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Abstract

It has been conjectured that an extremum of the tachyon potential of a bosonic D-
brane represents the vacuum without any D-brane, and that various tachyonic lump
solutions represent D-branes of lower dimension. We show that the tree level effective
action of p-adic string theory, the expression for which is known exactly, provides an
explicit realisation of these conjectures.
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1 Introduction and Summary

The world-volume theory on the D-brane of a bosonic string theory contains a tachyonic

mode. It has been conjectured that the tachyon potential has a non-trivial extremum

where the potential energy of the tachyon exactly cancels the tension of the D-brane,

and that this configuration represents the closed string vacuum without any D-brane[1].

It has been further conjectured that various tachyonic lump solutions on the D-brane

world-volume represent D-branes of lower dimensions[2, 1]. These conjectures and their

generalisations to superstring theories[3]–[7] have been tested by various methods[2, 6],[8]–

[21]. However, since the exact effective action for the tachyon field is not known, there is

no direct proof of these conjectures.

In this paper we point out that in the p-adic string theory introduced in [22]–[27] (see

[28] for a review) we can explicitly check these conjectures. It should be emphasised that

although the p-adic ‘string’ is an exotic object, the spacetime it describes is the familiar

one3 . In the p-adic open string theory, which in modern language can be regarded as the

world-volume theory of a space-filling D-brane, the exact classical action of the tachyon

field and various solutions of the equations of motion are known[24]. Among the known

non-trivial solutions is a translationally invariant solution with the property that it is a

local minimum of the potential, and that the propagator of the tachyon field describing

fluctuations around this background has no physical pole. Thus this configuration has

no physical open string excitations, and is naturally identified with the vacuum without

a D-brane. The exact tachyon equation of motion of the p-adic string theory also has

classical lump solutions for all codimension ≥ 1, which approach the vacuum solution

3A different type of p-adic string was considered in [29].
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far away from the core of the soliton. If the original open string theory is formulated in

(d− 1, 1) dimensional space-time4, then such a lump solution of codimension (d− q − 1)

describes a solitonic q-brane. We show that the world-volume theory on the solitonic q-

brane agrees with the expected world-volume theory on a Dirichlet q-brane in the p-adic

string theory, to the extent that we can compare them with the present knowledge. This

provides strong evidence that these lump solutions can be identified as lower dimensional

D-branes.

The paper is organised as follows. In section 2 we summarise the exact effective action

of the tachyon in the p-adic string theory, the known solutions of the equation of motion

derived from the action and their properties. In section 3 we analyse the world-volume

theory of the solitonic q-brane, and in section 4 we compare this with the world-volume

theory of a Dirichlet q-brane. Section 5 contains some comments on further extension of

this work, and ends with speculation on its possible application to the study of tachyon

condensation in ordinary bosonic string theory.

2 Solitonic q-branes of p-adic string theory

In ref.[22] p-adic string theory was defined as follows. Consider the expressions for various

amplitudes in ordinary bosonic open string theory, written as integrals over the boundary

of the world-sheet which is the real line R. Now replace the integrals over R by integrals

over the p-adic field Qp with appropriate measure, and the norms of the functions in

the integrand by the p-adic norms. These rules were subsequently derived from a local

action defined on the “world-sheet” of the p-adic string[30, 28]. Using p-adic analysis, it

is possible to compute N tachyon amplitudes at tree-level for all N ≥ 3.

This leads to an exact action for the open string tachyon in d dimensional p-adic string

theory. This action is given in ref.[24]

S =
∫
ddxL

=
1

g2

p2

p− 1

∫
ddx

[
−1

2
φp−

1
2
2φ+

1

p+ 1
φp+1

]
, (2.1)

where 2 denotes the d dimensional Laplacian, φ is the tachyon field (after a rescaling and

4 There is as yet no compelling reason for a critical dimension in p-adic string theory, but the so called
adelic formula[23, 28] relating the product of four tachyon amplitudes in p-adic strings for all primes p

to that in the bosonic string suggests that they all have the same critical dimension d = 26.
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a shift), g is the open string coupling constant, and p is an arbitrary prime number. We

are using metric with signature (−,+,+ . . .+). If we denote by (2πα′
p)

−1 the ‘tension of

the p-adic string’ as defined in ref.[30], then our choice of units correspond to[30]

α′
p =

ln p

2π
. (2.2)

We have added a constant term to the Lagrangian density L so that it vanishes at φ = 0.

Fig.1 shows the qualitative features of the tachyon potential for different values of p.

φ φ

V( V(φ) φ)

p>2p=2

Figure 1: The effective tachyon potential for the p-adic string.

The equation of motion derived from this action is,

p−
1
2
2φ = φp . (2.3)

Different known solutions of this equation are as follows[24]:

• The configuration φ = 1 is the original vacuum around which we quantised the

string5. We shall call this the D-(d−1)-brane solution. The energy density associated

with this configuration, which can be identified as the tension Td−1 of the D-(d−1)-

brane configuration, is given by

Td−1 = −L(φ = 1) =
1

2g2

p2

p+ 1
. (2.4)

5For p 6= 2, there is also an equivalent solution corresponding to φ = −1. Since the action is symmetric
under φ → −φ, we shall restrict our analysis to solutions with positive φ.
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• The configuration φ = 0 denotes a configuration around which there is no perturba-

tive physical excitation. We shall identify this with the vacuum configuration. By

definition we have taken the energy density of this vacuum to be zero.

• The configuration:

φ(x) = f(xq+1)f(xq+2) · · ·f(xd−1) ≡ F (d−q−1)(xq+1, . . . , xd−1) , (2.5)

with

f(η) ≡ p
1

2(p−1) exp

(
−1

2

p− 1

p ln p
η2

)
, (2.6)

describes a soliton solution with energy density localised around the hyperplane

xq+1 = · · · = xd−1 = 0. This follows from the identity:

p−
1
2
∂2

ηf(η) = (f(η))p . (2.7)

We shall call (2.5), with f as in (2.6), the solitonic q-brane solution. Let us denote

by x⊥ = (xq+1, . . . , xd−1) the coordinates transverse to the brane and by x‖ =

(x0, . . . , xq) those tangential to it. The energy density per unit q-volume of this

brane, which can be identified as its tension Tq, is given by

Tq = −
∫
dd−q−1x⊥ L(φ = F (d−q−1)(x⊥)) =

1

2g2
q

p2

p+ 1
, (2.8)

where,

gq = g

[
p2 − 1

2π p2p/(2p−1) ln p

](d−q−1)/4

. (2.9)

From eqs.(2.4),(2.8) and (2.9) we see that the ratio of the tension of a q-brane to a

(q − 1)-brane is

Tq

Tq−1
=


2π p

2p

p−1 ln p

p2 − 1



− 1

2

=

√
p2 − 1

p
p

p−1

1

2π
√
α′

p

. (2.10)

In the above equation we have used dimensional analysis and (2.2) to restore factors of

α′
p. Note that the ratio (2.10) is independent of q. This is a feature of the D-branes in

ordinary bosonic string theory, and suggests that the solitonic q-branes of p-adic string

theory should have interpretation as D-branes. This also suggests that the self-dual radius
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Rsd of the p-adic string theory, where the tension 2πRsdTq of a wrapped q-brane is equal

to the tension Tq−1 of a (q − 1)-brane, is given by

Rsd =
pp/(p−1)

√
p2 − 1

√
α′

p . (2.11)

Note that as p → ∞, this approaches the formula for the self-dual radius in ordinary

bosonic string theory.

3 World-volume theory on the solitonic q-branes

Let us now consider a configuration of the type

φ(x) = F (d−q−1)(x⊥)ψ(x‖) , (3.1)

with F (d−q−1)(x⊥) as defined in (2.5),(2.6). For ψ = 1 this describes the solitonic q-brane.

Fluctuations of ψ around 1 denote fluctuations of φ localised on the soliton; thus ψ(x‖)

can be regarded as one of the fields on its world-volume. We shall call this the tachyon

field on the solitonic q-brane world-volume6. Substituting (3.1) into (2.3) and using (2.7)

we get

p−
1
2
2‖ψ = ψp , (3.2)

where 2‖ denotes the (q+1) dimensional Laplacian involving the world-volume coordinates

x‖ of the q-brane. The action involving ψ can be obtained by substituting (3.1) into (2.1):

Sq(ψ) = S
(
φ = F (d−q−1)(x⊥)ψ(x‖)

)

=
1

g2
q

p2

p− 1

∫
dq+1x‖

[
−1

2
ψp−

1
2
2‖ψ +

1

p+ 1
ψp+1

]
, (3.3)

where gq has been defined in eqn.(2.9).

Note that a solution of (3.2) gives an exact solution of the full equation of motion

(2.3). Thus eq.(3.2) describes the dynamics of the mode ψ on the q-brane world-volume

exactly. This does not mean that there are no other modes on the q-brane world-volume;

rather what this implies is that it is possible to obtain a consistent truncation of the

world-volume theory of the q-brane by setting all the modes except ψ to zero. In terms

6In the linearised approximation this tachyonic mode was discussed in ref.[31].
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of scattering amplitudes this means that the tree level S-matrix on the q-brane world-

volume, involving only external tachyon states, can be calculated exactly from the action

(3.3).

Of the various other (infinite number of) modes living on the q-brane world-volume

are the (d − q − 1) massless modes ξi associated with translations of the brane in the

(d− q− 1) directions x⊥ transverse to the brane. Inclusion of these modes correspond to

deformation of φ of the form

φ(x) = F (d−q−1)(x⊥)ψ(x‖) + ∂xi
⊥
F (d−q−1)(x⊥) ξi(x‖) + · · · . (3.4)

Substituting this in eq.(2.3), and comparing the coefficients of the independent functions

(F (x⊥))p and (F (x⊥))p−1 ∂xi
⊥
F (x⊥) on both sides, we get the following equations of mo-

tion:

p−
1
2
2‖ψ = ψp + O(ξ2)

p−
1
2
2‖ξi = ψp−1ξi + O(ξ2) . (3.5)

The above equations can be derived from the effective action:

Sq(ψ, ξ
i) =

1

g2
q

p2

p− 1

∫
dq+1x‖

[
− 1

2
ψp−

1
2
2‖ψ +

1

p+ 1
ψp+1

−C
{

1

2
ξip−

1
2
2‖ξi − 1

2
ψp−1ξiξi

}
+ O(ξ3)

]
. (3.6)

C is a normalisation constant whose value is not important to this order, as it can be

changed by rescaling ξi.

ψ = 1 corresponds to the solitonic q-brane solution. For computing amplitudes in-

volving the world-volume fields on the q-brane, we define the shifted field σ and rescaled

fields χi through the relation

ψ = 1 +
gqσ

p
, ξi =

gq√
pC

χi , (3.7)

and expand the action (3.6) in powers of σ and χi. This gives

Sq =
p

p− 1

∫
dq+1x‖

[
− 1

2
σp−

1
2
2‖−1σ +

1

g2
q

p

p+ 1

(
1 +

gqσ

p

)p+1

− σ

gq

− p

2g2
q

−1

2
χip−

1
2
2‖χi +

1

2

(
1 +

gqσ

p

)p−1

χiχi + O(χ3)

]
. (3.8)
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There is no linear term in σ in action (3.8) reflecting the fact that σ = 0 is a solution of

the equation of motion. The momentum space σ and the χi propagators computed from

this action are given by:

∆σσ(k) = − i
p− 1

p

1

p
1
2
k2−1 − 1

,

∆χiχj(k) = − i
p− 1

p

1

p
1
2
k2 − 1

δij . (3.9)

The residues at the poles in the σ and the χi propagators (at k2 = 2 and k2 = 0 respec-

tively) have the same values. This will help us compare the amplitudes involving σ’s and

χi’s in the external legs.

4 Comparison with the world-volume theory on a

Dirichlet q-brane

We shall now compare the world-volume action on the solitonic q-brane with that on the

D-q-brane. We are immediately faced with the question whether it is possible to have

Dirichlet branes in p-adic string theory. Fortunately, a ‘world-sheet’ approach to p-adic

string has been developed in ref.[30]. According to these authors, this ‘world-sheet’ is a so

called Bruhat-Tits tree — a Bethe lattice with p+1 nearest neighbours — the ‘boundary’

of which is the field of p-adic numbers Qp. The generalisation of the Polyakov action is

the lattice discretisation of the action for free scalar fields corresponding to the target

space coordinates. Now one can either choose Neumann or Dirichlet boundary conditions

as in the case of ordinary strings. It was shown in [30] that Neumann boundary conditions

leads to the tachyon amplitudes postulated in [22, 24].

While this may be the proper way to define D-branes in p-adic string theory, we shall

content ourselves with the continuation of the relevant formulæ from ordinary bosonic

string theory. Thus, for our purposes the world-volume theory of a p-adic D-q-brane

is defined by taking the expressions for various amplitudes for an ordinary D-q-brane,

written as integrals over world-sheet coordinates of the appropriate vertex operators, and

then replacing the integrals over real line by integrals over the p-adic field, with all the

norms appearing in the integrand replaced by p-adic norms as in ref.[24]. In principle one

should be able to derive these rules from the world-sheet description in ref.[30].
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For amplitudes involving the external tachyons, described by the vertex operators

of the type eik·X‖ with momentum k restricted to lie along the world-volume of the D-q-

brane, the computation of the amplitude is identical to the one described in ref.[24]. Thus,

following the analysis there, these S-matrix elements can be obtained from an effective

action of the form:

Ŝq(ψ) =
1

ĝ2
q

p2

p− 1

∫
dq+1x‖

[
−1

2
ψp−

1
2
2‖ψ +

1

p+ 1
ψp+1

]
, (4.1)

where the tachyon field ψ is shifted so that ψ = 1 describes the D-q-brane, and ĝq denotes

the coupling constant which characterises the strength of the interaction in the world-

volume theory of the D-q-brane. Comparing this with (3.3) we see that the world-volume

actions for the tachyon fields on the solitonic q-brane and the Dirichlet q-brane agree

exactly if we choose:

ĝq = gq . (4.2)

At present there is no independent derivation of ĝq in terms of g, and hence we cannot

verify eqn.(4.2) independently7. But assuming (4.2) to be true, we have a complete

agreement between the world-volume theories involving the tachyon fields on the D-q-

brane and the solitonic q-brane.

1 2

34

1 2

34

1 3

24(a) (b) (c) (d)

1 4

2 3

Figure 2: The Feynmann diagrams contributing to the amplitude 〈σσχχ〉 on the solitonic
q-brane. A dashed line denotes the χ propagator and a solid line denotes the σ propagator.

Next we shall compare the amplitude 〈σσχiχj〉 on the solitonic q-brane and the D-q-

brane. First let us compute this on the solitonic q-brane using the action (3.8). The four

7This is related to the problem of computing the tension of the D-q-brane independently.
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Feynmann diagrams contributing to it have been shown in Fig.2. These can be easily

evaluated, and the answer is:

Aij(k1, k2, k3, k4) = δij g
2
q

[
p− 2

p
+
p− 1

p

{
1

pk1·k2+1 − 1
+

1

pk1·k3+1 − 1
+

1

pk1·k4+1 − 1

}]
,

(4.3)

with the contribution to the four terms in the right hand side of (4.3) coming from the

Feynman digrams (a), (b), (c) and (d) respectively in Fig.2. In deriving (4.3) we have

used the mass-shell conditions

k2
1 = k2

4 = 2, k2
2 = k2

3 = 0 . (4.4)

Let us now evaluate the same amplitude on the D-q-brane. The vertex operator associated

with the mode χi on the D-q-brane is given by8 ∂X i
⊥e

ik·X‖ . Inserting the χi and χj vertex

operators carrying momenta k2 and k3 at 0 and 1 respectively, and the two σ vertex

operators carrying momenta k1 and k4 at x and ∞ respectively, we can express the

amplitude as:

Âij(k1, k2, k3, k4) = δij ĝ
2
q

∫

Qp

dx|x|k1·k2|1 − x|k1·k3 . (4.5)

Here | | denotes the p-adic norm and integral over x is over the p-adic field. This is

precisely the integral evaluated in [24]. Using the identity

k1 · k2 + k1 · k3 + 2 = −k1 · k4 , (4.6)

we can express this amplitude as

Âij(k1, k2, k3, k4) = δij (ĝq)
2
[p− 2

p
+
p− 1

p

{ 1

pk1·k2+1 − 1
+

1

pk1·k3+1 − 1
+

1

pk1·k4+1 − 1

}]
.

(4.7)

This agrees precisely with eq.(4.3) for ĝq = gq.

In fact, it is possible to give a general argument showing that an amplitude with

two external χ fields and N external σ fields for arbitrary N , computed from the action

(3.8), agrees with the corresponding amplitude on a Dirichlet q-brane. To see this, let us

consider the situation where we start with the action (2.1) with g replaced by another

coupling constant ḡ, and compactify9 (d−q−1) directions on circles of radii 1/
√

2. Let ui

8The notation ∂X is schematic, as care is needed to define the correct vertex operator that corresponds
to the analogous one for ordinary string.

9Alternatively, we can work with the uncompactified theory, but just examine those modes of φ which
carry either 0 or ±

√
2 units of momentum in (d − q − 1) of the directions.
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denote the compact coordinates and zµ the non-compact ones, and consider an expansion

of the field φ of the form:

φ(x) = ψ̃(z) +

√
C

p

d−q−1∑

i=1

ξ̃i(z)
(√

2 cos(
√

2ui)
)

+ · · · . (4.8)

We have restricted φ to be even under ui → −ui for each i; this gives a consistent

truncation of the theory at the tree level. The dots stand for higher momentum modes

which will not be required for our analysis. Substituting this into (2.1) (with g replaced

by ḡ) we get the action:

1

ḡ2

p2

p− 1

(
2π√

2

)d−q−1 ∫
dq+1z

[
− 1

2
ψ̃p−

1
2
2zψ̃ +

1

p+ 1
ψ̃p+1

−C
{

1

2
ξ̃ip−

1
2
2z ξ̃i − 1

2
ψ̃p−1ξ̃iξ̃i

}
+ O(ξ̃3) + . . .

]
, (4.9)

If we identify

g2
q = ḡ2

(√
2

2π

)d−q−1

, (4.10)

this action looks identical to the one in (3.6) with the fields ψ, ξi replaced by ψ̃, ξ̃i and

the identification x‖ ∼ z. In particular we can define the analogues of eqs.(3.7)

ψ̃ = 1 +
gqσ̃

p
, ξ̃i =

gq√
pC

χ̃i , (4.11)

and compute the S-matrix elements around the vacuum ψ̃ = 1 by expanding (4.9) in

a power series in σ̃ and χ̃i. Similarity of (4.9) and (3.6) (and hence (3.8)) shows that

the S-matrix elements computed from the action (4.9) around the ψ = 1 background are

identical to those computed from (3.8) around the ψ̃ = 1 background. In particular the

S-matrix element involving a χ̃i, a χ̃j, and an arbitrary number of σ̃ quanta for (4.9) is

identical to the S-matrix element involving χi, χj and an arbitrary number of σ quanta

in (3.8)10.

On the other hand, the S-matrix elements computed from (4.9) have direct string

theory interpretation, as the action is obtained by compactifying a p-adic string theory[33].

In particular the amplitude
〈
χ̃iχ̃j σ̃N

〉
is given in terms of correlation functions of χ̃i,

10Since the similarity of (3.6) and (4.9) holds only to quadratic order in χ (χ̃), we can only make this
claim for two or less external χ (χ̃) particles.
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χ̃j and N σ̃ vertex operators on the upper half plane. The vertex operator for σ̃ is

proportional to eik.Z , whereas that for χ̃i is given by
√

2 cos(
√

2U i)eik.Z . Comparing this

with the corresponding computation for the D-q-brane we see that the σ̃ vertex operator

is identical to the σ vertex operator with X‖ replaced by Z. The χi vertex operator on

the D-q-brane, given by ∂X i
⊥e

ik.X‖, looks different from the χ̃i vertex operator even after

we identify X‖ with Z. However if we note that on the boundary of the upper half plane

the two point functions
〈√

2 cos(
√

2U i(x1))
√

2 cos(
√

2U j(x2))
〉

and
〈
∂X i

⊥(x1)∂X
j
⊥(x2)

〉

are identical, both being equal to δij |x1 − x2|−2, we can conclude that these particular

amplitudes in the compactified string theory are indeed identical to those on the D-q-

brane.

To summarise, we have shown that the amplitudes 〈χiχjσN〉 computed from (3.8)

are identical to the corresponding amplitudes in the compactified string theory, which

in turn are identical to the corresponding ones on the D-q-brane. This establishes the

desired result. In presenting this argument we have not been careful about the overall

normalisation factors, but the equality already established for the amplitudes 〈σN〉 and

〈χiχjσσ〉 in the two theories guarantees that the overall normalisation factors also agree

in the two theories.

This provides strong evidence that the solitonic q-branes of the p-adic string theory

should be identified with Dirichlet q-branes.

It will be interesting to systematically extend this comparison to S-matrix elements

involving more than two external χi states, and also to S-matrix elements involving higher

level states. It is not easy to establish this in all generality, however we can consider a

subset of the massive modes on the q-brane and show the agreement between the S-matrix

elements on the solitonic q-brane and D-q-brane with at most two of these states on the

external leg.

We start with the solitonic q-brane, and consider a generalisation of the expansion

(3.4):

φ(x) = F (d−q−1)(x⊥)ψ(x‖) +
d−q−1∑

r=1

∑

{i1,...ir}

′
∂

x
i1
⊥
· · ·∂xir

⊥
F (d−q−1)(x⊥)ξi1···ir(x‖) + · · · , (4.12)

where
∑′ above denotes sum over those indices {i1, · · · ir} for which no two in the set are

equal. In this case

∂
x

i1
⊥
· · ·∂xir

⊥

(
F (d−q−1)(x⊥)

)p
= pr

(
F (d−q−1)(x⊥)

)p−1
∂

x
i1
⊥
· · ·∂xir

⊥
F (d−q−1)(x⊥) . (4.13)
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Substituting (4.12) into the equation of motion (2.3), and using eq.(4.13) we get

p−
1
2
2‖ψ = ψp + O(ξ2)

p−
1
2
2‖ξi1···ir = p1−rψp−1ξi1···ir + O(ξ2) . (4.14)

The action involving these fields is given by

Sq(ψ, ξ) =
1

g2
q

p2

p− 1

∫
dq+1x‖

[
− 1

2
ψp−

1
2
2‖ψ +

1

p+ 1
ψp+1

−
d−q−1∑

r=1

∑

{i1,...ir}

′
Cr

{
1

2
ξi1···irp−

1
2
2‖+r−1ξi1···ir − 1

2
ψp−1ξi1···irξi1···ir

}
+ O(ξ3)

]
.

(4.15)

Cr is a normalisation constant which can be absorbed into the definition of ξi1···ir . From

this we see that the mass-shell constraint for ξi1···ir , in the ψ = 1 background, is

k2 = 2(1 − r) . (4.16)

In order to compare this with the world-volume theory on the D-q-brane, we need to

first identify the vertex operator corresponding to the mode ξi1···ir . We take this to be

Vi1···ir = ∂X i1
⊥ · · ·∂X ir

⊥ e
ik.X‖ . (4.17)

This describes a physical state satisfying the same mass shell constraint as eq.(4.16) as

long as the indices in the set {i1, . . . ir} are all different.

We shall now compare the S-matrix elements computed from the action (4.15) with

two or less external ξ-legs to that computed directly in the D-q-brane. For two external

tachyons and two external ξ we can do this explicitly and verify that it agrees with the

corresponding computation on the D-q-brane. The computation is identical to the one

discussed earlier. For arbitrary number of external tachyon legs, one can generalise the

argument given for external χi-legs. The key ingredient of this argument is that the

two point function of ∂X i1
⊥ · · ·∂X ir

⊥ e
ik.X‖ and ∂X

i′1
⊥ · · ·∂X i′r

⊥ e
ik′.X‖ for the D-q-brane is

identical to that between the vertex operators (
√

2)r cos(
√

2U i1) . . . cos(
√

2U ir)eik.Z and

(
√

2)r cos(
√

2U i′1) . . . cos(
√

2U i′r)eik′.Z of the compactified string theory.
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5 Comments

• We have shown that one can get a consistent truncation of the world-volume theory

on a D-q-brane in p-adic string theory by keeping only the tachyonic mode. Thus

by examining the tree level tachyon amplitudes in the world-volume theory we shall

not discover the existence of the other modes. This suggests that there may be other

(massless and massive) modes living on the world-volume of the space-filling D-(d−
1)-brane as well, inspite of the fact that there are no poles in the tachyon S-matrix

elements corresponding to these states. Indeed, ref.[32] attempted to generalise the

p-adic string amplitudes to external vector states. If these modes are present they

will give rise to new degrees of freedom on the solitonic q-brane, and will have to

be taken into account in comparing the world-volume theory on the D-q-brane with

that on the solitonic q-brane.

• It will also be of interest to compute the tension of a Dirichlet q-brane in the p-adic

string theory independently, and compare with eq.(2.8) describing the tension of a

solitonic q-brane. This will require careful analysis of the cylinder amplitude, and

a proper understanding of the closed string sector of the theory.

• It has been shown in ref.[24] that it is possible to assign Chan-Paton factors to the

open string states of a p-padic string theory. This shows the existence of multiple D-

(d−1)-branes. Furthermore if there are massless gauge fields in the spectrum of open

strings in the p-adic string theory, and if there is a T-duality transformation relating

the D-(d− 1)-brane to D-q-brane, then by switching on Wilson lines corresponding

to the gauge fields followed by a T-duality transformation, we can produce static

configuration of D-q-branes separated in space. It will be interesting to examine if

the equation of motion (2.3) admit such solutions. Ideas developed in ref.[34] may

be useful in this context.

• It is natural to ask if this analysis has any relevance to the ordinary bosonic string

theory. Firstly, we would like to point out that even if the tachyon potential in the

p-adic string theory is totally unrelated to that in the ordinary bosonic string theory,

it can be regarded as a toy model which nicely illustrates the features expected of the

full bosonic string field theory action. Besides, there is evidence of close relationship

between tachyon amplitudes in the p-adic and ordinary bosonic string theory[23, 30].

14



Thus one might hope that the full tachyon effective action in bosonic string field

theory is related in some way to the tachyon effective action in p-adic string theory.

In this direction, we cannot resist the temptation to point out some apparent sim-

ilarities between the equation of motion (2.3) and that in the open bosonic string

field theory[35]. To lowest order in the level truncation scheme[11], the tachyon

equation of motion in open bosonic string field theory may be written as[18]

[
(α′

2 + 1) e−c α′
2 − 2

]
φ = ḡφ2 , (5.1)

where c = ln(33/42), ḡ is open string coupling constant after suitable normalisation,

and φ is related to the original tachyon field T by a field redefinition T = e−c α′
2/2φ+

ḡ−1, so that φ = 0 is the vacuum without any D-brane, and φ = −1/ḡ denotes the

D-brane. If we drop the first and the third terms on the left hand side of eq.(5.1) by

hand, then this equation, after suitable rescaling of x and φ, reduces to eq.(2.3) for

p = 2. Of course there is no justification for dropping these terms, so we shall not

pursue this matter any further; but it is not inconceivable that some exact relation

between bosonic string field theory and p-adic string theory will be discovered in

the future.

Acknowledgement: We wish to thank S. Mukhi for useful discussions.
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