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Abstract

The gravitational fields of vacuumless global and gauge strings have been studied in

Brans-Dicke theory under the weak field assumption of the field equations. It has

been shown that both global and gauge string can have repulsive as well as attractive

gravitational effect in Brans-Dicke theory which is not so in General Relativity.

1 Introduction

Spontaneous symmetry breaking in the gauge field theories may give rise to some

topologically trapped regions of a false vacuum, namely domain walls, cosmic strings

or monopoles, depending on the dimension of the region [1]. In cosmology, these

defects have been put forward as possible source for the density perturbations which

seeded the galaxy formation [2].

A typical symmetry breaking lagrangian is of the form

L =
1

2
∂µφa∂µφa − V (f), (1.1)

Where φa is a set of scalar fields, a = 1, 2, ...N , f = (φaφa)1/2 and V (f) has a minimum

at a non zero value of f . The model has O(N) symmetry and domain walls, strings,
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monopoles are formed for a = 1, 2, 3 respectively. One has to add gauge field in the

above lagrangian and should replace ∂µ by a gauge covariant derivative, to study the

structure of gauge defects.

It has been recently suggested by Cho and Vilenkin [3] that topological defects can

also be formed in the models where V (f) is maximum at f = 0, and it decreases

monotonically to zero for f → ∞ without having any minima. For example,

V (f) = λM4+n(Mn + fn)−1, (1.2)

where M , λ and n are positive constants. This type of potential can arise in nonper-

turbative superstring models [4]. Such potential having a power law tail for large φ has

also been considered by authors [5] inorder to reconcile the low dynamical estimates

of the mean mass density with negligibly small scale curvature which is preferred

by inflation. In recent years, potential of this type has been discussed in so called

”quintessence” models of inflation [6]. Defects arising in these models are termed as

Vacuumless. In a recent paper, Cho and Vilenkin have studied the gravitational fields

of such vacuumless defects in General Relativity[GR] [7]

At sufficient high energy scales it seems likely that gravity is not given by the

Einstein’s action, but becomes modified by the superstring terms. In the low energy

limit of this string theory, one recovers Einstein’s gravity along with a scalar dilaton

field which is non minimally coupled to the gravity [8]. On the other hand, scalar

tensor theories, such as Brans-Dicke theory(BD) [9], which is compatible with the

Mach’s principle, have been considerably revived in the recent years. It was shown

by La and Steinhardt [10] that because of the interaction of the BD scalar field

with the Higgs type sector, the exponential inflation in Guth’s model [11] could be

slowed down to power law one and the graceful exit in the inflation is thus completed

via bubble nucleation. Although dilaton gravity and BD theory arise from entirely

different motivations, it can be shown that the formar is a special case of the latter at

least formally [12]. As we have mentioned earlier that these vacuumless defects may

be formed in the supersymmetric phase transition in the early universe. So it may

be relevant to study how these defects interact with BD dilaton field which arises in

the low energy superstring theories. Another motivation for studying gravitational

properties of defects in BD theory is that only defects we can hope to observe now are

those formed after or near the end of inflation, and the formation of such superheavy
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defects is relatively easy to arrange in Brans-Dicke type theory [13].

In this work we have studied the gravitational fields of vacuumless global and gauge

strings in BD theory under the weak field approximation of the field equations. The

paper is organised as follows: in section 2 we have briefly outlined the work of Cho

and Vilenkin for the vacuumless string in GR. In section 3 we have given the solutions

of spacetimes for global and gauge vacuumless string in BD theory under the weak

field approximation. The paper ends with a conclusion in section 4.

2 A brief review of vacuumless string in GR

In this section we review the earlier work of Cho and Vilenkin [7]. For global vacu-

umless string the flat spacetime solution for f(r) is given by

f(r) = aM(r/δ)2/(n+2), (2.1)

where δ = λ−1/2M−1 is the core radius of the string; r is the distance from the string

axis and a = (n + 2)2/(n+2)(n + 4)−1/(n+2). The solution (2.1) applies for

δ << r << R, (2.1a)

where R is cut off radius determined by the nearest string.

For gauge vacuumless strings, which have magnetic flux localized within a thin

tube inside the core, the scalar field outside the core is given by

f(r) = aLn(r/δ) + b. (2.2)

But here a and b are sensitive to cut off distance R:

a ∼ M(R/δ)2/(n+2)[Ln(R/δ)]−(n+1)/(n+2), b ∼ aLn(R/δ). (2.3)

For a vacuumless string the spacetime is static, cylindrically symmetric and also has

a symmetry with respect to Lorentz boost along the string axis. One can write the

corresponding line element as

ds2 = B(r)(−dt2 + dz2) + dr2 + C(r)dθ2. (2.4)
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The general energy momentum tensor for the vacuumless string is given by

T t
t = T z

z =
f

′2

2
+

f 2(1 − α)2

2C
+

α
′2

2e2C
+ V (f) (2.5a)

T r
r = −f

′2

2
+

f 2(1 − α)2

2C
− α

′2

2e2C
+ V (f) (2.5b)

T θ
θ =

f
′2

2
− f 2(1 − α)2

2C
− α

′2

2e2C
+ V (f) (2.5c)

Where string ansatz for the gauge field is Aθ(r) = −α(r)
er

. The T µ
ν ’s with α = 0 are

that for global string.

Under the weak field approximation one can write

B(r) = 1 + β(r), C(r) = r2(1 + γ(r)), 2.5d)

where β, γ << 1.For global vacuumless string, one can use the flat space approxi-

mation for f(r) in (2.1) for r >> δ and the form of V (f) given in (1.2). Then the

solution for the spacetime under weak field approximation is given by [7]

ds2 = (1 + 2Φ)(−dt2 + dz2) + dr2 + (1 + mΦ)dθ2 (2.6)

where Φ = −KGM2(r/δ)4/(n+2) , K = π(n + 2)2/2an and m is an arbitary constant.

The linearized approximation is valid for Φ(r) << 1 and from (2.1) this is equivalent

to f(r) << mp where mp = 1/
√

G is the Planck mass.

For gauge vacuumless string the energy momentum tensor with f(r) given in (2.2)

can be approximated as [7]

T t
t = T z

z = T θ
θ = −T r

r =
f

′2

2
=

a2

2r2
. (2.8)

This form of the energy momentum is valid for

r << R/Ln1/2(R/δ), (2.8a)

where R is the cut off radius determined by the nearest string [7]. The complete

solution of the line element under weak field approximation is given by

ds2 = (1 + 2Φ)(−dt2 + dz2) + dr2 + (1 − 4Φ)dθ2 (2.9)

where Φ = 2πGa2Ln(r/δ) and a is given by (2.3).
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3 Vacuumless string in BD theory

The field equation in the BD theory are written in the form

Gµν =
Tµν

φ
+

ω

φ2
(φ,µφ,ν −

1

2
gµνφ,αφ,α) +

1

φ
(φ,µ;ν − gµν2φ), (3.1)

2φ =
8πT

2ω + 3
, (3.2)

Where φ is the scalar field, ω is the BD parameter and T denotes the trace of the

energy momentum tenosr T µ
ν [9]. In the weak field approximation in BD theory one

can assume gµν = ηµν + hµν where |hµν | << 1 and φ(r) = φ0 + ǫ(r) with |ǫ/φ0| << 1

where 1/φ0 = G0 = (2ω+3)
(2ω+4)

G.

It has been shown recently by Barros and Romero [14], that in the weak field

approximation the solutions of the BD equations are related to the solutions of lin-

earized equations in GR with the same T µ
ν in the follwing way: if ggr

µν(G, x) is a known

solution of the Einstein’s equation in the weak field approximation for a given T µ
ν ,

then the BD solution corresponding to the same T µ
ν , in the weak field approximation,

is given by

gbd
µν(x) = [1 − G0ǫ(x)]ggr

µν(G0, x) (3.2)

where ǫ(x) must satisfy

2ǫ(x) =
8πT

(2ω + 3)
, (3.3)

and G is replaced by G0 defined earlier in this section. Hence, to get the spacetime

for vacuumless global and gauge string one has to solve the equation (3.3) with T µ
ν

given in section 2.

3.1 Global String

Using equations (2.4) and (2.5) with α = 0, one can calculate T = T µ
ν in equation

(3.3) as

T = 2f
′2 +

f 2

C
+ 4V (f). (3.4)

Now under weak field approximation C = r2(1 + γ(r)) where γ(r) << 1. Hence (3.4)

becomes

T = 2f
′2 +

f 2

r2
+ 4V (f)
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which on substitution of (1.2) and (2.1) with r >> δ becomes

T = Ar
−2n

(n+2) (3.5)

where A = a2M2(1
δ
)4/(n+2)[ 8

(n+2)2
+ 1 + 4

an+2 ]. Putting (3.5) in (3.3) and using (2.4)

and (2.5d), we get

ǫ
′′

+
2ǫ

′

r
=

8πA

2ω + 3
r

−2n

(n+2)

which on integration yields

ǫ = (
8π

2ω + 3
)C(

r

δ
)

4
n+2 − D

2ω + 3
(
r

δ
)−3, (3.6)

where D is an arbitary integration constant and C = a2M2[ 8
(n+2)2

+ 1 + 4
an+2 ]

(n+2)2

4(n+6)
.

Hence the complete line element for a global vacuumless string in BD theory under

weak field approximation for r >> δ is given by

ds2 = [1 − G0ǫ(r)]ds2
cv(G0) (3.7)

where ǫ(r) is given in equation (3.6) and ds2
cv(G0) is the corrsponding line element

obtained by Cho and Vilenkin [7] in GR with G is replaced by G0 defined earlier in

this section. One should keep in mind that r is bounded by equation (2.1a) for the

form of f(r) given in equation (2.1) to be valid.

To have an idea of the motion of the particles, one can calculate the radial accel-

eration vector v̇1 of a particle that remains stationary (i.e., v1 = v2 = v3 = 0) in the

field of the string. Now, v̇1 = v1
;0v

0 = v0Γ1
00v

0. Hence using the line element (3.7) one

can calculate v̇1 which becomes

v̇1 =
1

2
(1 − G0ǫ)

−2(1 + 2Φ)−1[2Φ
′

(1 − G0ǫ) − G0(1 + 2Φ)ǫ
′

]. (3.8a)

Now as G0ǫ << 1 and also Φ << 1 for the linearized approximation to be valid one

can approximate equation (3.8) to write

v̇1 = Φ
′ − G0

2
ǫ
′

. (3.8b)

For ǫ = constant that is in GR the acceleration vector is always -ve and the gravita-

tional force is repulsive. But for ǫ
′ 6= 0 one can check that v̇1 is -ve or +ve depending
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on the arbitary constant D. For example, for n = 2 in GR the repulsive force is

independent of radial distance. But in this case for n = 2

v̇1 = −KG0M
2

δ
− 4πcG0

(2ω + 3)δ
− 3DG0

2δ(2ω + 3)
(
r

δ
)−4,

and in this case one can see that the gravitational force varies with radial distance

and with -ve D one can have a attractive gravitational force as well , as r is bounded

by equation (2.1a) for the linearized approximation as mentioned in section 2. So

in BD theory the vacuumless global string can have both repulsive and attractive

gravitational effect.

3.2 Gauge String

For gauge string using equation (2.8), equation (3.3) becomes

ǫ
′′

+
2ǫ

′

r
=

a2

r2(2ω + 3)

which on integration yields

ǫ =
a2

(2ω + 3)
Ln(r/δ) − P

(2ω + 3)r
(3.9)

where P is an arbitary integration constant and we have put another integration

constant equal to −a2Lnδ
(2ω+3)

. Hence the metric for a gauge vacuumless string in BD

theory under weak field approximation can be written according to equation (3.2) as

ds2 = [1 − G0ǫ]ds2
cv(G0) (3.91)

where ds2
cv(G0) is the metric given in equation (2.9) with G is replaced by G0. Here

also r is bounded by equation (2.8a). One can calculate the acceleration vector v̇1 for

a particle remaining stationary with respect to the string. Assuming |ǫG0| << 1 and

Φ << 1 one can again approximate the acceleration vector as

v̇1 = Φ
′ − G0

2
ǫ
′

,

Which becomes

v̇1 =
G0

r2
[2πa2r − a2r

2(2ω + 3)
− P

2(2ω + 3)
]. (3.92)

Now as r is bounded by (2.8a) for the form of the energy momentum tensor (2.8) to

be valid one can have repulsive as well as attractive gravitational effect for −veP and

+veP respectively. But this is not so in GR as for ω → ∞ ǫ
′

vanishes.
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4 Conclusion

Recently there have been claims that the universe must possess a not yet identified

component usually called quintessence matter or Q matter, besides its normal content

of matter and radiation. These claims have been prompted at the realization that the

clustered matter component can be at most one third of the critical density. That

is why there must be some additional nonclustered component if the critical density

predicted by the inflationary models is to be achieved. Examples of Q matter are

fundamental fields or macroscopic objects and network of vacuumless strings may be

one such good examples as scalar field with potential like (1.2) can act as quintessence

models [15]. In this paper we have examined the gravitational field of vacuumless

strings in the BD theory under the weak field approximation of the field equations.

In doing so, we have followed the method of Barros and Romero [14] which has been

suggested recently. For both global and gauge vacuumless strings, the spacetimes are

conformally related to that obtained earlier by Cho and Vilenkin in GR [7]. Both the

spacetimes reduces to the corresponding GR solutions for ω → ∞ limit. It has been

shown that both the global and gauge string can have attractive as well as repulsive

gravitational effect on a test particle freely moving in its spacetime which is not so

in GR where the global string has only repulsive and gauge string has the attractive

gravitational effect. As the trajectories of the light rays, which are given by the

null geodesics, the only change involved in BD theory is the replacement of G by an

new ω dependent ”effective” gravitational constant G0 = ( (2ω+3)
(2ω+4)

)G and for ω to be

consistent with solar system experiment and observation, ω ∼ 500 [16], this means

that photons travelling in the spacetime will experience a decrease of gravitational

constant as G0 ∼ 0.999G. Therefore, it follows that the distortion of the isotropy of

the CMBR due to the gravitational field of the vacuumless strings in BD theory may

be calculated directly from the results obtained in GR. A detail analysis of the full

nonlinear Einstein’s equations will certainly give more insight to the problem and for

that a detail numerical calculation should be done which will be the aim of our future

study.

8



References

[1] T.W.B. Kibble, J.Phys. A9, 1387 (1976).

[2] A.Vilenkin and E.P.S.Shellard, Cosmic Strings and Other Topological Defects

(Cambridge Univ. Press, Cambridge, 1994)

[3] I.Cho and A.Vilenkin, Phys.Rev.D 59, 021701 (1999).

[4] I.Affleck, M.Dine and N.Seiberg, Nucl.Phys. B 241, 493 (1984); P.Binetruy,

M.Gaillard and Y.Y.Wu, Phys.Lett, bf B 412, 288 (1997).

[5] P.J.E.Peebles and B.Ratra, Ap.J.Lett 325, L 17 91988); Phys.Rev.D 37, 3406

(1988).

[6] R.R.Caldwell, R.Dave and P.J.Steinhardt,Phys.Rev.Lett 80, 1582 (1998);

I.Zlatev, L.Wang, P.J.Steinhardt,Phy.Rev.Lett 80, 1582, (1999).

[7] I.Cho and A.Vilenkin Phy.Rev.D 59, 063510 (1999).

[8] M.B.Green, J.H.Schwarz and E.Witten, Superstring Theory (Cambridge Univer-

sity Press, Cambridge 1987).

[9] C.Brans and R.H.Dicke, Phys.Rev 124, 925 (1961).

[10] D.La and P.J.Steinhardt, Phys.Rev.Lett, 62, 376 (1989).

[11] A.H.Guth, Phys.Rev.D, 23, 347 (1987).

[12] A.A.Sen Phys.Rev.D. 60, 067501 (1999).

[13] E.J.Copeland, E.W.Kolb and A.Liddle Phys.Rev.D 42, 2911 (1990).

[14] A.Barros and C.Romero, Phys.Lett, A 245, 31 (1998).

[15] P.J.E.Peebles and A.Vilenkin, Phys.Rev.D, 59, 063505 (1999).

[16] C.M.Will, Theory and Experiment in Gravitational Physics, Cambridge Univer-

sity Press (1993).

9


