1 One-modulus model

We consider a simple supergravity model with one vector multiplet, governed by the prepo-
tential 1 1
F(X° XY = —r(X1)?/6X° + 5,4()(1)2 + ﬂsxoxl : (3.1)

"The same localization techniques show that the index of the untwisted Dirac operator [ M, A =
(y—1/y)"1 >, 8(p) vanishes, in particular is integer, consistently with the fact that M, is spin.

18The fact that y — —y changes the refined index by an overall sign shows that for fixed a;; and n, all
states carry the same parity of 2Js.
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This model arises in the large volume limit of type IIA string theory compactified on a
Calabi-Yau 3-fold X with b, = 1. In this case kK = f X w3 is the cubic self-intersection of the
unique generator w of of H*(X,Z), B = [w A ¢y is an integer such that B = —2x mod 12
and A is an half-integer constant such that A = /2 mod 1. The ratio X'/X" is the

complexified Kéhler modulus ¢:
1

X0
with B the NS 2-form potential and J the real Kahler modulus. The central charge of a
BPS state with electromagnetic charges (p*, qa) is given by

t=B+iJ = (3.2)

7 =P (pAFy — gp XN

1 1 3.3
= PXO R t*p’ — Skt — g — Qo e
6 2
where e = i(X*Fy — XAFy) = $xJ% | X°|? is the Kahler potential, and
_ B 3 B
1= q1 — ﬂpo — Ap', 4o = 90 — ﬂpl . (3.4)

With the above conditions on A, B, the charges p°, p', ¢1 and gy are quantized in integer
units[39] and represent (up to a sign) D6, D4, D2 and DO0-brane charges. We shall denote

a = (poapla Q1>CJ0) ) a = (pl]?pl?(jlaqO) . (35)

Note that given a pair of vectors a, o we have (a,a’) = (&,&’). Solving the attractor
equations gives for the Bekenstein-Hawking entropy 7|Z, (X%, )|* of a large black hole in
this model [40]:

S =7mV/DE°,pY 41, o), (3.6)
where D is the quartic polynomial
2 = 12 505 1 2 (,0Y2 1\3 ~ 0 (7.3
DO PG ) = glap )” 0P’ ap % () () G (P7(@)° ] (3.7)
9 K? K2 K2 K K3

For a multi-centered black hole solution with charges «;, the consistency condition (2.10)
can now be expressed as

SN Gy .
D<B+Z‘F_m>>o, vV 7FeR?. (3.8)
=1

For single centered supersymmetric black holes D(p®, p', 1, o) > 0 implies (3.8) for J > 0.

For multi-center black holes (3.8) does not follow from regularity of the near-horizon regions
but must be checked independently.

We shall conclude this subsection with some comments on the effect of o corrections
to the supergravity action. One source of corrections originates from world-sheet instantons

YThese congruence conditions are special cases of the conditions %f@'abcpbpc — Aup® = 0 mod 1,
%Habcp
B = 50.

a, b, c

p’p© + %p“ mod 1 for all integer vector p®, see [39]. For the quintic, we have k = 5, A = —11/2,
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which contribute to the prepotential F'. It is straightforward in principle to incorporate such
corrections in the analysis of multi-centered solutions. In addition, there are also higher
derivative corrections to the four-dimensional effective action which greatly complicate the
construction of exact multi-centered solutions [11, 41]. While these corrections are essential
in computing the index Q°(a) of certain single centered black holes [12], their effect on the
functions gef({ci};y) governing the index of multi-centered black holes is mild, since the
detailed information about the action and the solution is needed only to determine whether
a given collinear solution has a non-singular metric or not; but given such a solution the
contribution to gr.f({a;};y) given in (2.38), and its generalization to scaling solutions which
we shall discuss later, is independent of the action. Thus in our analysis we shall ignore the
effect of these higher derivative corrections. For explicit computation we shall also set A
and B to zero for convenience.

3.2 Non-scaling solutions: D6 — D6 — D6

We now consider a 3-centered configuration of D6-branes with fluxes, carrying charges eV«
e and —eU+V)« where U,V are positive integers. This example was studied in detail in
[23], section 5.2.2. To compute the corresponding charge vectors, recall that the central

charge associated with a D6-brane carrying charge eV is proportional to

—/Xe—tw A [er (1 + g—iﬂ . (3.9)

Comparing this with (3.3), and using the fact that [co Aw =B, [wAw Aw = K, we see
that the first center carries charges

1
6

where we have determined the overall normalization of &; by using the fact that for a single
D6-brane p® = 1. Similarly the second and the third centers carry charges

1 1
A= [ 1 _Z 2 _
a ( U, 2K,U 24[3,

1
3
— 1
KU +24BU) , (3.10)

1 1 1 1
Ao = [ 1 Ik V2i o B V3L —
(g (,V, 2/£V 246,6/<;V +24BV),

1 ] ] ] (3.11)
A = [ —1.— s 2, - R __ 3_
a3 ( ,(U+V),2n(U+V)+24B, 65(U+V) 24B(U+V)),
so that the total charge is given by
1 1

It is easy to see that for integer U and V, the charges ¢; are not integers in general, but ¢;
computed via (3.4) are. Using «a;; = @&, the integer symplectic products are then given by

1 , 1 1 R
91 = 6/{(‘/ U) +128(V U), 93 — GKU +12BU, 13 = 6/@‘/ +12BV (313)

Our goal is to find the index of supersymmetric bound states in the large volume limit.
We choose as a concrete example

k=6, B=0, U=1 V=2 B+iJ=23i. (3.14)
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This choice differ from that of [23] in the choice of x, but this is a simple normalization
factor and still allows us to compare our findings with the results of [23]. The value of J is
chosen to be large enough to lie in the large volume chamber. The precise value of J affects
the numerical values of the solutions to eq.(2.24), but is otherwise irrelevant. We use the
projective symmetry of special geometry to fix X = 1. For the values of charges and moduli
corresponding to (3.14), this leads to

e =—1, ay=1, o3=38,
73 170 53 (7 2 63 _ 18 (3.15)
¢ = B3I, ¢ =11318, ﬁz\/;(@,ﬁ,ﬁ,—ﬁ).
Numerical analysis of (2.24) leads to the following collinear solutions:*
ol Ze)|  Ze@)| Zo(3) p|s(o)|reg.
132 0| 2.59] 2.75/-0.363| —1| /
231) —2.75| —2.59 0[—0.363] —1| +/
123 0] 2.37] 2.54|—0.422 vV
321 —2.54| —2.37|  0/—0.422 J (3.16)
123 0| 0.195] 1.02] —5.14| —1] X
321 —1.02]-0.195 0| —5.14] —1| x
213|—-0.182 010.974| —5.49 X
312(—-0.974 0(0.182] —5.49 X

In this table, we have displayed the permutation o of 123 specifying the order of the z;’s for
a given solution according to z,(1) < 2,(2) < 25(3), the location of the centers z,(;), the value
of the parameter p in the parametrization given in (2.21), the value of the sign s(p), and in
the last column, we indicated by 4/ solutions obeying the regularity condition (2.10), and
by X those which do not (it turns out that the region where the discriminant D becomes
negative intersects the z-axis, and therefore can be found by plotting D as a function of z).
Note that the parameter p takes the same value for two configurations related by a reversal
of the z-axis. More generally, solutions of (2.6) satisfying the triangular inequalities arise
from the disconnected intervals —.422 < p < —.363 and —5.49 < p < —5.14 along the p axis,
and correspond to general non-collinear solutions with angular momentum in the intervals
0.444 < 5% < 0.694 and 0.25 < j2 < 0.444, respectively. Only the first interval leads to
solutions which satisfy the regularity solution (2.10).

According to our prescription only the solutions marked by / must be included in the
sum in (2.38), and we get

ag1+a3+a13

1 ) )
gref(al,%,&?,%y) = (—1) msmh(amw Smh((am—am)V), v=lny, (3-17)

in agreement with [23]. Had we ignored the constraint (3.8) and included contributions from
all the solutions given in (3.16), we would have got

1
(_1)a21+a23+a13 Sinh2 y Sinh(Oél?,V) Sinh((agg + OéQl)V) . (318)

20We have presented the solution in the z; = 0 gauge instead of Y, z; = 0 gauge.
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This last expression is indeed the result produced by quiver quantum mechanics, but as
emphasized in [23], quiver quantum mechanics in this case fails to give the correct result. We
see that the difference between the correct result and quiver quantum mechanics is accounted
for by the additional constraint (3.8) that must be imposed on the solutions besides (2.24).

3.3 Scaling solutions

Consider a three centered black hole solution with the centers carrying charges oy, as and
ag. Suppose further that a9 = 3, asg = 4 and ag; = 5. In this case aqa, asg and as; satisfy
a triangle inequality, showing that the scaling solution can exist. Thus this provides us with
a laboratory for studying the role of scaling solutions in the computation of the index of
multi-centered black hole solutions.

For now we focus on the constraints imposed by eqs.(2.24) without worrying about
(2.10); we shall return to this later. Since we have two moduli J and B at our disposal
we can adjust them to set ¢; and ¢y as we like (within an appropriate range), ¢z is then
fixed to be —c; — ¢o. Let us use this freedom to choose a point in the moduli space where
¢ = —A)_;aj; for some positive constant A. We can now look for solutions to (2.24).
Numerical analysis shows that there are only two collinear configurations which contribute,
corresponding to the alignments 123 and 321. Furthermore both contribute with positive
sign. As a result the net contribution is given by (y — y~1) =2 (yM2testazs 4 g-arz—as—azs),

This causes a puzzle since this does not have a finite y — 1 limit. We must however
recall that there are also scaling solutions to Denef’s constraints which correspond to all
three points approaching each other. Clearly this is also a fixed point of J3 if we choose the
point of approach to lie on the z axis. These however will not show up in the numerical
determination of the fixed points which assumes from the beginning that the centers have
finite separation.

The fixed point associated with the scaling solution has J3 = 0 and hence it contributes
a constant to the index. There may be additional factors from the integration measure near
the scaling solution. These can in principle be determined from a detailed analysis of the
scaling solution. However we can try to guess the contribution from the scaling solution by
requiring that the total contribution has a finite y — 1 limit. Our first guess would be

gref(Oq, g, i3 y) _ (y - y—l)—Q (yoc12+a13+oc23 + y—a12—a13—a23 _ 2) ) (319)

For aijs + a3 + asg even, the numerator has a factor of (y — y~!)?, and after canceling this
against the denominator we are left with a Laurent polynomial in y. This is a sensible result,
with the coefficient of y™ counting (—1)™ times the number of states with J3 = m/2. But
(3.19) does not lead to a sensible spectrum for odd values of a3 + a3 + a3, since the factor
of (y —y~1)? in the denominator is not cancelled. Our proposal is to replace the subtraction

Lin this case so that (y —y~!)~2 factor in the denominator is cancelled

constant 2 by y +y~
and we again get a Laurent polynomial in .

The above analysis shows that we can predict the existence of and the contribution from
a scaling solution from the results on the non-scaling solutions which are simpler to find.
This is the general procedure we shall follow, 1.e. assume that the role of the fixed points

associated with the scaling solution is to essentially make the final result satisfy desirable
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properties. This by itself will not fix the contribution uniquely. For example in (3.19) we
could have taken the subtraction term to be y? + y~2 instead of 2. To fix this ambiguity
we shall make a further assumption, that the extra contribution due to the scaling solutions
vanish as y — oo. This fixes the correction terms uniquely. We shall call this the ‘minimal
modification hypothesis’. We shall describe the general rule for such replacements in §5.
While we have no a priori justification for this assumption, it seems to work in all known
cases.

For specific choices of the prepotential we also need to verify that the solutions we
consider satisfy the constraint (3.8). This can be easily implemented by testing (3.8) for each
of the two collinear solutions described above and if we find that (3.8) fails for these solutions
then we would conclude that the subtraction terms associated with the scaling solutions must
also vanish. Thus there will be no contribution to the index from this configuration. For
implementing this condition we need to work with specific charge vectors. We shall now
discuss two examples, — one where this condition is satisfied, and another where it fails.

3.3.1 Example 1: D6 — D6 — D0

Let us take a D6-D6-brane pair with flux as in the last subsection and a pure DO-charge.
In particular we choose

= (1,-U,—kU?/2 — B/24, -k U* /6 — BU/24),
do = (=1, -U,kU?/2 + B/24,—kU? /6 — BU/24), (3.20)
az =(0,0,0,n),

for some integer U. In this case we have

g = 4kU )3+ BU/6, g3 = 31 = n. (3.21)

We define o = g3 = 31, and assume that ajo > 0, > 0. Scaling solutions are expected
when the triangular inequalities are satisfied, i.e. when 2a > arys.
We choose the following explicit values of the parameters:

k=6, B=0, U=1 t=B+iJ=1+3i. (3.22)

As example of a system which does not allow for scaling solutions we take n = 3, while we
take n = 6 for an example of a system that does. For those values, we have

_ 3. _ 15 [ 6 __ur [

n=3: €1 = 51\/ 3697 €2 = —57\/ 3697 (3.23)
. _ 33 /3 _ 39 /3

n==~0: Cl—m 59 CQ——l—O 5 (324)

For n = 3 one finds collinear fixed points for p = 3.41 with alignment 312 (or its reverse) and
s(p) = 1, and for p = 11.37 with alignment 132 (or its reverse) and s(p) = —1. A detailed
study of the full supergravity solutions shows that they satisfy the regularity condition (3.8)
everywhere outside the centers. The contribution of these fixed points gives

A e i T

gret({i}s ) = " , (3.25)
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which is finite for y — 1 as in §3.2.

For n = 6 one finds a single value of p = 3.99 corresponding to collinear solutions with
alignment 312 and s(p) = 1 (and its reverse). We have checked that this solutions satisfies
(3.8) everywhere. Adding the contributions of these fixed points gives (y —y 1) 72(y® +y %),
which does not have a finite y — 1 limit. Following the procedure described earlier we now
take the total contribution to be

get({ailsy) =(w—y 7?2 (P +y°-2), (3.26)

which does give a sensible result for the spectrum.

We close this subsection with a comment on the structure of the solution in the regime
0 < B 1, J > 1. For this discussion we parametrize ¢; and ¢ by ¢; = p — n and
co = —p — 1. In the limit described above, 4 > 0 and 0 < n < 1. For 2o < a9, there
are two collinear configurations (up to reversal of the z axis) with alignments 132 and 213,
parametrized by

o 210
124 +O(n*) and p(213) = [+ el +O(n) , (3.27)

P32) = —0412 ~ on g

respectively. For 2a > aq9, only the second solution leads to physical solutions. In the
n — 0 limit the first solution in (3.27) has a smooth limit, with the center 3 sitting at
the middle point between the centers 1 and 2, separated by riy ~ (a2 — 2a)/p. For the

second solution, we have instead ro3 ~ 13 = % + O(n°) with ri» ~ ayo/p. Therefore

the point 3 moves off to infinity along the z axis, similarly to what happens at a wall of
marginal stability. However, since (a; + as, a3) = 0, the index does not change across the
locus 7 = 0. This is an example of a wall of threshold stability [33]. While a non-compact
direction opens up in M3 at n = 0, the equivariant volume (2.28) stays unchanged. In §6 we
shall see that the locus n = 0 (or its analogue for more centers) is very convenient to analyze
the phase space, even though some of the collinear fixed points sit at infinity. Such ’infrared
divergent’ configurations should however not be confused with the "ultraviolet divergent’
scaling solutions, which cannot be removed by moving away from n = 0.

3.3.2 Example 2: Unphysical scaling solutions

In the example in §3.3.1 the entropy associated with individual centers vanish as can be
easily seen using eq.(3.6) and (3.20). We now consider another example where each center
describes a regular black hole with finite entropy. Again for simplicity we take k = 6 and
B = 0 and choose

ar = (0,7,48,0), s =(0,9,42,0), a3 =(0,—8,—48,6). (3.28)

In this case we have
19 = 1387 o3 — 96, 31 — 48 . (329)

Thus the triangle inequality is satisfied and we can look for scaling solution. Taking ¢ =
B +iJ = 3i, we find that collinear solutions to (2.24) exist for the alignment 132 (or its
reverse), with s(p) = 1 and p = 62.68. Naively, to the contributions from these collinear
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fixed points we should add the contribution —2 from scaling solutions, so as to obtain an
admissible SU(2) character. Numerical analysis shows however that the collinear solutions
fail to satisfy (3.8) in some region of the z-axis and hence are not valid solutions. Thus
the scaling solutions must also be absent. This can be verified explicitly by examining the
full solution space parametrized by (2.21): in this case the values of p consistent with the
triangular inequalities range from p = 62.68 (corresponding the above collinear solution) to
p = oo (corresponding to the scaling regime). We find that throughout this range, the left
hand side of (3.8) fails to be positive somewhere in the three dimensional space. Thus, the
regularity condition (3.8) rules out the entire phase space M3 in this case.

4. Index from non-scaling multi-centered configurations

In N = 2 supersymmetric string theory, typically the index in the sector of charge 7 re-
ceives contributions both from single centered black holes carrying charge 7, and from multi-
centered black hole solutions, with individual centers carrying charges aq, ..., a, such that
>, & = . In this section, we shall consider contributions from those multi-centered config-
urations which do not allow for scaling solutions, 1.e. solutions where three or more centers
can come arbitrarily close. As explained in §2, this requires that there is no subset A of
{1,...,n} for which we can find vectors 7; (i € A) satisfying (2.23). We work at some fixed
point in the moduli space, and denote by Z, the central charge associated with the charge
a. Using the same logic as in [17] we arrive at the following expression for the (refined)
index Quer(7;9) = Tr'(—y)?® from multi-centered black hole solutions carrying total charge
v (assuming that v is a primitive vector of the charge lattice):

1 ~ —
> T ) O () - O (o). "
(o} Aut({al}) gref(ala ; Qs y) ref(ala y) ref(Oén, y) ( )
i ai=y

Here, Aut({c;}) is the symmetry factor appropriate for Maxwell-Boltzmann statistics (see
footnote 2), while gref(ay,. .., a,;y) given in (2.38) is the contribution to Tr’(—y)?” from
n-centered black hole configuration with the centers regarded as distinguishable particles
with unit index. Q3.(a;y) is the ‘rational refined index’, related to the refined index by

-1
Vilry) = D om T (afm ™). (42)
mla
It is worthwhile noting that (4.1) and (4.2) exhibit a manifest ‘charge conservation property’,
whereby each power of Q5 (v, y) carries charge o and each power of Q,¢(cv, y™) carries charge
ma. The usual protected index is obtained by taking the y — 1 limit of (4.1), at the cost of
obscuring manifest ‘charge conservation’. If 7 is not primitive, then (4.1) represents Qye¢(7, y)
defined in (1.1) rather than Q¢ (7, ).

Using (4.1), (4.2) and the relationship between Qs and Q.f we can express Quee(7, y)
as

Qrer (7, y) = Z G({Bi}, {mi};v) H Qe (B y™) (4.3)

{B;€T},{m;cz}
mi>1, 35 miBi=
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for some function G. The i-th term in the sum represents a contribution from configurations
with a total of >, m; centers, with m; centers of charge ;. If two or more of the §;’s
are identical, the total number of centers carrying a given charge f; is the sum of the
corresponding m;’s. Finally the sum also contains the contribution from a single centered
black hole of charge v, represented by the term Q2 .(v,). In order for the right hand side
of (4.3) to be a bona fide SU(2) character whenever the Q2.(;,y)’s are, the functions G
which appear in (4.3) must be Laurent polynomials in y. The reader is referred to appendix
B for a proof of this property in the absence of scaling solutions.

Eq.(4.1) (or equivalently (4.3)) gives the net contribution to the total index from all
possible single and multi-centered solutions carrying a fixed charge v. However it is also
useful to identify which terms in (4.1) represent the contribution from a specific multi-
centered solution. We shall assume for simplicity that v is primitive so that Q.¢(v,y) =
Qeet (7, y). When all a;’s are different then the summand in (4.1) with Q3 replaced by Q3
represents the contribution to the index from multi-centered black holes carrying charges
aq,...,a,. However when some of the «;’s are equal (say r; copies of 5, 9 copies of (s
etc.), then there is additional contribution to this index due to the fact that the Q3 (a/m, y™)
term in (4.2) represents the contribution from m identical centers, each of charge a/m. Thus,
the contribution to the index from a multi-centered configuration with r; centers of charge

(1, ro centers of charge (3, etc. is given by

) . I o
Z gref({sl(c )Bk}§ y) H {H { S(Q) S@ @ Qfaf(ﬁku yE )}} ) (4'4)
Yk — y Sk

{np>13.(s{ > 13 ko ma=1 27k

ng  (a)_
2ol sy =Tk

where
1

gref(al,...,an;y) = Wgref(al,...,an;y). (45)

After summing (4.4) over all possible choices of {5}, {r} satisfying >, 8, = 7, we recover
(4.1). As explained in §2, the index gyef(av, . . ., ay; y) can be computed by localization. Since
we assume that the phase space contains no scaling solutions, all fixed points are isolated
and the quantum index is given by (2.38).

In the remainder of this section we shall carry out various consistency tests of our
proposal for the index associated with the multi-centered black hole solutions.

4.1 Consistency with wall crossing

Let us examine whether our proposal is compatible with wall crossing. For this purpose,
assume that the moduli are chosen near a wall of marginal stability where the state carrying
total charge v = a1+ - -+, becomes marginally unstable against decay into states carrying
charges y4 = > ;.4 and vp = ), o; where A and B are two complementary subsets of
{1,...,n}. At the wall, the phases of the central charges Z,, and Z,, align, and we have

ZCZ‘:—ZCJ‘—)O. (46)

icA jeB
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We shall assume that the moduli are chosen on the side of the wall where

(va,78) D> i > 0. (4.7)

i€A

In this region of the moduli space, a class of solutions to (2.24) can be constructed by joining
two solutions involving the centers in the set A and those in the set B as follows. Let nyu
and np be the cardinality of the sets A and B. Now, choose the relative distances z; — z;
for 7,5 € A according to a particular collinear solution involving the charges a;c4, and the
relative distances z; — z; for 7, j € B according to the particular collinear solution involving
the charges a;cp. Finally, choose the relative separation between the z;’s in the set A and
the z;’s in the set B such that

=Y . vap=(va78), (4.8)

|ZA N ZB’ €A

where 24 = (3,04 %)/na and zp = (3,5 %) /np are the average positions of the centers
in the sets A and B respectively. Near the wall of marginal stability > .., ¢; — 0, and the
separation |z4 — zp| becomes large. We claim that this configuration satisfies eq. (2.24) in
the limit (4.6), and can be systematically corrected to an exact solution of eq. (2.24) in the
vicinity of the wall.

To see this, we note that if ¢ belong to the set A then eq.(2.24) receives significant
contribution only when j also belongs to the set A since the distance |z4 — zg| computed
from (4.8) is large in the limit (4.6). Thus the equations reduce approximately to the
equations for collinear multi-centered solutions involving the set A only. By assumption
our solution satisfies the latter equations. A similar argument holds when 7 belongs to the
set B. There is however a small caveat stemming from the fact that the solutions in the
set A are labelled by ny — 1 relative distances while solutions in the set B are labelled by
(ng—1) = (n—n4 — 1) relative distances. This gives (n — 2) parameters, but (2.24) contains
(n — 1) independent equations (the sum of the equations over all ¢ being trivially satisfied).
Since we cannot adjust (n — 2) parameters to solve (n — 1) independent equations we must
have missed some equation that determines the relative distance between the points in the
set A and those in the set B. To find the missing equation we sum (2.24) over all i € A to

obtain
ZZM_% =2 o (49)

i€A ]#1 1€A
JFT

Dividing the sum over j on the left hand side into those for which j € A and those for which
J € B, and noting that the first term vanishes by ¢ <> 7 symmetry, we get

ZZM_% => a. (4.10)

€A jEB €A

Approximating z; — z; =~ zp — z4 for each term in the sum we recognize (4.8). It is then
clear that this approximate solution can be extended to an exact solution in the vicinity of
the wall, by correcting the locations z; by a Taylor series in 1/|z4 — zp|.
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Eq.(4.7) shows that the solution to (4.8) exists as we approach the wall of marginal
stability but ceases to exist as we cross the wall since the left hand side of (4.7) and hence
|za — zp| computed from (4.8) now becomes negative. Thus the jump in the index will be
given by the contribution to (2.38) from this class of fixed points. To evaluate this jump, we
first note that

y2i<j agjsignfzj—z] _ yzi,jeA,Kj o sign[z;—z;) yZi,jeB,Kj aj sign[z; —z;] y’YAB sign[zp—z4] . (411)
Similarly,
(_]_)Zi<j agjtn—1 _ (_1)"A+nB+’YAB_1 <_1)Zi,j€A,i<j @ij (_1)Zi,jeB,i<j Qij (4.12)

Finally we need to compute s(p) near the wall of marginal stability. This has been analyzed
in detail in appendix A.1. The net result is that for the configuration of the type we are
considering, s(p) is given by

s(p) = sa spsign(vap) sign[ep — 24]. (4.13)

where s 4 is the sign which appears in the contribution to n 4 centered collinear configurations
with centers at {z;,7 € A}, and sp is the sign which appears in the contribution to ng
centered collinear configurations with centers at {z;,i € B}.

Putting (4.11), (4.12) and (4.13) into (2.38) and summing over all n4-centered solutions
involving the charges in the set A and all ng-centered solutions involving charges in the set
B we see that the net contribution from solutions of this type is given by

—sign(yap) signlzp —za] (y—y =) " (my) 1l g ({oni € A y) gi({ay, 5 € Bliy).

(4.14)
Adding up the contributions from the configurations for which zg — z4 > 0 and those for
which zp — 24 < 0, we get the net contribution to the index from the solutions which decay
across the wall of marginal stability:

—sign(van) (y —y~) 7 [(=9)7 = (~y)7"] go({aisi € A}y) goe({as,5 € Blry)
(4.15)
This is the correct wall crossing formula for primitive decays. Besides the solutions considered
here, (2.24) can have other solutions for which the relative distances between the centers
remain finite as we approach the wall of marginal stability. They will continue to exist on
the other side of the wall and must decay at other walls of marginal stability before we reach
the attractor point.

The analysis can be easily generalized to the case of general non-primitive decays. We
shall sketch the derivation below. Suppose that we are near a wall of marginal stability where
the total charge v can decay into L states carrying charges ~,, = ZieAm a; form=1,..., L.
For this we need the charges 7, for different m to lie in a two dimensional plane and have
D oic 4, ¢i — 0 for each m. We approach the wall from the side where

{(Ym> Vn) (Z Gi— Y ci) >0, (4.16)

1€AmM 1€AR
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for any pair (A,,, A,,). In this chamber there exists a class of solutions in which the elements
of the set A,, are bunched together for each m within a finite distance and the relative
separation between the elements of the set A,, and the elements of the set A,, go to infinity
for every pair (m,n). These are the solutions which disappear across the wall of marginal
stability; hence the change in the index is given by the index associated with these configu-
rations. We shall order the sets A, such that (v,,,7,) > 0 for m < n. Let us assume that
for a given collinear solution p of this type, the sets A,, are arranged along the z-axis as
Ag(1ys - - Ag(ry for some permutation o(1),...,0(L) of 1,..., L. Then the contribution to
the summand in (2.38) from such a configuration will be given by

L
5(p) H (yzi,jGAm OéijSign[Zj*Zi}) H (y<%(m)»%(n)>) ) (4.17)

m=1 m<n

The sum over collinear fixed points p which respect the bunching of the centers into the
sets Ay, ..., A will involve independent sum over collinear fixed points inside each set A,,,
generating the contribution g..¢({i € A,,}; y) and the sum over permutations of the sets A,,,
generating a contribution gret({¥im};y). The final result, multiplied by the [T, Q5 ({ci},v),

will be given by

Gret (v i 0) [ [ et ({eini € Atiw) [ Q{aid,m)| - (4.18)

m 1€Am

This is precisely what is needed to produce the wall crossing formula given in [17]. The
gret({airi € An}iy) [Tiea, Qoc({ai}, y) factor contribute to the index of the m-th ‘black
hole molecule’ introduced in [17], while get({7m};y) is the function multiplying the indices
of black hole molecules in the wall crossing formula of [17].

4.2 Consistency with split attractor flow conjecture

The above analysis also shows that our proposal is consistent with the split attractor flow
conjecture under certain assumptions. To see this let us consider the system of black holes
carrying charges o, ..., «, and let the moduli flow all the way to the attractor point. On
the way we may cross several walls of marginal stability. If at the attractor point there
are no multi-centered solutions, the result for the index at the original point in the moduli
space can be computed by adding the contributions from the jumps across different walls.
Suppose on the s-th wall the system is marginally unstable against decay into a pair of
states carrying charges ) . A, @i and > icp, @i Then the index associated with the states
which decay across the wall is given by (4.15) with (A, B) replaced by (As, Bs). Thus the
net contribution to the index at the original point from this multi-centered configuration is
given by

— YAsBs — (— —7YAgBg
y) (—y)

by = — sign (
grcf({al}ay) - ; g (fyAsBs) y— y_l

Gret({is i € As}iy) got({, 5 € Bshiy) (4.19)
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In the y — 1 limit this gives

g{ai}) = Y (=145 oy p,

S

g{ai i€ A})g({a;,j € B} (4.20)

We can now take the multi-centered configurations carrying charges {«;,i € A}, {a;,j €
B} and calculate their indices by flowing along their attractor flow lines in the same way.
Continuing this process till we are left with only single centered black holes, we arrive at the
split attractor flow conjecture.

Note however that the above analysis relies on an assumption: that the only jumps in
0t (and in g) take place at the walls of marginal stability. In particular the solutions should
not disappear away from the walls of marginal stability (or if they do then they disappear
in pairs so that there is no net change in the index).

5. Index from scaling multi-centered solutions

The goal of this section is to determine the contribution of scaling solutions to the index
of a multi-centered black hole configuration using the Coulomb branch analysis. As shown
in appendix B, in the absence of scaling solutions the functions G defined in (4.3) are
automatically Laurent polynomials, as is required in order for the result to be a bona fide
character of SU(2). This property however does not hold in general when scaling solutions

coll

are present, and (4.3) has to be corrected. We shall denote by G the contribution due
to regular collinear fixed points only, and determine the corrections to (4.3) by requiring
that after adding these corrections the final expression must be a proper SU(2) character,
whenever the single-centered refined indices Q%(«,y) are SU(2) characters.

Specifically, we propose to modify (4.3) into

Qref(’% y) - Z GCOII({/Bi}u {mz}a y) H (Qfef(ﬁi; yml) + Qscaling(ﬁia yml» ) (51)

{B;€r} {m; €L} %
m;>1, 57 mBi=

where Qgeating (v, v) is given by

Qscaling(aay) = Z H({ﬂi}, {mz},y) HQfef(ﬁiaymi)v (5.2)

(B;€T} {m;€n}
m;>1,%7; m;B;=a

for some function H({B;},{m;};y) to be determined. To determine H we substitute (5.2)

into (5.1) to express the latter equation as

Qet(v.y) = Y GUBY{mibiy) [](Biy™) . (5.3)
{B; €T}, {m; €L} 7
mizlaZinliﬁi:W
for some functions G. We fix H by requiring that G({8;}, {m.};y) are given by Laurent
polynomials in y. This leaves open the possibility of adding Laurent polynomials to H. This
ambiguity is resolved using the minimal modification hypothesis, which says that H must

1

be symmetric under y — y~ and vanish as y — oo.
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In practice we solve for the functions H using an iterative scheme involving the number
of centers. For this suppose we know H({3;}, {m;};y) in all cases for > .m; < (n —1).
Now we can substitute (5.2) into eq.(5.1) and compute the coefficient of [T, 23.(8;,y™) for
all terms with ), m; < n. The only unknown term is Qcaiing(7;¥), originating from the
replacement of Q%(v, y) by Q°(7,9) + Qscating (7, ¥) in the right hand side of (5.1). This gives

> H{B:}Ami}sy) [ (B y™). (5.4)
{B; €T}, {m; €L} 7
m;>1, 370 my Bi=

Thus requiring the coefficient of [T, Q5:(3;,y™) to be a Laurent polynomial in y we can

determine H({f;},{m;};y) for > .m; = n. This procedure can then be repeated to find
H({B:}, {mi};y) for >, m; =n+1 and so on.

The algorithm given above gives a prescription for finding the net contribution from
the scaling solutions for a fixed total charge v. In the rest of the section we shall see how
this prescription can be used to determine the contribution of the scaling solutions to a
configuration containing a fixed set of centers.

5.1 Correction to g, for non-identical centers

We shall now show that if the centers carry non-identical charges then the minimal modifica-
tion hypothesis translates to a simple rule for correcting the function gyer(av1, . . ., ay;y). First
suppose that aq, ..., a, have been chosen such that there is a scaling solution where all the
centers come together, but no scaling solution where a subset of the centers come together.
In this case our proposal for the contribution of the scaling solution to gef(cv, ..., an;y)
gives

gscaling(ala sy Qg y) = (_]-)ZZ<] aij+n_1(y_y_1)1_n Z Qg {yk - (_1)ny_k} ) (55)

0<k< (n—2)
k=3li<j @i €22

where a;’s are constants to be adjusted so that, after adding (5.5) to the contribution (2.38)
of the collinear fixed points, the result has a finite limit as y — 1. It is easy to see that
the number of a;’s is precisely equal to the number of divergent terms in the y — 1 limit,
so that requiring finiteness as y — 1 uniquely fixes all the a;’s. For example for even n the
possible values of k range from 1 to (n—2), with k taking either only even or only odd values
i<j @ij- The number of a;’s is then (n — 2)/2. On the other
hand using y <> y~! symmetry we see that the divergent terms are of the form (y —y~1)=2*

depending on the parity of

for s =1,2,...,(n—2)/2, giving precisely (n—2)/2 possible divergent terms. For n odd the
allowed values of k are in the range 0 to (n — 2) and again k takes either only even values or
only odd values. This gives (n—1)/2 possible a;’s. On the other hand the possible divergent
terms are of the form (y —y 1)~ for 1 < s < (n —1)/2, giving precisely (n — 1)/2 possible
divergent terms. It is also worthwhile to note that the condition £ < n — 2 on the powers of
y appearing in the numerator of (5.5) is equivalent to the requirement that the correction
(5.5) vanishes in the limit y — oc.

Now consider the more general case where there are scaling solutions in which a subset
of the centers come together. As mentioned earlier, we shall proceed by induction, 1.e.
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assume that all the fixed points (including scaling solutions) and their contributions have
been determined for any number of centers less or equal to n — 1 and then show how this can
be used to infer the result for n centered black hole solution. Let us consider an n-centered
black hole configuration with centers carrying charges aq, ..., a,. Now such configurations
will include a set of ‘regular’ fixed points where all the centers are separated along the z-axis.
We can determine them using numerical methods. To those we need to add the contribution
from fixed points where a (subset of) the centers lie on top of each other. A generic fixed
point of this type will have the charges {aky),akén, . ’O‘k,(jl)} lying on top of each other
for 1 <1 <s, n; > 1 such that ) ,n; = n. To determine its contribution we proceed as
follows. We first consider an [-centered configuration with individual centers carrying charges
) 4+ A with 1 <[ < s and determine all its regular fixed points. In this computation

the effective constant ¢ for the I-th charge will be given by 2Im(e™*“Z, ). Now we

MORSEAO
multiply this contribution by the product of the weight factors of the ; scalinlg solutions,
with the {’th solution containing centers {aky), Qs -y akg; }. These are known by induction
except for the case s = 1. We now add these to the contribution from the regular fixed points
of the n-centered solution. This procedure leaves out the s = 1 term, corresponding to [ = 1,
ny; = n: this is the maximally scaling configuration, where all the centers are on top of each
other. Our proposal for the contribution of this term to gpef(aq,...,®,;y) is again given
by (5.5), where a;’s are constants to be adjusted so that after adding (5.5) to the other
contributions (including the non-maximally scaling ones), the result can be expressed as a
Laurent polynomial in y.

The procedure just described generalizes the one introduced in §3.3 in the absence of
scaling solutions. It relies on the assumption that the effect of the scaling solutions is
to correct g into a proper SU(2) character, with the smallest possible powers of y and
y~! in the numerator (reflecting the classical fact that scaling solutions carry zero angular
momentum). Eq.(5.5) together with (2.38) gives a complete prescription for computing the
functions grer({;};y). This construction guarantees that g..r({c;};y) is given by a Laurent
polynomial in y. As long as the charges «; are all different, the factor g, just described
multiplied by []7, Q2°(ai;y) determine the contribution to the index from multi-centered
black hole solutions carrying charges aq,...,a,. The resulting expression is given by a
Laurent polynomial in y. As discussed in §4, even when some of the ;s are equal but
provided there are no scaling solutions, Eqgs. (4.4), (4.5) give the correct result for the index
of multi-centered black hole solutions. However when some of the «;’s are equal and scaling
solutions are allowed, some additional corrections to (4.4) are necessary, which we shall now
determine.

5.2 Effect of identical particles

We shall now consider the case where some of the centers carry identical charges, e.g. we
have r1 centers of charge 3, ro centers of charge 35 etc. We shall assume for simplicity that
the only allowed scaling solutions involve all the centers coming together, — more general
cases may be dealt with using the method of induction as before. In this case our proposal
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for the index associated with this configuration is the following generalization of (4.4):

ny 1

~ a 1 y—-vy s®

> Grer ({51 B} 9) 11 [H {WWQ%(@JJ’ )H
(s} Dote=r NOYT Y

nk7s(]€a)ez;nk7's](€a)217 (5'6)

+ [cor({ﬂk}7 {rk}a y) ;

where the function I, vanishes if all the r;’s are 1, but can be non-zero if some of the r;’s are
larger than 1. The function g is defined as in (4.5) with g, including the corrections due
to scaling solutions described in §5.1. The need for the additional correction terms I . can

be seen by noting that due to the presence of the (ysl(b) — yfsgb)) factor in the denominator
it is not guaranteed that the first term in (5.6) can be expressed as a Laurent polynomial in

y. I.or is adjusted to compensate for this. We choose

ny

Lo((Bib Arndiw) = Y ad{BGh [T 560 v, 6.1)

{ridAsi} bob=t
nk,sgca)GZ;nk,s,(ca)Zl,

2221 3)(:) =Tk
where h({5}; {sgf)}; y) is chosen so that

1. It is invariant under y — y 1.

2. limy_oo R({B}; {s\"};y) = 0.

3. (5.6) has an expansion of the form ), a,,y™ with a finite number of terms whenever
the Q5 .(8;,y)’s have this property.

Note that the second condition above is another manifestation of the ‘minimal modification
hypothesis’. These three requirements fix the function h completely in any given situa-
tion. Thus this prescription gives a complete algorithm for computing the spectrum of
multi-centered black holes given the collinear fixed point solutions to (2.24) satisfying the
requirement (2.10).

The term in which all the s,ﬁa)’s in the argument of A are 1 would combine with the
term where each s,ga) = 1 in the first term in (5.6). Since the latter terms do not have any
unwanted denominators and are automatically given by Laurent polynomials in y, there is
no need for any correction terms. Thus h(f, fa, -+ ; {s,(:)}; y) vanishes if all the s,(ca)’s are 1.
This shows that if all the r;’s are 1, 1.e. the «;’s are all different, then I.,, vanishes.

5.3 Illustration

Since the above discussion has been somewhat abstract we shall now demonstrate this pro-
cedure by a hypothetical example (which will map on to a real example in §6.5). Sup-
pose we have a four centered solution with charges ay, as, ag = r13, ay = 190 such that
(a1, B) = —(aw, B). Suppose further that in some region of the moduli space we find that the
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only collinear configurations involve the order 1,2, 3,4 and its mirror 4, 3,2, 1 with s(p) = %1.
Then the net contribution to gyef(av, ..., a4;y) from the collinear fixed points is

()2 (y —y ) Py -y 2). (5.8)

Let us suppose further that there are no solutions where a proper subset of the centers
are in the scaling configurations, — the only additional contribution comes from the scaling
solution where all the centers approach each other. We can determine this term according
to the prescription (5.5). This gives the net contribution to gye(as, ..., a4;y) to be

—1\— o —o 1 —
Gret (a1, .. s y) =(—1)"2 3 (y —y ) 3{@/ 2y §a12(y2 —y 2)} for ., € 27,

:(_1)&12+3(y _ y71)73 {ymz _ yfmz _ &12(y _ y’l)} for o €27 +1.
(5.9)

After taking out a factor of y~*2 we see that the term inside { } is a polynomial in 3? and
has triple zero at y = 1. Thus it must have a factor of (1 — y?)? cancelling the (1 — 3?)3
factor in the denominator, and the expressions for g.f(aq,...,aq;y) given in (5.9) can be
expressed as a Laurent polynomial in y.

As long as all «o;’s are different this ends the discussion for the contribution from this
four centered terms. Suppose however r; = ro = r so that a3 = ay. In this case the net
contribution to the index from this four centered configuration will be given by

1
Egref(ala o, 703,785 y) Qs y) Qi (an, y) Q5 (1B, y)?

1 y—y
+ 5 gref(ah Q, 2T67 y)m Qif(@l, y) Qif(()ég, y) Q;S;)f(r67 yz) (510)

+ h(%ﬂzﬂ”ﬁ;sgl) = 1’851) = Lsél) =2;y) o (041,y) Q}gef(o@,y) Qif@"ﬁ,yz)-

ref

The second term comes from the term gy (a1, o, 2 3; y) Q5 (a1, 1) (i, y) Q5 (218, y) and
the third term is the correction term given in (5.6), (5.7). To proceed we need to know
g(aq, e, 2rB;y). Suppose at the same point in the moduli space the collinear three centered
configurations carrying charges aq, as, az = 2rf3 are of the form 123 and 321. In this case
we have

Gret (a1, 0, 27 Bsy) =(—1)*2 2 (y —y ) {y* 2 4y~ =2} for oy € 2Z,
:(_1)0412+2(y o y71>72 {yalz + yfalz _ (y + yfl)} for iy €27+ 1.
(5.11)

Note that we have added the correction terms due to the scaling solutions according to
(5.5). We can now substitute (5.9) and (5.11) into (5.10) and determine h by requiring
that the resulting expression is given by a Laurent polynomial in y for any choice of Q2
satisfying similar properties. Now the first term clearly has this property. In the second
term g (1, a2, 2r3; y) has this property, but the factor of (y —y=1)/(v* —y~2) = y/(1 +4?)
has a factor of (1+?) in the denominator which could potentially spoil this property unless

the numerator has a factor of (1 + y?). In this case we need a non-vanishing h to cancel the
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unwanted terms. To proceed we note that if aqs is odd (a2 = (2k + 1) with k € Z) then we

have
Ly 1 _ ~ -
5 1+ y2 gref(ah Qa, 2T/B7 y) - _5 Yy 2k+2(1 + y2) 1(]. — yQ) 2(1 — y2k)(1 — y2k+2) . (512)

Each of the two factors (1 — y%*) and (1 — 3?**2) has a factor of (1 — y?) canceling the
(1—92)~2 factor. Furthermore (1 —1y?*) for even k and (1 —y?**2) for odd & also has a factor
of (1+ y?) that cancels the (1 + y?)~!. Thus in this case (5.10) gives a Laurent polynomial
in y without any A term and we can set h = 0. On the other hand for even ajy (a2 = 2k
with k& € Z) we have

Ly ) L 2\—1 2\ —2 2k\2

5@%&(@1,0&2,27"/3,9):59 (I+y)" (Q—y) " (1—y"). (5.13)
(1 — y**)2 has two factors of (1 — y?) cancelling the (1 — 4?)~2 factor. Furthermore for even
k it also has two factors of (1 + y?) killing the factor of (1 + y?)~!. Thus again in this case
there is no need for any correction term and we can set h to 0. Finally for £ odd we can

express the right hand side of (5.13) as

1
5 y72k+3(1 + yQ)*l{l + y2 + .. y2k72}2 . (514)

Now as y* — —1 this term approaches 1y(1 + y*)~'. Thus from (5.10) we see that the
unwanted terms may be cancelled by choosing h to be negative of this term. This gives

P =150 =16V =2:) =0 for ap€2Z+1
=0 for oy €4Z (515)

h(ala g, Tﬁ? 851

1
=3 (y+y ' for o €4Z+2.

In §6.5 we shall realize this example in the case of dipole halo configurations.

5.4 Wall crossing re-examined

Given the modifications due to the scaling solutions, we need to re-examine the analysis
in §4.1 on the compatibility of our prescription with the wall crossing formula. Rather
than doing a detailed analysis, we note that our prescription for including contributions

from scaling solutions affects the factors gret({ci,i € A} y) [ Q3 (i, y) in the square

i€Am
bracket of (4.18), as each set A, may allow for scaling solutions. Thus, the index associated
with individual black hole molecules will change. However, the factor g,et({7m};y) in front,
which determines the jump of the index under wall-crossing, will not be modified since the
elements belonging to different sets A,, always remain separated. Thus, the contributions of

scaling solutions do not affect the consistency with the wall-crossing formula.

6. Dipole halo configurations

In this section, we verify our prescriptions for a class of multi-centered configurations whose
phase space and quantization is completely understood, namely dipole halo configurations|[16,
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29]. These consists of n-centered configurations with two distinguished centers carrying
charges aq, g, with aqo # 0, and n — 2 centers carrying mutually local charges «,, such
that a, = —aag, gy = 0. Such configurations were analyzed in detail in [16, 29], whose
notations we follow. A particular realization of this system, which we shall use to frame
our discussion, is given by a D6 — D6 pair with n — 2 DO0-branes orbiting around it. After
reviewing the main features of such configurations in §6.1, we describe the 3-centered case
in detail in §6.2 (an example of which was already analyzed in §3.3.1), and present a general
proof of the minimal modification hypothesis in §6.3, based on recursion relations for the
equivariant index. Similar recursion relations for the equivariant volume are presented in
§6.4. Explicit results for 4 and 5 centers can be found in Appendix C. In §6.5 we analyze
four centered configurations with two identical centers.

6.1 Generalities

We shall consider a system of n-centers, the first one of which represents a D6 brane with
certain U(1) flux, the second one describes a D6-brane with opposite U(1) flux and the third
one onwards corresponds to D0-branes carrying gs, ..., q, units of D0-brane charges. Thus
the first and the second centers carry opposite D6 and D2-brane charges but the same D4
and DO0-brane charges. In the language used in §3.3.1 we have:

a = (1,-U,—kU?*/2 — B/24, -k U? /6 — BU/24),
dg = (—=1,-U,kU?/2 + B/24, -k U? /6 — BU/24), (6.1)
da = (07 07 07 Qa)a

leading to

oy = I = 4xU?/3 + BU/6, g = —(q, 24 = (a, gy = 0, 3<a,b<n,
(6.2)
where we assume that I, g, are positive integers. The system described in (3.20), (3.21) is a
special case of this with n = 3. We work in the chamber of the moduli space where

€1 = W, Co=——T1 Z qa, Ca = N{Ya fOra:?’7"'7n7 (63)
a=3,...,n

where p is a positive constant and 7 is a small positive or negative number. As described at
the end of §3.3.1, the n = 0 subspace describes a threshold stability wall on which a subset
of the DO0-branes can get infinitely separated from the rest of the system. But the index does
not jump across this wall, since the symplectic product of the charge vector of the expelled

DO-brane charges with the total charge vector of the D6 — D6 — D0 system vanishes.
On the Coulomb branch, the system is described by multi-centered configurations satis-

fying the equilibrium conditions
1 1 I Ga

1, ILivya__, (6.4)

Tta  T2a 2 5T Tl

In particular, at n = 0 the DO-branes lie either at infinity or on the plane equidistant to the
D6 and D6 branes. As shown in [16, 29], for this type of dipole halo configuration the phase
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space of solutions to (6.4) at = 0 is toric and given by a 7"~ bundle over the polytope
P {¢a}) = {(ma,m) : 0<me<qa,—j<m<j,j>0p CR"™, (6.5

where

J=1/2— ) mg (6.6)

a=3,...,n

is a linear function of the n — 2 variables m,. These variables parametrize the angle 60,
between 7, and 75 via m, = g, cosf,, while m parametrizes the angle 6 between 775 and
the z-axis via m = j cos 6. Physically m represents the component of the angular momentum
along z-axis. The coordinates (m,m,) together with coordinates (¢, ¢,) € [0,27]""! along
the torus fiber provide a set of Darboux coordinates on M,,,

w=—dmAdp— D dmaAdg, . (6.7)

a=3,...,n

Denoting ¢, = ¢, — o where Y ¢o = 0 and using (6.6), it is straightforward to check that
(6.7) agrees with (2.14) with @ =) ¢, sinf, df, A d¢,. The equivariant volume (2.15) can
be rewritten as

I
f_zama
Jetmssicat({vi }5y) = (=1)/ "+ /0< < dmg-'-dmn/ dm e*™
SMaxqa I
S ma<I/2 —31t2aMa
-n sinh|(I — 2 Z_ 4
:(—1)1 +1 I dms -+ -dm,, [( VZ _3Ma) ]’ v=Iny.
>, ma<I/2

(6.8)

For brevity, we shall denote the r.h.s. of (6.8) also by S(I;{qa}a=3,. n;v). Moreover, we let
S(I;{qa}a=s...n;v) = 0 whenever I < 0.

For Y ¢, < I/2, the upper bound in ) m, < I/2is never attained, and the phase space
is compact. The equivariant volume can therefore be evaluated rigorously using localization
with respect to J;. For n > 0, the fixed points of J; are collinear solutions to (6.4), where
a (possibly empty) subset A C {3,...,n} of the DO-branes lie on the segment between the
D6 and D6 along the z axis, while the DO-branes in the complement B = {3,...,n}\A lie
on the semi-infinite z-axis extending from the D6-brane to infinity. In the limit n — 0, the
centers in A coalesce at the mid-point between the D6 branes, while the centers in B run
off to infinity. The distance between the D6 and D6 is given by ri2 = (I — 23,4 ¢a)/1,
which is positive for any subset A. The angular momentum carried by this configuration is
Jy = (I —2> ea qa) /2. In appendix A.2 we show that the sign s(p) evaluates to (—1)"4,
where ny4 is the cardinality of the subset A (the order among the centers inside the clusters
A or B is irrelevant since they carry mutually local charges). Thus, the classical phase space
integral (6.8) evaluates to

S([; {Qa}a:&...,n; I/) _ (2 In y)—n—H Z(_l)nA+I—n+1 (yI—QEagA Ga + (_1>n—1y—1+22a€A qa) )
A
(6.9)
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This can of course also be obtained by direct evaluation of (6.8). Since the fixed points are
isolated, according to the discussion in §2.5, the exact refined index is obtained by replacing
2Iny by y — y 1, leading to

gret({ai};y) = (—1)I+”_1(y — y‘l)_”H Z(_lym (yI—QZaeAqa + (_1)n—1y—l+22aeAqa) _
! (6.10)

In contrast, when [/2 < )" q,, the phase space M,, is non-compact, as it has a scaling
region represented by the boundary ) m, = I/2 on which j vanishes, and all centers ap-
proach each other at arbitrarily small distances.?! Such configurations are therefore invariant
under SO(3). To compactify M,,, we include the boundary j = 0 1.e. supplement the open
polytope P with the lower-dimensional polytope

QI {gu}) = {(masm) : 0<ma<qa, » mg=1/2, m=0}. (6.11)

a=3

Denoting by M5! the (2n — 4)-dimensional compact toric manifold built over the polytope
Q, with torus fiber parametrized by ¢,, we define the compactification of M,, as

M, = M, UM (6.12)

and require that SO(3) acts trivially on the boundary Mscal,

The equivariant volume of M,, can in principle be evaluated by localization. One class
of fixed points is given by the same type of collinear configurations as described above (6.9),
with the proviso that the subset A must be chosen such that r15 > 0, i.e.

D < g (6.13)

The contribution of these isolated fixed points takes the same form as in (6.9), with the
restriction (6.13) enforced. We denote this contribution by Scon(1; {¢a }a=s...n; V). In addition
to these isolated fixed points, already present in M,,, one also expects a contribution from
the submanifold M3 inside M,,. Although this contribution can in principle be computed
using a generalization of the Duistermaat-Heckman formula [38], we shall not attempt to
compute it directly, and instead define

S([, {Qa}a:i’),...,n; V) = Scoll<[; {Qa}a:?),...,n; V) + AS([, {Qa}azi’),...,n; V) ) (614)

where AS(I;{¢u}a=s...n;v) is the contribution of M5, By a direct computation of the
equivariant volume using recursion relations in §6.4, we shall be able to read off AS(7; {q,}a=3
Similarly, the exact refined index gyer({; };v), which we also denote by S(I;{¢.};v), decom-
poses as

S(Ia {Qa}a:S,...,n; V) - Scoll([; {Qa}a:&.‘.,n; V) + AS(Ia {Qa}a:S,...,n; V) ) (615)

2In this example, there are no scaling configurations where only a subset of the centers scale together,

since the total charge carried by such a subset would be mutually local with respect to the remaining,
non-scaling DO-brane centers.
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where Scon(1;{qa}a=s.. n;v) denotes the r.h.s. of (6.10), with restriction (6.13) enforced on
the subset A, and AS (I;{qa}a=3...n;v) denotes the contribution of the fixed submanifold
Ml As explained in §5, the minimal modification hypothesis determines the correction
AS uniquely by requiring that Sisa SU (2) character and AS = 0 as v — o0.

On the other hand, since the phase space of n-centered solutions is a toric Kahler man-
ifold, it can also be quantized exactly. We refer to [16, 29] for the details of this procedure
in the dipole halo case, and merely quote the result. When all the ¢,’s are distinct, so that
the DO0-branes are distinguishable, the exact index is given by

LI-n+1-23, ma)

gret({oibiy) = (=) > > Y2 (6.16)

mM3,..., Lz _ 17 _
ma€2,0<mq<qq—1, m=—3(I—n+1-23_,ma)

> ma<|(I—n+1)/2]

where |z | denotes the largest integer smaller or equal to x, and the sum over m € %Z is such

that*? m — (I —n+1—2%,m,) € Z . As already mentioned above (6.15), we denote by

S(I;{g.};v) the r.hs. of (6.16), and let S(I;{qe}; ) = 0 whenever I < n — 1. Performing
the geometric sum over m, we arrive at a sum of SU(2) characters

sinh[(/ —n+2—-23""_.m,)V]

sinh v

ST {ga}iv) = (-1 >
Ma€L0S S a1,
> e ma<[(I-n+1)/2]

(6.17)

If some of the ¢,’s coincide, and if all 2(«a;)’s are set to one, the index is still given by (6.16),
(6.17), with the additional restriction that the m,’s corresponding to identical particles must
be distinct, and the expression must be divided by a symmetry factor k! for every set of k
identical ¢,’s.

In §6.3, we shall give an inductive proof of the minimal modification prescription de-
scribed below (6.15) in this class of dipole halo configurations, by establishing recursion
relations for the exact index (6.17) and comparing them with the recursion relations obeyed
by its regular part S’COu(I :{q.};v). Using similar methods, in §6.4 we shall also demonstrate
a variant of this minimal modification prescription, which allows to recover the exact equiv-
ariant index S(I;{q,};v) from the knowledge of the equivariant volume S(I;{q,};v). This
prescription goes as follows:

1. In the expression for S(I;{q,};v), replace all v’s which do not appear as arguments of
hyperbolic functions, by sinhv. Let us denote the result by S(I;{q.}; V).

2. If S(I; {qq}; v) can be expressed as Laurent polynomial in 3y = €”, then this is the exact
result for S(7;{q.};v). Otherwise we add terms which vanish as v — +00 to make the
expression into a Laurent polynomial in y. This gives the exact result for S(7;{q.};v).

Before going to the general proof of these statements, we shall illustrate them in the
case of n = 3 centers in §6.2. Explicit computations for n = 4 and 5 centers can be found in

22This condition was not stated explicitly in [16, 29] but is necessary for the consistency of the SU(2)
action.
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Appendix C. In §6.5 we shall study four centered configurations with two identical centers
and use the minimal modification prescription of §5.2 to compute the index. This is then
compared with the known exact results.

6.2 Three-centered solutions

For n = 3 we have to consider two cases separately.

6.2.1 Non-scaling case: ¢3 < %
For ¢3 < é, the sum over collinear configurations (6.9) reduces to
S’ I 0= 1) = i I 1-2q3 —-I _  —I+2q3 1
con(13 433 9) = 5 v Yy Ty —y : (6.18)
(y—y™)
This can be expressed as a Laurent polynomial in y, and indeed agrees with the exact refined

index computed from (6.16).
Alternatively we can begin with the equivariant volume (6.8). This gives

a sinh|(I — 2m3)v cosh(Iv) — cosh|(I — 2q3)v
0 v 2v
After the replacement ¥ — sinh v in the denominator, we get
~ cosh(Iv) — cosh|(] — 2q3)v
S(I;g35y) = (—1)" 1) I = 203)v]. (6.20)

2 sinh? v
It is easy to see that this agrees with (6.18) and hence can be expressed as a Laurent
polynomial in y. Thus in this case there is no need to add any correction terms and S(7; ¢3; y)
is the same as S(I;q¢3;y). In particular, the symplectic volume S(I;qs;y = 1) agrees with
the exact index S(/;¢s3;y = 1) in the non-scaling regime.

6.2.2 Scaling case: g3 > £
In this case (6.9), with the restriction (6.13) on the set A, reduces to

Scoll([; q3; y) - % [yl + y1:| . (621)

This diverges as y — 1 and hence we must add corrections described in (5.5). This indeed
reproduces the exact index computed from (6.16),

A —_1)
S(I;q3y) = ﬁ {yl +y - (y+y‘1)} ,  for I odd
1) (6.22)
:W {yl+yl—21 , for I even.
y—vy

On the other hand the result of the equivariant volume is insensitive to the parity of I,
and gives
172 sinh|(I — 2ms)v cosh(Iv) — 1
S(L;g3y) = (—1)1/ dms I ) _ (_1)1L.

0 v 212

(6.23)
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The last term in the numerator is recognized as the contribution of the scaling fixed point
Q = {ms =1/2,m = 0}. Replacing v — sinh v in the denominator we arrive at

~ h(lv) —1
Sy = (1) S L (6.24)
2sinh” v

For I even, this agrees with the exact result (6.22). On the other hand if I odd, S differs
from the exact result S by

. - hv —1
S(I;q3y) = S(I;qg;y)—(—1)1608.—y2
2sinh” v

for I odd . (6.25)
Note that the correction term vanishes as v — 4oo. Thus, had we had started with the
expression for S and added corrections following the prescription given below (6.17), we
would have arrived at the correct expression for S. It is also worth noting that when 7 is
odd, the exact index S (I;q3;y = 1) differs from the symplectic volume S(I;q¢s;y = 1) by a
fraction (—1)! /4, which is necessary to make the result integer. Thus the non-renormalization
property which was observed in the non-scaling case breaks down in this case. Finally, we
note that we have not discussed the effect of the regularity conditions (3.8). This was
discussed in a special case in §3.3.1, and we expect this to be satisfied also for all the
solutions described in this section.

6.3 An inductive proof of the minimal modification hypothesis

In this section, we shall prove by induction that AS’(I; {qa}a=s.. n;v) appearing in (6.15), giv-
ing the difference between the exact index (6.16) and the contribution Scon(/; {4a tazs....n; V)
of regular collinear configurations given in (6.10), vanishes as ¥ — oo. This proves the
validity of the minimal modification hypothesis for all n for the specific system under con-
sideration.

First, we establish recursion relations for the equivariant index S , defined in (6.17). For
this purpose it is useful to introduce a variant of S defined by

cosh [(I —nF2=23 g M)V

sinh v

C’(I, {Qa}a:&“.,n; I/) = (_1)I+n71 Z
m(ngg%%qua_l
Yo ma<[(I-n+1)/2]

?

(6.26)
and another quantity

E(I; {¢a}ams..n) = (—1)171 > 1. (6.27)

ma3,...,Mn
Ma€Z,0<mq<qq—1,

>0 ma=[(I-n+1)/2]

This is recognized as the number of integer points closest to the polytope Q in (6.11). We
also define S‘, C and F to be zero for I < (n—1). For n = 2, i.e. in the absence of D0-branes,

we let .
(1, v) = (—y 1 SBUY) gy gy coshUY) (6.28)

sinh v sinh v
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if I >0, and zero otherwise. The quantity F(I; {q,}) can be evaluated from (6.26) using

(6.29)
valid for n > 3.
Performing the sum (6.17) over the last charge m,, first, we see that the sum is empty if
S ma > (I —n+1)/2], or else runs from 0 to ¢ — 1 where ¢ = min(g,, | (I —n+1)/2| —
ZZ;; mq + 1). Using the geometric sum identities

1

q

cosh[A + (2¢ — 1)B| — cosh(A — B)

inh(A 4+ 2Bm) = )
mz::()sm (A+2Bm) oL B (6.30)
q—1 . .
sinh[A + (2¢ — 1) B] — sinh(A — B)
h(A+2B = 6.31
— cosh(A +25m) 2sinh B ( )

with A= (I —n+2—-23""2m,)v and B = —v, we find, for any n > 3,

a

1

_ C _
v 2sinhy L~ 77 AT V)M ase=s,..,
B cosh® £ 4 (—1)/"sinh* £

2 sinh? v (6.32)
CI: {a}ams,..ni V) =5 —— [S’(I— 200; {data=s,..n13v) = S(L; {da}a=s. ., "—1;”)}
1+ (=)~
_ #E(I; {qa}a=s,..n)-

4 sinh v

Similarly, we can derive a recursion relation for the contributions of the regular collinear
solutions to the refined index. Given a collinear configuration contributing to the (n — 1)
particle system with the D0-branes carrying charges ¢s, . . ., ¢,_1, we can construct a collinear
configuration contributing to the n particle system with an additional D0-brane with charge
¢n as follows. For simplicity we shall work in the n — 0 limit. First of all the additional
DO0-brane can always be placed at infinity for any collinear configuration of the original
(n — 1) particle system. Also, for any collinear configuration of the original system, if
the set A containing the DO-branes at the midpoint between D6 and D6 brane satisfies
Y aenda < (I —2¢,)/2, we can add the n-th D0-brane at the midpoint. Taking into account
the various signs appearing in (6.10) we get the recursion relations, for any n > 3,

~ 1 A
Scoll([; {Qa}aZS ..... n ) :2 sinh v [Ccoll([ - QQn; {Qa}aZS ..... n—1; V) - Ccoll(I; {Qa}a:3 ..... n—1; V)]
~ 1 ~
Ccoll(j; {Qa}a:?) ..... ns ) :2 sinh v [Scoll(] - QQ’m {QG}a:Z’) ..... n—1; V) SCOH(I; {Qa}a:i’) ..... n—1; V)]

! (6.34)
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Subtracting (6.33) from (6.32), we arrive at

AS(I, {Qa}a:S ,,,,, n;V) ZQSinhV [AO(I_2Qn;{QQ}a:3 ,,,,, n—1:V ) AC<I {Qa}a 3,.n—1:V )}

cosh? £ + (— 1= sinh? ¥
- 2sinh? v ZE(I {da}ta=3,...n)

ACA’<I7 {qa}a:S ,,,,, ns V) =

2sinh v
1+ (—1)1‘”

4 sinh v
(6.35)

Assuming that AS, AC' — 0 as y — oo for n— 1 particles, it immediately follows from (6.35)
that the same statement holds for n particles. The validity of the assumption at n = 3
is easily checked using the explicit results in the previous subsection. Thus, the minimal
modification prescription is proved for this class of multi-centered configurations. It would
be interesting to compute AS directly by using the formula (2.35).

6.4 Recursion relations for the equivariant volume

In this section we shall derive recursion relations for the equivariant volume (6.8) similar to
the ones given in §6.3 , and then use them to prove the prescription given below (6.17). We
first define a variant of the equivariant volume (6.8),

- cosh[(I —2>""_,m,)V]
C(I;{mata=s,.n; V) = (_1>I+ ' /O<ma<qa, dmg---dm, » g (6.36)
> ma<I/2

and
E(: {gubas, ) = (=1)7F71 /o<ma<qad - dmp 8 (Zma—1/2> (6.37)

This last expression is recognized as the symplectic volume of the submanifold of fixed points
based over the polytope Q. For n = 2, i.e. in the absence of D0-branes, we set

S(1w) = () 2L ) < gy )

v v

(6.38)
if I > 0, and zero otherwise. E can be evaluated in terms of (6.36) using
(I {Qa}a 3yeeny ) - lllg% [V (C<I - QQna {Qa}a:3 ..... n—1; V) - C(I, {Qa}aZS ..... n—1; V))] ) (639)

or directly from its Fourier representation,

dt
E(I;{¢a}a=s,.., n):(—l)Hn_l/ B Gl DPE I nq“)t/QHQSm 5t (6.40)

R 2mtn—2

In particular, it is a piecewise polynomial in I, q,.
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By integrating first with respect to the last charge m,, in (6.8), (6.36), it is straightfor-
ward to establish the following relations, valid for n > 3:

1
S(L {Qa}a:3 ..... ns y) :5 [C([ - QQHv {Qa}azii ..... n—1s V) - C(Iv {Qa}aZS ..... n—1; l/)]

1
— — E(I; afa=3,...,n
212 ( a{q} 3, ,)

(6.41)

C(I; {qa}a:3 ..... n; V) = % [S([ — 2qp; {Qa}a:?, ..... n—1; V) - S([; {Qa}azs ..... n—1; V)] (6-42)

Similarly as in (6.33), the contribution to S(I;{q,}) from the regular, collinear fixed points
satisfies

Scoll(]; {Q(L}a:?) ..... ns V) =5 [Ccoll(] - ZQn; {Qa}a:3 ,,,,, n—1; V) - Ccoll(l; {Qa}a:3 ..... n—1; V)]

CCOH(I; {Qa}a:3 ..... ns l/) :; [Scoll([ - 2(]717 {qa}a:3 ..... n—1; y) - Scoll([; {qa}a=3 ..... n—1; V)]
(6.43)

where C.op is defined with an opposite sign compared to Seon in (6.9). Applying (6.41),(6.43)
recursively, the difference AS = S — S, evaluates to

nB+1

(I {Qa}a 3,..ns V _2 Z Z 2]/” m42 (]_QZQb;{Qa}a:S ..... m) (644)

n— mE2Z beB
where for given m, the sum runs over subsets B C {m + 1,...n} subject to the restriction
that >, pq < I/2. This difference can be understood as the contribution of the fixed
submanifold M5! built over the polytope Q. In particular, the first term with m = n in
the sum (6.44) is just the symplectic volume E(I,{q,}a=3...) of M54 rescaled by a factor
—1/(2v?). The remaining terms in (6.44) should originate from the Euler class of the normal
bundle to M5 which determines the integration mesure on the fixed submanifold, as in

,,,,,

(2.35). We give evidence for this claim in two specific examples with n = 4 and n = 5 in
§C.3.

We now turn to the proof of the prescription given below (6.17) for obtaining the exact
equivariant index from the equivariant volume. Recall that S was defined as the result of
replacmg in S all the v’s outside the argument of hyperbolic functions by sinh v. We define
C as the result of a similar replacement in C'. Then the recursion relations for S and C' can
be obtained by modifying (6.41), (6.42) to

S(I; {qa}azs...n; V) =S amhy

1
-——E
2sinh” v

(] {QCL}a 3,eny )

2sinh v
(6.45)
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Subtracting (6.33) from (6.45), and defining AS =S — S’COM, AC =C — écon, we arrive at

:2Smhy[Ac<I—2qn;{qa}a:3 ..... w157) = ACU {aubomsco1i¥)|

1
2sinh’® v

Aé(I7 {Qa}a:3 ..... ns V) =

2sinh v
(6.46)

Assuming that AS,AC — 0 as v — oo for n — 1 particles, it immediately follows from
(6.46) that the same statement holds for n particles. The validity of the assumption is easily
checked for n = 3. On the other hand we have already seen in §6.3 that S — Scoll and
o Ccoll vanishes as v — 0o. This shows that S — S and C' — C vanishes as v — 00, thereby
confirming the prescription described below (6.17).

6.5 Four-centered case with two identical centers

So far we have only considered the cases where the centers carry distinct charges. For the
dipole halo configuration analyzed here, the first case of identical charges arise for four cen-
tered configurations in which ¢3 and ¢4 coincide. We shall now examine this case and compare
the results obtained using the minimal modification hypothesis with the exact results. In
this case our formula (5.6), (5.7) for the total index associated with this configuration is:

%gref(ala Qg, (3, (3; y)Qif(ala y) Qfef<a27 Y) Qfef(a:ia y)z

1
+5 9 Gret (a1, 2, 203; y)y — (o, y) Qs (a2, y) Qs (s, %) (6.47)

+ h<0517052>r63 511 = 1759) = 175§.) = 2; Z/)Qref(ahy) Qfef(azay) Qif(a3vy2)'

We shall determine the function A using the prescription of §5.2. Following the convention
of [33] and appendix C we shall consider three separate cases A, B and D. The case C, for
which g3 < /2 < g4 is not relevant here since we have g3 = q4.

Case A
In this case we have 2¢g3 < I/2. Thus according to (6.18) we have

—1)! B B B ~1)(1 = y74q3 y[ - y,[+4q3
gref(a1,a2,2063;y) = W yl_yf 4‘13_|_y I_y I+4q3:| _ ( ) ( (y_y)El)z )

(6.48)
Since the first factor has a factor of (1 4 y?) our prescription of §5.2 tells us that we have
h = 0. Thus using (6.47), (C.1) and (6.48) we see that the full index is given by

1 (—1)”1 _ _ _ _ _
2 (y—y')? y' =2y gyt T g gy IR IR QR (an, ) Qg (a2, y) Qg (s, y)?
+ 1 <_1)I {yl - y1—4q3 + y_I - y—l+4q;>,:| st(al Y) st(% Y) QSf(O@ 92) .

2 (y _ y—l)(yZ _ y—2) re re re

(6.49)
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It is straightforward to check that Eq. (6.49) with Q2

oe(a,y) = 1 agrees with the exact

refined index computed from (6.16), with the additional restriction mg < my4 on the sum to
account for the identity of the particles.

Case B

In this case we have q3 < I/2, 2q3 > I /2, and hence according to (6.22) we have

1!
Gret (a1, a2, 203 y) = (y(_—y)l)Q {yl +y = (y+ y‘l)} ,  for I odd
(1) (6.50)
= W [yl —i—yfl — 2] ) for I even.
y—vy

This is the same as in (5.11) with ay5 replaced by 1. Since h is determined from gyer (a1, g, 2ai3; ),
it will be given by (5.15):

h(o, ag, rp; sgl) = 1,3&1) = 1,3&1) =2y)=0 for 1€2Z+1

=0 for [€4Z
1
=3 (—D)3(y+y™ ™t for T €4Z+2.

(6.51)

Using (6.47), (C.5), (6.50) and (6.51) we now get the total contribution to the index from
this configuration to be

lﬂ {yf _ 2y1—2q3 _ y—l + 2y—l+2q3 _ (y _ y—l)(4q3 _ [)
2(y—yt)?
Qrsef<0417 Y) Qfef(%a Y) Qfef(a& y)2

1 (=1)f [ I, I\ s s 2
+ 3z y+y _y+y Qrea?y Qre a2, Y Qrea7y

2(y_y_1>(y2_y_2) ( ) f( 1 ) f( 2 ) f( 3 )

for I € 2Z + 1
(6.52)
(-1

1 I -2 —1I —I+2 1 2 —2
-\ 7 -9 a3 _ oy~ it2as _ — A — T
AUETE {y y Yy 2y 5" =y ) (e — 1)

QrSef(ala ?/) Q}gef(a% y) Qfef(a?n 9)2

1 —1)! B
T Y 2| o) o) 0l )

for I € 47
(6.53)
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1 (—1)1*1
2 (y—y )3
Qif(“h ?J) Qif(a% y) Qfef(a& 9)2

_ _ _ 1 _
[y’—?yl 203 — =T gy~ I3 —§(y2—y BICT )

1 (=1’ { —I } s s 2
+5 Yty _QQrCQJy Qrca7y Qma;y
eI 1, 20 ) Ol )
1 _
+§(—1)”3(y+y DT (0, y) Qi y) Qi las, v7)
for I € 47 + 2.
(6.54)

Again, one may check that Eq. (6.52)-(6.54) with Q5 .(,y) = 1 agree with the exact refined

index computed from (6.16) with the restriction ms < my.

Case D

In this case we have g3 > I/2 and as a result get(cv1, 2, 2a3,y) and hence h will be given
by (6.50) and (6.51) respectively. Thus the only difference from case B is in the expression
for grer(an, an, ag, ag; y) given in (C.14). Thus using (6.47), (C.14), (6.50) and (6.51) we now
get the total contribution to the index from this configuration to be

1 1 -1 B
5 o 7 = = 57| s, )0 0 1), )
_|_1 (_1>I I, 71_( + 71) 0° (Oz )Q (a )QS (a 2)
2 (y Y- )(y2 - y_Q) Y Y yry ref \ V15 Y )3 bpep (02, Y )3 pop (O3, Y
for I € 2Z + 1
(6.55)
1 (1! T .
ol Ul At Vet ] I CR R CHRCR)
_'_1 (_1)1 I+ -I QS (O./ )QS (a )QS (Oz 2)
2 (y_y_l)(yg_y_g) Y Y ref \O1, Y )3 dpep (02, Y )3 Liep (O3, Y
for I € 47
(6.56)
1 (=1)—! _ 1 _
5 m |:y[ -y - 5 <y2 -y 2):| QrSef(alay)Qfef(a% y)Qif(a?n y)2
+1 <_1)I I+ -1 Q (a )QS (a )QS (a 2)
9 (y _ y_l)(y2 _ y_2> Y Y ref \¥1; Y )3 bpep (02, Y )3 Lo (O3, Y
1 _
+5 (Dl +y) e (an, y) g2, y) Qe (s, %)
for I € 47+ 2.
(6.57)

Again, one may check that Eq. (6.55)-(6.57) with Q5 .(,y) = 1 agree with the exact refined

index computed from (6.16) with the restriction ms < my.
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A. Sign rules for collinear fixed points

In this appendix, we provide some details on the computation of the sign of the contribu-
tions from collinear fixed points near a wall of marginal stability (§4.1) and for dipole halo
configurations (§6.1). Recall that s(p) is given by (2.29), where M (p) is the Hessian of the
‘superpotential’ (2.25) at the critical point p.

A.1 Sign rules near a wall of marginal stability

First we shall compute the sign s(p) associated with a collinear configuration p near a wall of
marginal stability, if the collinear configuration breaks up into two widely separated clusters
as we approach the wall. Such a configuration has been described in §4.1 where the two
sets into which the centers split have been called A and B. We follow the notation of §4.1,
and work with the configuration for which zp > 24, 1.e. 2; —2; > 0 for ¢t € A, j € B. Near
R = |z4 — zp| — o0, the superpotential (2.25) decomposes as

. . n < n

W(ZZ‘, )\) ~ WA (ZZEA7 )\A = —A>\> + WB (ngB, )\B = —B>\> - Z Oéij 11’1 |Zz — Zj| . (Al)

" " i€A,jeB

For such a configuration the Hessian of W with respect to \, zic, zjep takes the form

M: M0+M1, (AQ)

where MO is the Hessian in the strict R — oo limit and M, is of order 1/R?. We have

0 DAyl REyp
MO = %UA MA 0 (AS)

"TBUB 0 MB

where M 4 is the Hessian of W4 with respect to z;c4, w4 is the ny-dimensional column vector
with entries 1/n 4, and similarly for Mg, ug. In particular, we note that My us = Mgug = 0.
M is given by

(Ml)oo = (Ml)Oi = (M1)io =0 forl<i<n,

8ij Yopep ix fori,je A
1) eaom forijeB (A.4)
R —a;; forice A jeB

—aj forieB,jeA

(M)
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On the other hand, the Hessian of W, (respectively, WB) with respect to Aa,z, (a € A)
(respectively, Ag, 2, b € B) is given by

MA:(O “g) MB:(O “g). (A.5)

To compare the signs of det M and det M4 det Mg, we shall construct an eigensystem of
M in terms of the eigensystems of M4 and Mg, in the limit R — oco. First, we note that an
eigensystem of My is given by the ns + 1 (eigenvectors,eigenvalues)

([:l:\/%_A,uA],:I:\/;_A> - (0.051.09) (A.6)
@ . _

where v,’, i = 1,...,n4 — 1 are eigenvectors of M, in the subspace orthogonal to the

null eigenvector u,4. Similarly, let vg) be a system of eigenvectors of Mp in the subspace
orthogonal to the null eigenvector upg, with eigenvalues )\g). In the strict R — oo limit, M
reduces to My and an eigensystem of My is given by the ny+np+1 (eigenvectors,eigenvalues)

1 ny np 1 (%) (2) () (4) _
([:l: o UAa, n UB];:E\/E)7 <[07UA JOB]J)\A) ) ([OvoAva ]7)\3 )’ <[07UA’ ulZiO?))

In particular, the last eigenvector, corresponding to a change in the relative separation
between the two clusters keeping their inner structure fixed, yields a zero-mode of M. Since
the eigenvalues /\S), )\g) are generically distinct and non-zero, the structure of the spectrum
will retain its form at large but finite R, except that the last eigenvalue will be lifted to a non-
zero eigenvalue A(R). To compute A(R), it suffices to use non-degenerate perturbation theory
and calculate the expectation value of M; on the unperturbed eigenvector U = [0, w4, —ugl.

This gives
UT'Ml'U ’}/AB(’I”LA‘FTLB)
AMR) ~ ~ . A8
(F) ur.u nangR? (A-8)
As a result,
. 1 ; . 1 . .
det M ~ ——A(R) H A H A9 oz T det My det My (A.9)
i j

Using (2.29), we arrive at (4.13) for zp > z4. The result for zp < z4 follows by exchanging
A and B in the above analysis.

A.2 Sign rules for collinear dipole halos

In this section, we establish the sign rule s(p) = (—1)"4 used in (6.9) for collinear dipole
halo configurations in the non-scaling regime. For small positive 7, the solutions described
above (6.9) satisfy

1 r12)> 1
Za — 5(2’1 +ZQ) — <81;g Ya € A, 2y — 5(21"‘22) — R YbeEB , (AlO)
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where R ~ \/r12/n. In this limit, the Hessian M takes the following form to order R~3:

. N - 1 N N I
MQOZO, MOi:MiOZ_ fOI'].Si,jSTL, M12:M21:— s
n (7"12)2

. I—4% 1t
My = ——5= + ZQb_2ZQa 1?2%;

12 beEB a€A beB
. I—4% 1t
MQQITGA 2> > @)+ 1§qu,

12 a€A beB beB
T = N ! 2 o A, My =N L =20 forbeB
Mla:MaIZWQQ—i_ﬁQa or a € A, Mlb:Mblz_ﬁCIb_ﬁQb orove b,
R N 4 2 N N 1 T
My = Moz = an ~ 2l fora e A, My, = My = b~ RLg% for b€ B,
N 8
M, = —W Ga O for a, a e A, Mbb’ =2 2; qQy Opy for b, b e B,

12
Mab:Mba:O forae A,be B.
(A.11)

To evaluate the determinant of this matrix in the large R limit we proceed as follows. First
we define a new matrix M by dropping the first two rows and columns of M; we have
seen earlier that det M = —det M = — det M. To evaluate det M, we can add half of the
the second to last row of the matrix to the first row and then add half of the second to
last columns of the matrix to the first column. This does not change the determinant but
simplifies the matrix. Let us denote the resulting matrix by My + M; where Mj is the limit
of the matrix as R — oo and M; is the remainder. It is straightforward to check that M, is
diagonal and has eigenvalues

(I -2 ZaeA Qa) : {_ (f(ﬁzy } : {OnB} 7 (A.12)

where 0,,,, denotes that the eigenvalue 0 is repeated np times. When we take into account the

2
712

effect of M, the non-zero eigenvalues are not affected appreciably but the zero eigenvalues
are lifted and can be obtained usmg first order degenerate perturbation theory. This gives
the approximate eigenvalues of My + M; to be:

(1—2%@1%)7 {_(7?1(1232}’ {(%)n} (A.13)

To leading order in the limit R — oo, det M = — det M is therefore given by

det M ~ 2n+2nA72 (_1)nA+1 ([ -2 ZaeA Qa) (HaeA Qa) (HbeB Qb) (A.14)

Rgn 2 nA)r?’nA —n+4

In particular, the sign of det M is (—1)"4*1. Note that to obtain this result, it is important
to keep all subleading terms through order 1/R? as indicated in (A.11), since the determinant
at lower order vanishes. Using (2.29) we now arrive at

s(p) = (—1)™. (A.15)
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B. Laurent polynomial property in absence of scaling solutions

Eq.(4.1), (4.2) (or equivalently (4.3)) gives the index associated with a multi-centered black
hole solution when the charges of the components do not allow for scaling solutions. Let
us restrict to the case where 7 is primitive so that (4.1) directly gives the refined index
Qet (7, ) rather than its rational counterpart Q.¢(7y,y). In this case the right hand side of
(4.1) must be a Laurent polynomial in y (i.e. a finite linear combination of y*™) whenever
the Q5 (;,y)’s are since otherwise the result cannot be interpreted as an SU(2) character.
Our goal in this appendix will be to prove this property of (4.1).%3

Clearly this will not be true for an arbitrary choice of the functions g,., but we shall
use (4.19) — valid when at the attractor point only single centered black holes contribute
to the index — to restrict the form of g.f. It is clear from this equation that the right
hand side of (4.19) will be a Laurent polynomial in y if the g ;s appearing on the right
hand side have this property. Thus by iterative application of (4.19) we can establish that
Gref(Qv1, . .., i, y) is given by a Laurent polynomial in y. It now follows from (4.1) that when

the «;’s are all primitive then the right hand side of this equation is a Laurent polynomial in
S

ref

y since the individual Q2 (a;,y) = Q5 (i, y)’s and the geet(vr, . . . , iy, y) have this property.

This argument fails when some of the a;’s are not primitive: in this case Q5 (;,y) defined
n (4.2) have extra factors of m(y™ — y~™) in the denominator, which must cancel in order
that the final expression is a Laurent polynomial in y. We shall now demonstrate that this
cancellation does take place.

By iterative application of (4.19) we can express gef(av, . .., ;) as a sum over attractor
flow trees in which a total charge v decays via an appropriate tree to the charges oy, ..., a,.
At a vertex at which a charge [ decays into two clusters of charge B and (3, we get a

multiplicative factor of

sinh({5s, B3)V) '

—1){B2,B3)+1g;
( ) 81gn<62,53) sinh v

(B.1)

Let us focus on the vertex at which a non-primitive charge «; gets attached to the tree.
Suppose at this vertex an internal line carrying charge S+ «; decays into another internal line
of charge  and the external line of charge a;. Our goal will be to show that the contribution
from the vertex factor cancels the (y™ —y~™) factors in the denominator appearing in (4.2).
The product of the vertex factor and the Q°(qay,y) factor is given by

sinh((8, a;)v) ~
SHIT Qs(aia y)

sin o)V B.2
:(_1)<ﬁ’ai>+lsign(ﬂ, CYZ-> Z m1 h((ﬁ? Z> ) QS(Ozi/m, ym) ' ( )
mloy

(—1)PeHsign(B, ;)
sinh(mv)

Since m|ay, (B, ;) is an integral multiple of m. In this case the unwanted denominator
factors cancel and sinh({f3, a;)r)/sinh(mv) is a Laurent polynomial in y.

ZIn order to prove that the result is indeed an SU(2) character, one must also show that the coefficients

of 4™ are integers. This is indeed true, but we shall omit the proof.
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This leaves the end vertices of the attractor flow tree, at which a charge a; + «; decays
into a pair of charges «; and ;. The contribution from such a vertex will be of the form

sinh({a;, a;)v)

(—1)t@2Hgign (ay, ;) Q% (o, y)QS(aj, )

sinh v
h((c, a;)v)sinhv
=(—1 (ovi,00)+1 ; ISHI v QS ; m QS ) Py
( ) Slgn Q; ,Oé] EI: ; smh(ml/) smh(py) (Oé /m7 y ) (Od]/p, y )
m|a; ploy

(B.3)

Let us define z = y? = e*. Since m|a; and pla;, (s, a;) is an integral multiple of mp. In
this case sinh({«;, o;)v) will have zeroes at 2™ = 1. On the other hand the denominator
sinh(mv) sinh(pr) has zeroes at 2™ = 1 and also at ¥ = 1. If m and p are relatively prime
then the locations of these zeroes are distinct except for a common zero of both factors at
z = 1. Furthermore they coincide with the zeroes of the numerator at z”” = 1. Thus all
the zeroes of the denominator sinh(muv) sinh(pr) cancel against the zeroes of the numerator
sinh({c, a;)v) sinhv. Thus as long as m and p are relatively prime, (B.3) is a Laurent
polynomial in y.

Now suppose that ¢ = ged(m,p) > 1. Then sinh(mv) sinh(pr) will have double zeroes
at each of the ¢ solutions to 2¢ = 1. In contrast the sinh((w;, a;)v) factor in the numerator
will generically have only single zeroes at each solution of z¢ = 1. Combining this with the
extra factor of sinh v in the numerator, we see that there is effectively a left-over factor of
sinh v/ sinh(qv) from the vertex, multiplied by factors which are Laurent polynomials in y.
We now show that the factor sinh v/ sinh(qv) is cancelled by other vertex factors in the same
tree.

To see this, note that since ¢ divides both «;, «;, it divides their sum a; + ;. We can
now repeat the analysis at the next vertex where say a line carrying charge «; + o; + 8
splits into charges § and o; + «;. As long as 3 and ¢ do not have a common factor, the
analysis of the previous paragraph shows that the vertex factor will cancel all the unwanted
denominators, including the left-over factor of sinh(qv)/sinh v from the previous vertex. If
on the other hand g and ¢ have a common factor s then we shall have a left-over factor of
sinh v/ sinh(sv) besides factors containing Laurent polynomials in y. Furthermore o;+a;+
will have the same common factor s. The analysis can now be repeated for the next vertex.
Proceeding this way, and using the fact that the initial charge ~y is taken to be primitive, one
can prove that at the end all the denominator factors cancel, and we are left with a Laurent
polynomial in y, proving the desired result.

C. Equivariant volumes and indices in dipole halos: n = 4,5
In this section, we provide explicit results for the equivariant volume and equivariant index
of the moduli space of n-centered dipole halo configurations with 4 and 5 centers. This serves

as a check on our minimal modification hypothesis and on the recursion relations derived in
§6.3,86.4, and provides useful insight of the fixed points responsible for these contributions.
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C.1 Four-centered case with distinct centers

For n = 4 we have to treat several different cases, depending on the value of I/2 relative to
g3, q4 and g3 + q4. We label the four possible cases as in [29], see Figure 2.

Figure 2: Polytopes associated to 4-center dipole halos in charge regimes A, B, C, D respectively,
in clockwise order starting from top-left corner.

Case A: 3+ q4 < é
In this case, the contribution to gref(ay, ..., ay;y) from collinear solutions, given in (6.10),
is:
-1
S* 11(]' 03, Q4 y) — L yI_yI—2q3_y1—2q4+y1—2q3—2q4_y—1+y—l+2q3+y_1+2q4_y_[+2(13+2q4
CO. bl ) ) (y . y_l

)3
(C.1)
This has finite y — 1 limit and hence, according to our proposal in §5, should be the complete
answer. Indeed, it can be checked that (C.1) agrees with the exact result (6.16).
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On the other hand, the equivariant volume evaluates to

q3 qa . h I _9
S(I; g3, qa; v) :(—1)1—1/ dm3/ dmy 22 [(1 = 2(m3 + my)V]
0 0

14

-1 -1
= ( 433 (sinh(Iv) + sinh[(2¢g3 — I)v] + sinh[(2¢s — I)v] + sinh[(] — 2¢3 — 2q4)V]) -
(C.2)
Replacing v — sinh v in the denominator we get
R _1\I-1
S(I;q3,q4;v) = ismﬁ {sinh(Iv) + sinh[(2g3 — I)v] + sinh[(2q4 — I)v] (3)

+sinh[( — 2g5 — 2q4)v]} .

Thus already agrees with the exact result S given in (C.1). Hence the prescription below
(6.17) and the minimal modification hypothesis gives the same result.
Case B: g3, 1 < L < s+ qu
In this case (6.10) leads to the following contribution to gyef(ai, ..., au;y):

R -1 -1 B B B B B

Scoll<];QS7Q4§y) — % {yl o yl 293 __ yl 2qa __ Y I +y I+42q3 +y I14+2q4 ) (04)

(y—y")

This diverges in the y — 1 limit. Hence we must add extra contributions of the form given
in (5.5) to have a Laurent polynomial. This leads to

N -1 I—-1 o - - - , -
S([; Q37Q4;y) — ﬁ |:yl _ yI 2q3 _ yl 2q4 _ y I +y I+2q3 +y I+2q4
—(y— yfl)(QQza + 2q4 — I)] , for I odd
(_1)171 <C5)
1
- 5(92 —y ) (2g5 + 2q4 — 1)] , for I even.

The need for adding correction terms shows that in this case there are scaling solutions. It
can be checked that (C.5) indeed agrees with the exact result (6.16).
On the other hand, the equivariant volume evaluates to

S(I;qs3,qa;v) :(_41)11 {sinh(Iv) + sinh[(2¢3 — I)v] + sinh[(2q4 — I)v] — (2g3 + 2q4 — )V} .

0 (C.6)

The last term is recognized as the contribution of the submanifold of fixed points M5! in
(6.12), with symplectic volume E(I,q3,q4) = (—1)"(g3 + q2 — I/2). Replacing v by sinhv in
the denominator and in the last term of the numerator, we arrive at

N (_1)[—1

S(I;q3,q4;v) :4sinh3 V{ sinh(Iv) + sinh[(2¢g3 — I)v] + sinh[(2q4 — I)V/]

(C.7)
— (2q3 +2q4 — I) sinhu} )
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Again, this differs from S given in (C.5) by a term that vanishes as v — 400

1-12q3 +2q4 — 1 0 : Iodd
Ieven| -

S0 05, au) = S(Ls g, a15y) + (=1
( ,C]3,Q473/) ( a(Js,CI47?J)+( ) 4Sinh31/ SinhV—%SiHh2l/ .

(C.8)
Thus the minimal modification hypothesis and the prescription given below (6.17) agree with
each other and the exact result.

Case C: g3 < 5 < g4
In this case (6.10) leads to the following contribution to gef(av, ..., ay;y):

R -1 I—-1 - B B
Seonl(15 43, qa;y) = ﬁ yh — oyt oyl oy ”2‘73] ) (C.9)

This diverges in the y — 1 limit. Hence we must add extra contributions of the form given
in (5.5) to have a Laurent polynomial. This leads to

R -1 -1 7 B B B B
SUW&%W%=i—l:§z/—d2%—yl+yf“%—2@—ylm4,
=y )L
for I odd
1) T (C.10)
_ I I-2g5 T, —I+2g3 2 -2
=T 13 |Y VY -y ty - -y Q]7
(y—y )| ( )%
for I even,
in agreement with the exact result (6.16).
On the other hand, the equivariant volume leads to
(-1
S(1;q3,qa;v) = e {sinh(Iv) + sinh[(2¢5 — I)v] — 2q3v} . (C.11)

Again, the last term in (C.11) is recognized as the contribution from the fixed submanifold
Ml with symplectic volume E(I, g3, qq) = (—1)!gs. Following the rules described earlier,
we get

S(I;g3,qa;v) :(—}i {sinh(Iv) + sinh[(2¢3 — I)v] — 2¢3 sinh v} . (C.12)

4 sinh® v

It is easy to see that this differs from S given in (C.10) by terms which vanish as v — +oo0.

Case D: g3,q4 > §

In this case (6.10) leads to the following contribution to gyer(av, ..., aq;y):

Son(Tigsqy) = D (C.13)
coll (1503, 13 y) = W=y ) v -y |- :
This reduces to the case discussed in §5.3. Therefore Eq. (5.9) gives
5 (= I ~1
SU;%JM;?J)::m y -y —Ily—-y )|, for I odd
-1 (C.14)
= —(_1) yl —y 1 — ! (v —y™ %) for I even
(y—y1)? 2 ’ '
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Again, the results agree with the exact refined index (6.16).

The equivariant volume gives

S g 015 v) = L (sinh(I) — Iv) = Seon(L: s, qaiv) — L (C.15)
( 1435 445 V) o 413 (Sln ( V) - V) - COH( 143, 445 V) B Ta :
and hence

; (1)

S(I;q3,qu; V) =——=— (sinh(Iv) — I sinhv) . (C.16)

B 4 sinh® v

Again this differs from the exact result (C.14) by a term that vanishes as v — +o0. The last
term in (C.15) is moreover recognized as the contribution from the fixed submanifold A3l
with symplectic volume E(I,q3,q4) = (—1)'1/2. We further comment on this contribution
in §C.3.

C.2 Five-centered case with distinct centers

In this section we compute the equivariant volume for 5 distinct centers. Without loss of
generality, we assume that g3 < g4 < ¢5. If in addition ¢3+q4 > ¢5, then we have the ordering

D) 0<GB<u<eG<@+u<g@+e<u+¢<p+qu+qg (C.17)
If instead q5 > q3 + q4, then
i) 0<@<u<@+u<¢G<aG+e<utg<qg+aqutqg (C.18)

We now split the discussion according to the position of I/2 relative to these values, starting
with case i) and then discussing the appropriate change in case ii). The polytopes arising in
case 1) are depicted in Figure 3.

For g3 + q1 + ¢5 < 1/2,

(T35, 01,0550) = S (cosh (1) — cosh{(1 — 245)v] — coshl(T — 24,)v] — cosh{(1 — 245

+cosh[(I — 2¢g3 — 2qq)v] + cosh[(I — 2¢3 — 2¢5)V]
+ cosh[(I — 2q4 — 2¢5)v] — cosh[(I — 2q3 — 2q4 — 2¢5)V]) .
(C.19)

For g4 +q5 < 1/2 < g3+ q4 + g5,

I

84
+ cosh|[(I — 2g5 — 2q4)v| + cosh[(I — 2q3 — 2¢5)V]
I

(=D

1612

S(1;q3,q4, g5, V) = (cosh(Iv) — cosh[(I — 2q3)v] — cosh[(I — 2q4)v] — cosh[(I — 2¢5)V]

(=)'
Syt

+cosh|[(I — 2q4 — 2g5)v]) — (I —2q3 — 2q4 — 2q5)2 —

(C.20)
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[=8 [=6.5

Figure 3: Polytopes associated to 5-center dipole halos with (g3,q4,q5) = (1,2,4) and varying
values of I. The vertical, left and right axes correspond to ms, ms, m4. The dimension associated
tom € [—j,7] with j = %I — >, Mq is suppressed.

For g3+ g5 < 1/2 < q4 + g5,

S(I;q3,q4,q5; V) :(gl)l (cosh(Iv) — cosh[(I — 2q3)v] — cosh[(I — 2q4)v] — cosh[(I — 2¢s5)V]

A

+ cosh|[(I — 2g3 — 2q4)v] + cosh[(I — 2q5 — 2q5)V]]
(—1)f

+ q3( — q3 — 2q4 — 2g5)

4p?
(C.21)

For q3+q4<1/2<Q3+Q57

S(I; 43, G4, 45; V) 2(;54)[ (cosh(Iv) — cosh[(I — 2q3)v] — cosh[(I — 2q4)v] — cosh[(I — 2¢5)V]
(=1’ (=1’

1612 vt

(C.22)

+cosh[(I — 2q3 — 2q4)V]] + (I* — 8q3qu — 41gs + 4q2) +

For g5 < I/2 < q3 + qu,

(T35 01,0550) = S (cosh (1) — cosh{(1 — 245)v] — coshl(T — 24,)v] — cosh{(1 — 245)0])

A
(=" B 2, 2, 2 (=1’
+ 52 (I*—2I(qgs+qu+q5) +2(q5 + g5 +45)) + i
(C.23)
For ¢4 < I/Q < g5,
(=)'
S(1;q3,q4, g5, V) = S (cosh(Iv) — cosh[({ — 2q3)v] — cosh[(I — 2q4)V])
’/( ! (—1)! (C.24)
+ gz (= 41(gs + aa) + 4(65 + 01)) + g
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For g3 < 1/2 < qq,

—1 I -1 I
S(I;q3,q4,q5; V) :(81/2 (cosh(Iv) — cosh[(I — 2¢3)v]) — (4y2) oI — ). (C.25)
For 0 < 1/2 < s,
. . _ (_1)1 2712
S(I;q3,q4, G5, V) = [2 cosh(Iv) — v°I 2] . (C.26)

1604
This case is further discussed in §C.3.

In case (ii), the region q4 < I/2 < g3+¢5 instead splits in three regions: ¢5 < /2 < q3+gs,
where S is still given by (C.22), g3 + q4 < /2 < g5, where

S(I; 43, qa, 453 V) = (;,/14) (cosh(Iv) — cosh[(I — 2g3)v] — cosh[(] — 24)V]

(1!
+ cosh[(I — 2¢3 — 2q4)v]) — o2 134

(C.27)

and gy < I/2 < g3 + q4, where S is still given by (C.24).

C.3 Multi-equivariant volumes

To interpret the above results as a sum over isolated and non-isolated fixed points, it is
useful to compute the equivariant volume for the most general torus action on M,,,

S(I, {Qa}; v, {Va}) _ (_1)Ifn+1 /0 dms -+ -dm,, eQZVama Slnh[([ — ZVZ:a:S ma)l/] '

<ma<qa
>ama<I/2

(C.28)

and compare it to the corresponding equivariant volume of the fixed submanifold M3¢8l

E(I,{q}; {va}) = (1)1 / dms - - - dm,, €227 § (Z Mg — g) . (C.29)

0<ma<qa
We shall refer to (C.28) and (C.29) as the multi-equivariant” volume of M, and M3l
respectively. We shall compute these equivariant volumes in two simple cases with n = 4
and n = 5 centers, which demonstrate that the non-isolated fixed point contribution to
S(1,{qa};v;{va}) is closely related to E(I,{q.};v;{v.}), though not identical.

For n =4 and /2 < ¢3,q4, Eq. (C.28) evaluates to

61/[ e—u[

Su(v—uv3)(v—rws)  Su(v+uvs)(v+ 1)

S(Iv 43,44, V, V3, V4) :<_1)I_1 (
(C.30)

eyg[

K2 = ) (v —vs) | A2 —12) (s — u4>> |

These four contributions correspond to the four vertices of the polytope P (see Fig.2, bottom-
left graph): the first two arise from collinear configurations (ms4 = 0,m = £1/2) while the

_|_

last two are of scaling type, with j =0 (m3 =1/2,my =m =0 or my = 1/2,m3 =m = 0).
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Rescaling v, by a common factor € and taking the limit ¢ — 0 (as we shall always do
when taking the limit v, — 0), Eq. (C.30) reduces to (C.15). On the other hand, the
multi-equivariant volume of M5! is given by

61131

val
E(I,q3,q1;v3,v4) = (=1)"" ( ‘ ) : (C.31)

2(1/3 — V4) B 2(V3 — ]/4)

This differs from the second line in (C.30) for general values of v, 14, although it agree with
it in the limit v, 4 — 0, after rescaling by —1/(2v?). The difference between (C.31) and
the second line of (C.30) should originate from the Euler class of the normal bundle of M5¢al
inside M,,, which appears in the denominator of the localization formula. The comparison
of the two formulae shows that this Euler class should contribute a factor of v?/(v* — /2) at
each of the fixed points of the toric action.

To see that such corrections can be important even in the limit v — 0, let us consider the
case n =5 and I/2 < g3, q4, g5, and identify the fixed points contributing to the equivariant
volume computed by direct integration in (C.26). In this case, Eq. (C.28) evaluates to

el/I

S(L, 3, 1, 453 Vs v3, va, v5) =(—1)" <16u(1/ —v3)(v — va) (v — v5)
671/[ eVSI

i 16v(v+uvs)(v+uvs)(v+us) 8?2 —v3)(vs — va)(vs — vs)

82— ) (v — ) (v —vs) 82— v2)(vs — vs) (s — V4)>
(C.32)

These five contributions correspond to the five vertices of the polytope P, displayed on the
bottom-right corner of Fig.3 (after restoring the direction along m): the first two arise from
collinear configurations (mg 45 = 0, m = £1/2) while the last three are of scaling type, with
j =0 (m3=1/2,my =ms=m =0 and permutations thereof). Rescaling v, by a common
factor e and taking the limit ¢ — 0, (C.32) reduces to (C.26). In particular, the first two
terms in (C.32) have a smooth limit at v, — 0 and reproduce the first term in (C.26).
The second, O(I?/v?) term in (C.26) arises by expanding e”! to second order in v,, while
the last, O(1/v*) term in (C.26) arises by expanding 1/(v* — /) to second order in v,. In
contrast, the multi-equivariant volume of M5! is given by

E([? 43,44, 45, V3, V4, y5) :<_1)I

(4(1/3 —vy)(v3 — vs) - 4(vy — v3)(vy — vs5) * 4(vs — v3)(v3 — V4)) '
(C.33)

This reduces to F(I,q3,q4,q5) = (—1)'1?/8 in the limit v, — 0. Thus, after rescaling by
a factor —1/(2v?), the multi-equivariant volume —F(I,gs, 4, gs; V3, V4, 5)/(20°) correctly
accounts for the O(1%/v?) term in (C.26), but fails to reproduce the O(1/v%). Again, this
indicates that the Euler class of the normal bundle of M5! which appears in the denominator
of the localization formula should produce an additional factor v?/(v* — v/?) at each fixed

a
point.
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More generally, we expect that the linear combination of equivariant volumes E(1, {q,})
appearing in (6.44) can be interpreted as the integral of Ch(L,v)/ Eu(NM:s) over the
fixed submanifold M5!, Similarly, we expect that the analog linear combination of equiv-
ariant indices (I, {g,}) which would appear in a similar formula for AS corresponds to the
equivariant integral (2.35). It would be interesting to carry this out in detail.
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