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ABSTRACT 

It is shown that the central charge of the Virasoro algebra for a conformally 

invariant supersymmetric a-model on a Calabi-Yau manifold remains equal to 

its free field value to order cy’* despite the non-Ricci-flatness of the background 

metric. Various possibilities for higher loop contributions are discussed. 
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It has become clear through recent studies that N=2 supersymmetric O- 

models on Calabi-Yau manifolds with a Ricci-flat Kahler metric have non- 

vanishing p-functions at the four loop order P-41 thus destroying the expecta- 

tion that such models have vanishing P-functions to all orders in the perturbation 

theory.15] It was shown in Ref.[6], h owever, that it is always possible to choose a 

Kahler metric on a Calabi-Yau manifold such that the p-function vanishes to all 

orders in the perturbation theory, thus providing us with a conformally invariant 

two dimensional field theory. Such theories are very much of current interest 

since they provide exact solutions of the classical string field equations by the 

conjectured equivalence between the equations of motion of the massless fields 

in the string theory and the criteria for the vanishing of the p-functions in two 

dimensional a-models. l’-‘*] In order to satisfy the equations of motion of all 

the massless fields, however, it is not enough to have all the a-model p-functions 

vanish.’ It is also necessary that the central charge of the Virasoro algebra in 

this two dimensional system be identical to its free field value, i.e. the value 

obtained in the lowest order in’the perturbation theory. (The two sets of con- 

ditions together imply the conformal invariance of the a-model in a curved two 

dimensional background). In this paper we shall show that the central charge 

of the Virasoro algebra for a conformally invariant supersymmetric a-model on 

a Calabi-Yau manifold does not receive any correction to order (Y 14 , CLI ‘-’ being 

the string tension. 

An explicit calculation of the a-model correction to the central charge beyond 

the lowest non-trivial order is a task of considerable difficulty, although it has 

been calculated exactly for some manifolds, namely the group manifolds.1151 A 

different strategy was used by Gross and Witten.12] They calculated the effective 

action in the string theory directly by calculating the string scattering amplitudes, 

and from that derived the equations of motion of various massless fields in the 

string theory. If these equations are satisfied for a given background, then the 

t Throughout this paper the word /?-function will refer to the standard u-model p-functions in 
flat two dimensional space, and will not include the central charge of the Virasoro algebra. 
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corresponding a-model should automatically have vanishing p-functions as well 

as vanishing correction to the central charge. This is the approach we shall pursue 

in this paper. It will be shown that all the equations of motion are satisfied to 

order (Y’~, despite the fact that the background metric is not Ricci flat. This 

implies the vanishing of the central charge to order cx I4 . 

We start by writing down the most general effective action for type II super- 

string theory involving the dilaton (4) and the graviton (GPV) field: 

S = J dl’zt?&f (4, G,,) (1) 
There are other massless fields in the theory, for simplicity we have set their 

vacuum expectation values (vev) to zero. A standard scaling argument [W~l 

shows that f must be invariant under a constant shift in 4, hence it may involve 

derivatives of C$ but not CJ~ itself. The lowest order contribution to f is given 

f(‘)(G,qb) = R - (D+)’ - 2D24 (2) 

where R is the scalar curvature and D denotes the covariant derivative. rj inde- 

pendent contribution to f has been calculated by Gross and Witten PI to order 

CX’~. It was shown that the order or and CY’~ contributions vanish, whereas the 

order ~1’~ contribution is non-zero on a general manifold. Let us call this con- 

tribution CY’~Y. For the time being we shall carry out our analysis by replacing 

f by f(O) + CX’~Y in Es.(l). Later we shall argue that higher order C#J dependent 

contribution to f does not change our conclusion. With this action the equations 

of motion for G,, and C#I may be written as, 

[& - D&d + ~‘~&n,] - fGrv[R - 2D24 - (Dq5)2 + CX’~Y] = o (3) 

R - 2D2q5 - (0~~5)~ + tut3y = 0 (4 

ignoring terms of order CY’~D$J. These terms will turn out to be of order cx 16 

in the background we shall consider, and hence will not affect the equations of 
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motion to order ~1’~. IV,,, denotes the variation of Y with respect to GpV and 

was calculated in Ref.[3]. It is best expressed in complex coordinates, so we 

introduce holomorphic and anti-holomorphic coordinates zi and zi respectively 

on the manifold. Since Y is already accompanied by a factor of CX’~, and since our 

background metric will differ from a Ricci-flat Kahler metric only at order c~‘~, 

we may substitute for Y and IV,, their values for a Ricci-flat Kahler metric. It 

was shown that for a Ricci-flat Kahler metric Y vanishes and IV,, has the form: 

w,,, = ii& - D&Q (5) 

eij = 2D;DjQ (6) 

where Q is a scalar proportional to the Euler density. Both the equations (3) 

and (4) are satisfied to order (Y I3 if, 

Rij + 2d3DiDjQ = 0 (7) 

q$ = -,I39 (9) 

It was shown in Ref.161 that there always exists a Kahler metric satisfying 

equations (7) and (8) on a Calabi-Yau manifold. Eq.(9) is a new equation. The 

reader may be puzzled by the fact that the vanishing of the a-model P-function, 

which in this case is given by R,, - D,D,c$+ CU’~W~~, requires a non-vanishing 4, 

since in the analysis of Ref.[6] we did not need any dilaton field for the vanishing 

of the ,&function. In fact we implicitly had to set the dilaton field to zero, since 

a non-zero vev of the dilaton field would introduce unwanted contribution to the 
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P-function of the form DiDj# and qD# in the analysis of Ref.[6]. The point is 

that the dilaton field which had to be set to zero in Ref.[6] is related to the one 

that appears in this paper by a local field redefinition of the form cj’ = c~%+cu’~Q.* 

Indeed, 4’ must vanish in order to have vanishing P-function. Our result implies 

that if we had calculated the central charge in the scheme of Ref.[6] with a 

vanishing dilaton field (4’ = 0), ‘t 1 would be proportional to R + 2af3D2Q to 

order CY ‘3 and would vanish whenever Eqs.(7) and (8) are satisfied. 

We shall now briefly comment on the inclusion of higher order 4 dependent 

terms in f. Since these terms involve derivatives of 4, they are of order CX’~ or 

higher when evaluated in the background given in Eqs.(7)-(9), and may almost 

always be ignored. The only exception are the terms linear in 4, since they may 

give a C$ independent contribution to the dilaton field equation (Eq.(4)). Now, 

if the equations of motion correspond to the criteria for conformal invariance of 

the a-model in a curved two dimensional background, then terms inside each of 

the square brackets in Eq.(3) must vanish separately. (The reason is that the 

a-model ,&functions cannot involve explicit factor of G,, 1201 ). This will give us 

too many equations for them to be interpreted as the criteria for vanishing of the 

/?-function and the correction to the central charge in the a-model, unless Eq.(4) 

follows from the two equations obtained from Eq.(3). Since we have argued that 

Eq.(3) does not get affected by the presence of the higher order r$ dependent 

terms in f to this order, Eq.(4) must also remain unaffected by the presence of 

such terms. Hence we conclude that if the string equations of motion indeed 

correspond to the vanishing of the o-model P-functions and the correction to the 

central charge, then the 4 dependent terms in f cannot affect our conclusion. 

* Alternatively, the term D,D,Q in the u-model /?-function may be absorbed by a renormal- 

ization scale dependent redefinition of the bosonic fields Xfi of the o-model. 1181 . These are 
in fact equivalent descriptions. In flat space-time, the presence of the dilaton field corre- 
sponds to the addition of a term proportional to 3,804 - gapa to the two dimensional 

energy-momentum tensor. [12,14,19] 
The presence of this term modifies the transformation 

law of the fields XJ‘ under a scale transformation. The same effect is achieved by a scale 
dependent redefinition of the u-model fields Xp. 
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We conclude our discussion by considering the two possibilities which may 

occur at higher orders in the perturbation theory: 

a)The central charge of the virasoro algebra may remain unrenormalized to 

all orders in the perturbation theory. The central charge of a two dimensional 

field theory is independent of the coordinates of the internal manifold when the 

a-model is conformally invariant in flat space-time. [w41 This fact may prove 

particularly useful in proving the above result. This result would be consistent 

with the general arguments of Ref.[21] h s owing the stability of the Calabi-Yau 

vacuum. 

b) It may turn out that the central charge of the Virasoro algebra receives 

non-vanishing contribution beyond order cy: I4 on a general Calabi-Yau manifold. 

Most of the Calabi-Yau manifolds are, however, parameterized by several con- 

tinuous parameters, and we may expect the central charge to depend on these 

parameters. Since the central charge is a constant, one would expect that there 

will be a subspace of this parameter space where the correction to the central 

charge vanishes. This will tell us that not all Calabi-Yau manifolds but only a 

subset of those are candidates for string compactification. 
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