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ABSTRACT 

The Hull-Witten proof of the local gauge and Lorentz invariance of the Q- 

model describing the propagation of the heterotic string in arbitrary background 

field is extended to higher orders in cy’. The modification of the transforma- 

tion laws of the antisymmetric tensor field under these symmetries is discussed. 

Finally we point out the existence of an anomaly in the naive N = f supersym- 

metry transformation, and show that it is cancelled by the same counterterms 

which restore local Lorentz and gauge invariance of the a-model. 
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It has recently been conjectured[l-41 that the classical equations of motion of 

the massless fields in string theories may be interpreted as fixed point equations 

of the appropriate a-model. As a result we expect the symmetries of the classical 

equations of motion to be reflected in the a-model, and vice-versa. For example, 

in the closed bosonic string theory, and the type II superstring theory, the general 

coordinate and local Lorentz invariance of the classical equations of motion are 

consequences of the invariance of the corresponding non-linear a-models under 

reparametrization of the internal manifold[5]. Th e existence of such symmetries, 

although expected, is hard to prove otherwise. Usually the effective action in- 

volving the massless fields is constructed from the scattering amplitude involving 

the massless fields, and the rule for constructing these scattering amplitudes do 

not exhibit any general coordinate or local Lorentz invariance. 

The heterotic string theory[6] is expected to have general coordinate, local 

Lorentz and local gauge invariance. One would expect that these symmetries 

should be manifest in the o-model which describes the propagation of the string 

in arbitrary background field. Indeed, these symmetries are present in the clas- 

sical a-model action. However, a close look at the model tells us that these 

symmetries are anomalous. In fact, the presence of these anomalies was shown 

to be responsible for the appearance of the Chern-Simons terms in the classical 

equations of motion[l,2], which apparently destroys the local gauge and Lorentz 

invariance. Ultimately, however, we must recover local gauge and Lorentz invari- 

ance of the equations of motion. As was shown by Hull and Witten[7], to one 

loop order the anomalous variation of the effective a-model action under these 

symmetries may be cancelled by redefining the transformation laws of the an- 

tisymmetric tensor field. The purpose of this paper is to extend their proof to 

higher orders in the a-model perturbation theory, and to derive the exact trans- 

formation laws of the antisymmetric tensor field under local Lorentz and gauge 

transformations. 

The light-cone gauge action for the a-model describing the propagation of 
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the heterotic string in arbitrary background field is given by[l-51, 

where gij (z) , Bij ( x and A?(z) are background graviton, antisymmetric tensor, ) 
and gauge fields respectively, all taken to be transverse, and assumed to depend 

on the transverse coordinates only. The dilaton field is taken to be constant in 

space-time, so that it may be absorbed in various coupling constants, and does 

not appear explicitly in the a-model action. Xi85 denote the eight scalar fields, 

X% are the eight left-handed Majorana-Weyl spinors and $+s are the 32 right- 

handed Majorana-Weyl spinors. We are working in the Neveu-Schwarz-Ramond 

representation, so that the X’*s transform in the vector representation of SO(8), 

whereas the $+s transform in the 32 representation of SO(32) or (16,1)+(1,16) 

representation of the SO(16) @  SO(16) subgroup of Es @  Es. Also here, 

(2) 

and F*y is the field strength associated with the vector potential AM. The action 

(1) has an N = i supersymmetry:* 

&ix’ &A’; 6X’ = -(iI, - a&&. 

* The transformation law of ~JI given here was not needed in Ref. 1 to prove the supersymmetry 
of the action (l), since we used the equations of motion of 4 in our proof. If we do not use 
the equations of motion of the tj fields we need to use the explicit transformation laws of 4 
given here. 
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S+” =(-d’A~)(T”),t# 

It is more convenient to rewrite the action in terms of the vielbeins e4 satisfying 
e9ea - a j- gij, spin connection wf* constructed from rijk, and the fields Aa = efAi: 

+ ia(wk”*(X) - s;*(X))paAbd,Xk] + $“(ij& + A~(X)(T”),tpa&Xi)$t 

(5) 

The above action has a local gauge symmetry: 

Ay(X)TM -+ Ay (X)TM =U(X)AM(X)T”Usl(X) + U(X)iaiU-l(X), 

ti + +’ =U(X)~, (6) 

This symmetry, however, is anomalous[8] due to the chiral nature of the fermions 

$J. Similar remark holds also for the local Lorentz symmetry: 

e? + Rabeb- a, X0 + R”*X*. 

:p’ + [R(wi + di)R-‘lab 

, 

(7) 

where R denotes a local SO(8) rotation. The one loop effective action involving 

only the external bosonic fields transforms under these anomalous symmetries 

as+ 

6S(1-‘ooP) = & 
/ / 

& & &&e”A” - &e”*~~*)~& (8) 

where flM and cab are the infinitesimal gauge and Lorentz transformation param- 

t Since we may add any arbitrary local counterterm to the one loop effective action, the 
expression for the anomaly given in (8) is not unique. We shall1 adopt this particular 
definition of anomaly in order to uniquely define the fermionic loop integrals. 
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eters respectively, and, 

-ab 
wi 

ab ab = Wi - Si (9) 

As was pointed out by Hull and Witten[‘l], the anomalous variation of the effective 

action to one loop order may be cancelled by redefining the transformation laws 

of Bij under local Lorentz and gauge transformations: 

which is identical to the result found by Green and Schwarz[9], except for the 

replacement of w by Q. This, however, cannot be the end of the story, since this 

anomalous variation of Bij induces an anomalous variation of sijk and hence also 

an anomalous variation of the connection Q which couples to X. This induces a 

further variation of the one loop effective action of order Q’. A simple way to 

get rid of this extra variation is to replace Sf* by Hf* in the original a-model 

lagrangian where H is determined from the equation: 

Hijk = Sijk + G[n,(a) - n3(W - H)]ijk (11) 

where 

(12) 

and &(w - H) is given by a similar equation with A replaced by w - H. If the 

transformation law of Bij under local Lorentz and gauge transformations is taken 

to be, 

then Hijk, as defined above, is invariant under these symmetries. As a result, the 

one loop effective action involving the bosonic fields transforms as in Eq.(8) with 
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i; replaced by w - H. This, in turn, is cancelled by the variation of Bij given in 

Eq.( 13). Note, however, that if we define a new field, 

Bij 
a’ 

= Bij + PW~~*H~* 

and S~jk by Eq.(2) with B replaced by B’, then Eq.(ll) and (13) may be written 

as, respectively, 

He* vk = sijk + :[&(A) - fIs(W)]ijk +COVZUklttermS 

and, 

which is the standard Green-Schwarz transformation law[9]. This is related to the 

fact that the part of the right hand side of Eq.(8) (with i3 replaced by w-H) which 

is proportional to the torsion may be removed by adding a local counterterm to 

the lagrangian proportional to s .&&X’apXjwk* Hj*. 

The replacement of S by H in the action (1) corresponds to the addition of a 

new term, 

-$-(“3(A) - ns(w - H))ijk&PXi&Xk 

to the action. This destroys the naive N = f supersymmetry given in (4). But 

before discussing this issue, let us discuss another source of local Lorentz and 

gauge anomaly. So far, we have considered the one loop effective action involving 

only the external bosonic lines. Since, however, we have four fermion coupling in 

our theory, the anomalous contribution to the effective action from a fermion loop 

will involve external fermion fields as well. This may be analyzed by introducing 

auxiliary fields Qz*, Rg*, and replacing the four fermion coupling term in (1) by, 

--&[Q:*F$W-~P~+ + iR~br;apaXb + 4Q;* Raba] (18) 

where Q and R are defined to transform covariantly under the local gauge and 

Lorentz transformations. We may now construct an effective action involving 
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the fields Xi, Qi* and Rz* by integrating out the $J and X fields. Since the 

connections coupling to $J and X fields contain new terms proportional to Q and 

R respectively, the variation of this effective action under local gauge and Lorentz 

transformations now contains new terms given by, 

-& 
J J 

dr du Pp(a,t9MFa~Q;b - a,eab Rib) (19) 

This extra variation may be cancelled by adding new terms to the lagrangian 

given by, 

Adding (20) to (18) and eliminating the auxiliary fields by their equations of 

motion we get the following extra terms in the action besides the four fermion 

coupling: 

(21) 
Thus by adding terms in the original lagrangian given by (17) and (21), we 
may recover local Lorentz and gauge invariance of the one loop effective action 

obtained by integrating out the fermion fields. Furthermore, if we assume the 

validity of the Adler-Bardeen theorem[ lo], we may conclude that this result is 

exact, and that there is no further contribution to the local Lorentz and gauge 

anomalies. * 

As was pointed out before, the addition of these new terms seems to destroy 

the naive N = f supersymmetry. This symmetry, however, is anomalous[l,ll], 

since it involves field dependent phase transformations of the chiral fermions +“, 

* In order to prove such a theorem, one has to find a gauge invariant regularieation prescrip 
tion for doing higher loop calculations with this effective action. One may be able to achieve 
this by adding gauge invariant higher derivative terms in the action involving the auxiliary 
fields Q and R. 



and also of the chiral fermions Xa, since, 

6X” =etj(iEXj)X’ - e4(& - afl)X’E 

ST,V’ =(-diAy)(TM)& (22) 

In the last of Refs.1 we conjectured that the supersymmetry anomaly may be 

cancelled by the extra terms (17) and (21) in the lagrangian. In the rest of the 

paper, we shall verify this conjecture for a specific choice of the background fields, 

where we set gij = Jij and Bij = 0, but keep AM arbitrary. The contribution to 

the effective action from the +loop is then given by+ 

- (g--l + &) !!$qgPP’ + .BP’) aff + f cay, (23) 

where, 

aM = A”(X)B,X’+ fF*yX’p,Xj a (24 

and j(af) is a gauge invariant function of its argument, involving cubic and 

higher powers of a?. Since aF couples only to the right handed fermions, j(aE) 

is a function of (a? - a?) only. It can be shown that under a supersymmetry 

transformation ay - a? transforms like a gauge transformation with parameter 

icAyXi. Hence j(af) is invariant under this transformation. On the other hand, 

using Eqs.(4) and (24) we may directly evaluate the variation of the first term 

in (23) under the supersymmetry transformation. Ignoring terms of order CY’ 

and higher powers of o’, this may be shown to cancel the variation of the terms 

given in (17) and (21) under the supersymmetry transformation, up to terms 

proportional to the classical equations of motion of the A’ and the Xi fields. 

These terms may be cancelled by redefining the supersymmetry transformation 

laws of Xi and Xi. 

t The first term in &.(23) is th e t wo point function and may be calculated directly. Since 
the gauge variation of this term reproduces the full anomaly given in Eqs.(8) and (19), the 
rest of the contribution ~(cI:) must be gauge invariant. 
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A complete proof of the cancellation of supersymmetry anomaly at one loop 

order will involve the evaluation of the full one loop effective action. However 

the cancellation of the one loop supersymmetry anomaly in the presence of back- 

ground gauge fields is a strong indication that such cancellation indeed occurs 

even in the presence of arbitrary background fields. 

Thus we have shown that the a-model given in (l), plus the counterterms 

given in (17) and (21) makes the model invariant under local Lorentz and gauge 

transformations, with the transformation law of the antisymmetric tensor field 

given in (13)[or(16)], th e covariant torsion H appearing in this equation being 

given as a solution of Eq.(ll). [This equation may be solved iteratively for H]. 

There is also strong indication that this model retains the N = i supersymmetry. 

The equivalence between Eqs.(ll), (13) and (15), (16) also shows us that in 

Witten’s consistency condition[l2] s Tr(R A R - F A F) = 0 we may take R as 

the ordinary curvature or as the generalized curvature including torsion. This is 

related to the fact that the Pontryagin class of a manifold in invariant under the 

addition of a globally defined tensor to the connection. 

Note added: After completion of this work, we learned about some work by 

R. Nepomechie[l3], which discusses issues similar to that of Ref.7 in a bosonized 

formulation. 

The a-model approach to the string theory has also been used recently to 

derive information about the spectrum of massless particles in the theory[l4]. 
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