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ABSTRACT

We analyze the allowed spectrum of electric and magnetic charges carried by

dyons in (toroidally compactified) heterotic string theory in four dimensions at

arbitrary values of the string coupling constant and θ angle. The spectrum is shown

to be invariant under electric-magnetic duality transformation, thereby providing

support to the conjecture that this is an exact symmetry in string theory.
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It has recently been shown [1] [2] that the equations of motion derived from the

low energy effective action in four dimensional string theory are invariant under the

electric-magnetic duality transformation [3] [4] that interchanges the electric and

magnetic fields, and at the same time interchanges the strong and weak coupling

limits of the theory. Using the fact that at least in the four dimensional string

theory obtained by toroidal compactification of ten dimensional heterotic string

theory, there exists a string like solution in this effective field theory whose zero

modes are in one to one correspondence to the dynamical degrees of freedom of the

fundamental heterotic string in four dimensions [5] [6], it was argued in ref.[2] that

the effective field theory contains all the information about the full string theory,

and hence the duality symmetry of the effective field theory might imply duality

symmetry of the full string theory under which electrically charged particles get

interchanged with magnetically charged particles. Earlier conjectures to this ef-

fect in field theory was made in refs.[7], and in string theory in refs.[8]. Similar

duality between ten dimensional heterotic string theory and five-brane theory was

conjectured in refs.[9][10][11]. Finally, appplications of this duality transforma-

tion to generate new classical solutions in the effective field theory were made in

refs.[1][2][12].

Our analysis in ref.[2] has been purely classical. In this paper we shall ana-

lyze the compatibility of the duality conjecture with the well known quantization

condition of the electric and magnetic charges of a dyon [13]. These conditions are

known to receive non-trivial modifications in the presence of the theta angle [14].

We shall show that the quantization rules are invariant under duality transfor-

mation, i.e. if we start from a given value of the string coupling constant g and

θ-angle, and then perform a duality transformation that changes g to g′ and θ to θ′,

then the transformed dyon state is one of the allowed states for string coupling g′

and angle θ′. Related work for type IIB superstring theory in ten dimensions was

carried out in ref.[15]. Effect of θ-terms on self dual laattice models was studied in

refs.[16].

The result of refs.[17][2] may be summarized as follows. The low energy effec-
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tive field theory describing toroidally compactified heterotic string theory in four

dimensions contains the metric Gµν , 28 vector fields A
(α)
µ (1 ≤ α ≤ 28), a complex

scalar field λ = λ1 + iλ2, and a set of scalar fields that can be described by a 28×28

matrix M , satisfying,

MT = M, MT LM = L (1)

where,

L =







0 I6 0

I6 0 0

0 0 −I16






(2)

is a 28×28 matrix. In denotes the n× n identity matrix. The equations of motion

of the low energy effective field theory follow from the action:

S =
1

32π

∫

d4x
√
− det G[R − 1

2(λ2)2
Gµν∂µλ∂µλ̄ − λ2

~F T
µν .LML.~Fµν

+ λ1
~F T
µν .L.~̃F

µν

+
1

8
GµνTr(∂µML∂νML)]

(3)

Here the arrow on ~Fµν denotes that it is a 28 dimensional vector:

F
(α)
µν = ∂µA

(α)
ν − ∂νA

(α)
µ (4)

F̃
(α)
µν denotes the dual of F

(α)
µν . The vector ~Fµν is related to a similar vector defined

in ref.[2] by a factor of 2. Also S has been multiplied by an overall factor of 1/32π,

which does not affect the classical equations of motion and hence the analysis of

ref.[2].
⋆

The equations of motion derived from this action (but not the action itself)

are invariant under the following two transformations:

λ → λ + 1, ~Fµν → ~Fµν , M → M, Gµν → Gµν (5)

⋆ This factor can always be absorbed into a rescaling of λ and Gµν .
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and,

λ → λ′ = −1

λ
, ~Fµν → ~F ′

µν = −λ2ML~̃Fµν − λ1
~Fµν

M → M, Gµν → Gµν

(6)

Together these generate an SL(2,Z) symmmetry. Although the equations of motion

are invariant under λ → λ+c for any real number c, this symmetry is broken down

to λ → λ + 1 by instanton corrections [1].

Since it helps us to fix some of the as yet undetermined normalizations in the

theory, we shall now show how to obtain the above result. Let us consider a specific

embedding of one of the U(1) gauge fields (say A
(28)
µ ) into an SU(2) subgroup of one

of the E8 (or SO(32)/Z2) groups of the heterotic string theory. Using the freedom

of scaling λ by a constant c and ~F by 1/
√

c which leaves the action invariant, we

can always ensure that A
(28)
µ is related to the third component B3µ of the SU(2)

gauge fields as B3µ = A
(28)
µ /

√
2.
†

The term proportional to F
(28)
µν F̃ (28)µν in the

action then becomes part of an SU(2) invariant term,

1

16π

∫

d4x
√
− det G λ1

3
∑

a=1

HaµνH̃
µν
a (7)

where Haµν = ∂µBaν − ∂νBaµ + ǫabcBbµBcν . Using the relation,

∫

d4x
√
− det G

3
∑

a=1

HaµνH̃
µν
a = 32π2 (8)

for a single instanton configuration, we see that S changes by 2π times an integer

under λ1 → λ1 + 1, and hence eiS remains invariant under this transformation.

Symmetry under a general transformation of the form λ → λ + c is broken by the

instanton corrections.

† The factor of
√

2 also provides a normalization such that the electric charge vector, defined

later, takes value on an even, self-dual lattice.
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Let us now denote by λ(0) = λ
(0)
1 + iλ

(0)
2 the asymptotic value of λ, and by

M (0) the asymptotic value of the matrix M . From the form of the action we see

that λ
(0)
1 and λ

(0)
2 are related to the string coupling constant g and the θ angle by

the relations:

λ
(0)
2 =

8π

g2
, λ

(0)
1 =

θ

2π
(9)

Finally, for a given state, we define the 28 dimensional electric and magnetic charge

vectors ~Qe and ~Qm in terms of the asymptotic form of ~Fµν as follows:

F
(α)
0r ≃ Q

(α)
e

r2
, F̃

(α)
0r ≃ Q

(α)
m

r2
(10)

From eqs.(6) and (10) we see that under a duality transformation,

λ
(0)
1 → λ

(0)
1

′
= − λ

(0)
1

|λ(0)|2 , λ
(0)
2 → λ

(0)
2

′
=

λ
(0)
2

|λ(0)|2
~Qe → ~Q′

e = −λ
(0)
2 M (0)L~Qm − λ

(0)
1

~Qe

~Qm → ~Q′
m = λ

(0)
2 M (0)L~Qe − λ

(0)
1

~Qm

(11)

Let us now study the spectrum ( ~Qm, ~Qe) of magnetic and electric charges in this

theory. We start from the states with zero magnetic charge. With the normaliza-

tion convention that we have adopted, the charge spectrum of such states is given

by [18] [19],

( ~Qm, ~Qe) = (0,
1

λ
(0)
2

~α) (12)

where ~α is a lattice vector belonging to a 28 dimensional self-dual, even, Lorentzian

lattice with metric L. Let us denote this lattice by P . Then, for ~α, ~β ∈ P , we

have,

~αT .L.~β = integer, ~αT .L.~α = even integer (13)

Let us now consider a general dyon state ( ~Qm, ~Qe). A consistent spectrum

of ~Qm is obtained by demanding that the Dirac string attached to the magnetic
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charge is not visible to the particle of charge (0, ~α/λ
(0)
2 ). With the normalization

convention we have adopted, this requires,

λ
(0)
2

~Qm.LM (0)L.
1

λ
(0)
2

~α = integer (14)

Using eqs.(1), (2), and the self duality of the lattice P we see that the most general

solution of eq.(14) is of the form:

~Qm = M (0)L~β, ~β ∈ P (15)

We now try to determine the allowed values of ~Qe for the value of ~Qm given in

eq.(15). Naively one might have expected that these are given by ~α/λ
(0)
2 with

~α ∈ P as in eq.(12). However we know that in the presence of a theta angle

the allowed electric charges of a dyon are shifted by an amount proportional to

the magnetic charge [14]. The shift in this case can be computed following the

procedure of ref.[14] and is given by λ
(0)
1

~β/λ
(0)
2 . Thus the spectrum of electric and

magnetic charges carried by the dyon is given by,

( ~Qm, ~Qe) =
(

M (0)L~β,
1

λ
(0)
2

(~α + λ
(0)
1

~β)
)

, ~α, ~β ∈ P (16)

We can now easily perform a duality transformation and compute ( ~Q′
m, ~Q′

e)

using eq.(11). The result is,

( ~Q′
m, ~Q′

e) =
(

M (0)L~α,
1

λ
(0)
2

′ (−~β + λ
(0)
1

′
~α)

)

(17)

This shows that the spectrum given by eq.(16) is invariant under the duality trans-

formation, since the transformed spectrum (17) has the same form as the original
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spectrum (16), with ~α, ~β transforming as,

~α → ~α′ = −~β, ~β → ~β′ = ~α (18)

Note also that under the other generator of the SL(2,Z) transformation, λ
(0)
1 →

λ
(0)
1

′
= λ

(0)
1 + 1 with all other quantities remaining fixed,

( ~Q′
m, ~Q′

e) = ( ~Qm, ~Qe) =
(

M (0)L~β,
1

λ
(0)
2

′ (~α − ~β + λ
(0)
1

′
~β)

)

(19)

Thus the spectrum again retains its form, with the transformations,

~α → ~α′ = ~α − ~β, ~β → ~β′ = ~β (20)

This establishes that the electric and the magnetic charge spectrum of dyons

is invariant under the full SL(2, Z) group of transformations. This, in turn, shows

that the laws of quantization of dyon charge are consistent with the idea that

electric-magnetic duality is an exact symmetry of four dimensional string theory.
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