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ABSTRACT Networks of signaling pathways perform complex temporal decoding functions in diverse biological systems,
including the synapse, development, and bacterial chemotaxis. This paper examines temporal filtering and tuning properties
of synaptic signaling pathways as a possible substrate for emergent temporal decoding. A mass action kinetic model of 16
synaptic signaling pathways was used to dissect out the contribution of these pathways in linear cascades and when coupled
to form a network. The model predicts two primary mechanisms of temporal tuning of pathways: a weighted summation of
responses of pathways with different timings and the presence of biochemical feedback loop(s) with emergent dynamics.
Regulatory inputs act differently on these two tuning mechanisms. In the first case, regulators act like a gain-control on
pathways with different intrinsic tuning. In the case of feedback loops, the temporal properties of the loop itself are changed.
These basic tuning mechanisms may underlie specialized temporal tuning functions in more complex signaling systems in
biology.

INTRODUCTION

Temporal patterning is an important feature of natural stim-
uli to cells. Signaling and genetic networks in many cell
types respond in a highly selective manner to a continuum
of temporal events from the diurnal rhythm to millisecond
intervals between action potentials (Barr et al., 1995; Fields
et al., 1997; Markram et al., 1997; Scheper et al., 1999).
These temporal computations frequently involve cellular
specializations, including compact cytoskeletal structures
mediating interactions between individual molecules
(Levchenko et al., 2000; Lu et al., 2001; Shimizu et al.,
2000), compartmentalization and local diffusion (Svoboda
et al., 1996), and complex cellular machinery (Soderling
and Derkach, 2000). Simple mass-action chemistry is a
common denominator of these specialized cellular comput-
ing networks. This paper asks whether simple biochemical
circuits can perform the fundamental temporal operations of
tuning and filtering, and using a small selection of pathways
seeks to identify candidate mechanisms for doing so.

Synaptic signaling is a particularly well-studied system
where different temporal input patterns are converted into a
wide repertoire of signaling and cellular outputs manifesting
as different forms of synaptic plasticity (Abbott and Nelson,
2000; Bliss and Collingridge, 1993). A large number of
signaling pathways have been implicated in these processes,
and they form a relatively well-characterized network (Lis-
man, 1994). The sliding threshold rule (Stanton, 1996)
generalizes many experiments to relate stimulus intensity
(corresponding to pulse frequency and calcium elevation)
and the direction of synaptic change. Stimulus intensity and

frequency are clearly a first approximation to the complex
temporal patterns found in nature. There is increasing evi-
dence to show that the direction and type of synaptic change
is a rather complex function of stimulus pattern (Abbott and
Nelson, 2000; Fields et al., 1997; Grover and Teyler, 1990).
Further, different signaling pathways also seem to be acti-
vated in a stimulus pattern-dependent manner (Blitzer et al.,
1995; Winder et al., 1999). The current paper uses mass-
action simulation of a network of postsynaptic signaling
pathways to investigate possible mechanisms for selectivity
between different temporal patterns of stimulus.

Cellular signaling, including synaptic signaling, operates
in a highly context-dependent manner. Context is provided
by regulatory signaling inputs such as hormones, broadcast
neurotransmitters, or genetic background (Nguyen et al.,
2000). From electrical circuit theory the commonest ap-
proach to changing temporal tuning is through changing the
time-courses of elements of the circuit (Horowitz and Hill,
1989). The simulations in the current paper suggest that in
signaling, alternative tuning is also accomplished through
up- and down-regulation of pathways, thereby changing the
relative weights given to responses with different intrinsic
time-courses.

The current analysis uses two kinds of stimuli to explore
the range of tuning properties of pathways. These stimuli
are meant to be representative of simple inputs to natural
systems. The first stimulus is a single Ca2� pulse of varying
amplitudes and duration. The second stimulus consists of
two brief Ca2� pulses separated by different intervals. More
complex stimuli can be constructed as composites of these
basic patterns. The simulations show strong temporal tuning
both at the pathway and the network level, and this tuning
is a function of regulatory input. Two key mechanisms of
tuning emerge: weighted summation of inputs having dif-
ferent time-courses and regulator-dependent shifts in re-
sponse time-courses of feedback loops. Thus, rather sophis-
ticated tuning properties emerge even from simple mass-
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action approximations to relatively small signaling
networks.

MATERIALS AND METHODS

Simulation methods and the network of signaling pathways were based on
those previously described (Bhalla and Iyengar, 1999). Briefly, a point
mass-action model of chemical kinetics was used to represent each signal-
ing pathway based on pharmacological and test-tube experiments using
purified proteins as published in the literature. Reactions of the form

A � B7 C

were represented as differential equations of the form

dA/dt � �kf �A� � �B� � kb�C�

and solved using the exponential Euler method (MacGregor, 1987) using
the simulator GENESIS and the chemical kinetics interface Kinetikit
(Bhalla, 1998). All computations were done on PCs running Linux. En-
zyme reactions were modeled using the Michaelis-Menten scheme

E � S7 E � S3 P � S

which is equivalent to two simple reactions in sequence. Pathways were
defined according to interactions defined through published experiments
using pharmacological, genetic, and molecular biological techniques.

The model consisted of 16 signaling pathways including the four major
kinases protein kinase C (PKC), protein kinase A (PKA), mitogen activated
protein kinase (MAPK), calcium-calmodulin activated protein kinase type
II (CaMKII), and their regulators (Fig. 1). Each signaling pathway was
represented as several distinct chemical steps and intermediate molecular
species. The expanded reaction scheme for the Ras pathway is illustrated
in Fig. 1 C. A total of 148 molecular species, 84 reactions, and 65
Michaelis-Menten enzyme activities were modeled. Simulation parameters
and data sources are presented in the supplementary material. Simulation
software, signaling pathway models, and parameters used in the current
paper have been uploaded to the DOQCS database (http://doqcs.ncbs.
res.in) in accession number 16.

Inputs to the model were in the form of buffered calcium pulses of
defined amplitude and duration. Calcium directly elevates the activity of
PKC, phospholipase A2 (PLA2), and phospholipase C (PLC) �. It also acts
through calmodulin (CaM) to activate Ras/MAPK, AC1, phosphodiester-
ase, CaMKII, and calcineurin (Fig. 1). Thus, calcium pulses have an effect
on most pathways in the system and are useful for probing network
responses. Regulatory inputs were delivered as buffered inputs in the case
of ligands such as Glu and epidermal growth factor (EGF) and as elevated
initial protein concentrations in the case of activated type s (stimulatory) G
protein (Gs)-�.

Thresholds for turn-on of the feedback loop were calculated using an
iterative bisection algorithm as follows: An initial stimulus was delivered
halfway between preset minimum and maximum stimulus levels. The
response of PKC was monitored. If it exceeded a predefined level (0.2 �M
active PKC) 3000 s after the stimulus, the stimulus was considered to be
above threshold. Stimulus amplitudes were adjusted such that each was
halfway between the latest supra-threshold and sub-threshold stimulus, i.e.,
at the mean of the two. This process of bisection enables determination of
the stimulus threshold to 1 part in 2N, where N is the number of cycles of
bisection. A similar algorithm using geometrical means rather than arith-
metic means was used when the stimulus range was large.

The mechanisms of tuning and its regulation were investigated for
continuous stimuli at different amplitudes and durations, and for pulse
stimuli of 1 s separated by different intervals. For each stimulus, a variety
of stimulus intensities and a range of regulatory conditions were examined
to characterize the response time-courses. The contributions of different

mechanisms for temporal tuning were probed by modeling a variety of
blockage and stimulation experiments on the synaptic signaling network.

RESULTS

Response time-courses of pathways

First, the basic tuning properties of pathways in the network
were characterized by applying a Ca2� input stimulus of
constant total Ca2� influx over baseline, but different du-
rations from 1 to 900 s (Fig. 2). Thus, brief stimuli had high
calcium levels, which strongly activated some pathways
such as CaMKII and PKA, which are downstream of CaM.

FIGURE 1 Block diagram of signaling network. Excitatory interactions
are indicated with arrows, inhibitory interactions with T-junctions. Each
block in the diagram is modeled as several reactions. (A) Inputs and
immediate downstream pathways. Calcium feeds back onto PLC� and �,
but in this model calcium levels were held fixed so the release of calcium
by inositol trisphosphate was not modeled. (B) Four major kinases and their
regulators. Some molecule names are repeated in the diagram for clarity,
but in the model each molecule is represented uniquely. Calcium stimulates
PKC and PLA2 directly, and several additional pathways through CaM.
(C) Reaction scheme for one of the signaling blocks, the Ras pathway.
Indirect inputs and outputs are represented by dotted lines. Chemical
reactions are represented by straight lines with arrows and enzymatic
reactions by arrows with a bend and the enzyme at the bend. Several
molecules act as guanine nucleotide exchange factors (GEFs) for Ras, and
these are all represented along the reaction converting GDP.Ras to
GTP.Ras. Other blocks in the model are implemented at a similar level of
chemical detail and are shown in full at http://doqcs.ncbs.res.in, accession 16.
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Prolonged stimuli had lower calcium levels, but if the af-
finity for Ca2� was sufficiently strong this could result in
activation for a longer period, e.g., PLC� as measured by
diacylglycerol (DAG) production. Even with this simple
steady Ca2� pulse, most pathways (with the exception of
PLC�/DAG) exhibited quite complex temporal patterns of
response. Based on the signaling network diagram, it
seemed likely that these complex patterns were due to
summation of inputs of different time-courses. This is con-
sidered in detail later in the paper.

As a measure of total activity of the pathway over the
entire time course of its response, the ratio of instantaneous
activity to basal activity was averaged over a 3600-s period
after the stimulus onset. This quantity is referred to as the
activation ratio. The activation ratio is plotted as a function
of stimulus duration (Fig. 2, right column; basal curves
indicated by open squares). Calcium, by design, has a uni-
form ratio (Fig. 2 A). The remaining molecules can be
broadly categorized into three groups: DAG activity rises
slightly with stimulus duration; PKA and CaMKII activity
declines with stimulus duration, and the remainder (arachi-
donic acid (AA), MAPK, and PKC) have a biphasic re-
sponse that is higher for brief and prolonged stimuli but
lower for intermediate durations. Thus, the responses are
tuned to different stimulus durations. The tuning factor, that
is, the maximum by the minimum activation ratio, is large
(10 fold) for CaM-CaMKII and moderately large (over
twofold) for MAPK and PKA. Other pathways also exhib-
ited some tuning, but high baseline activity lowered the
tuning factor.

It was tested whether the basal tuning patterns were
consistent when Ca influx was doubled (crosses in Fig. 2,
right column). Interestingly, the tuning patterns changed
both in terms of amplitude and timing. AA, MAPK, and
PKC, which are tightly coupled, all responded differently
from the basal stimulus. There was an initial large response
for the 1-s stimulus, then a drop, followed by a slow

increase with increasing stimulus duration. The activation
ratio curve for PKA and both forms of CaMKII was similar
to the basal curve, but it was shifted to threefold longer
stimulus durations. This shift can be explained by the highly
cooperative activation of CaM by Ca2�, which gives rise to
a sharp Ca2� dependence. As long as Ca2� levels are
greater than the threshold for CaM activation, the down-
stream pathways PKA and CaMKII will be activated.
Therefore, at higher total Ca2� flux, the duration of activa-
tion is extended.

How does this tuning depend on regulatory inputs? The
AA, MAPK, and PKC curves again show tightly coupled
responses to regulators (Fig. 2, right column). EGF and
glutamate inputs both amplify the responses considerably,
but the shape is similar to the basal response. Gs causes a
sharp decline in the responses because PKA inhibits the
MAPK pathway. Interestingly, PKC shows a small but
distinct increase rise in response with increasing duration
even in the presence of Gs. PKA is directly downstream of
Gs, and its activity is saturated with the 5-nM Gs stimulus
(data not shown). This effect cascades onto the autonomous
CaMKII activity because PKA inhibits protein phosphatase
1 (PP1), which reverses autophosphorylation and autonomy
of CaMKII. The large increase in autophosphorylated
CaMKII reduces the pool of native CaMKII, and hence Gs
reduces the CaM-CaMKII response.

An interesting signaling motif, which integrates multiple
inputs, is the feedback loop (Bhalla and Iyengar, 1999;
Ferrell and Machleder, 1998; Roberson and Sweatt, 1999).
The current model includes both a CaMKII autophosphor-
ylation loop (Hanson et al., 1994) and a MAPK-PLA2-PKC
loop. Each of these loops receives inputs from Ca2� as well
as regulatory signals. CaMKII is activated by Ca4.CaM. It is
also regulated by the Gs pathway through adenylyl cyclase
(AC), cyclic adenosine monophosphate (cAMP), PKA, and
PP1 (Fig. 1). The MAPK-PLA2-PKC feedback loop re-
ceives multiple inputs from calcium as well as regulators.

FIGURE 2 Responses of representative enzymes to calcium pulses of different duration but the same total flux (20 �M�s). (Left column) Time course
of response. (Right column) Ratio of total activity to baseline as a function of stimulus duration and different regulatory conditions. This column can be
interpreted as a measure of tuning to different stimulus durations. �, Basal conditions with no regulatory inputs and 20 �M�s calcium flux; �, basal
conditions at 40 �M�s calcium flux; Œ, 20 �M�s Ca, 0.2 nM EGF; �, 20 �M�s Ca, 0.1 nM Glu; F, 20 �M�s Ca, 5 nM Gs. (A) Calcium. Inset shows Ca2�

levels at a finer time-scale. (B) AA, as a measure of PLA2 activity. Inset shows AA activity at finer time-scales. The response time course is biphasic with
a sharp initial rise that terminates as soon as Ca2� is removed, and then a slower response �600 s after the first. In the right column, the ratio of averaged
activity for AA is also biphasic and has a minimum at a duration of �100 s. Glutamate and EGF regulatory inputs increase the sharpness of tuning as
compared with the basal or Gs-stimulated conditions. Stronger stimulus (�) gives a complex tuning curve that differs from the others. Gs suppresses the
output and the tuning is nearly flat. (C) DAG, as a measure of PLC� activity. Inset shows DAG levels at a finer time-scale. This response follows the Ca2�

time course very closely. The ratio of averaged activity (right column) is very close to one for all stimulus durations and regulators, but there is a slight
change in averaged activity depending on regulator. (D) MAPK activity, measured as levels of the active kinase. MAPK is upstream of PLA2, note similarity
of MAPK response to second phase of PLA2 response, and also similarity of activity ratio plots. (E) PKA has a distinct shoulder in its response amplitude
for 1- to 10-s stimuli. PKA responses drop sharply for longer duration stimuli because Ca2� levels fall below the CaM binding affinity. This is seen both
in the response amplitude and also in the activation ratio curve. Regulators do not have much effect but a stronger stimulus shifts the activation ratio curve
over to the right. (F) PKC activity follows the Ca2� stimulus closely, but there is a small and slow delayed response at �600 s. The PKC activation ratio
remains quite close to unity but is otherwise similar to that for MAPK and AA. (G) Autonomous CaMKII undergoes a brief initial dip followed by a very
strong elevation for Ca2� durations under 10 s. At longer durations Ca2� levels are too low to activate CaM. The initial dip is due to CaM trapping during
the period when Ca2� is present. The activation ratio curve is similar to but smaller than that for PKA. (H) CaM-bound CaMKII is stimulated by the initial
Ca2� influx and then declines steadily. Like PKA, CaM binding thresholds for Ca2� leads to a drop in activation ratio at long stimulus durations.
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The MAPK cascade receives input through Ras, which is
stimulated by many signals including Ca4.CaM. PLA2 and
PKC are both directly activated by Ca2�. These interactions
are outlined in Fig. 1. The MAPK-PLA2-PKC feedback
loop is bistable under the conditions of this model (Bhalla
and Iyengar, 2001), that is, the loop has two stable states of
different activities. In the low stable state the activities of
MAPK, PLA2, and PKC are all at basal levels for the
respective enzymes. In the high stable state, each of the loop
enzymes is in a state of high activity. Bistable feedback
systems have the useful property of sharp thresholding
(Thron, 1997). Threshold in this model is defined as the
level of calcium stimulus just sufficient to take the system
from the stable state of basal activity to the stable state of
high activity. As discussed in Materials and Methods, in this
calculation the activity of PKC was used as a measure of the
loop activity, but any of the loop enzymes could have been
used. Although each enzyme has individual levels of high
and low activity, the threshold and lower and upper stable
states are properties of the feedback loop as a whole. Cross-
ing this threshold is an all-or-none event and thus acts as a
simple readout of many inputs impinging on the feedback
loop. Therefore, the threshold of the feedback loop for Ca2�

flux was used as an integrated measure of temporal tuning
of the network as a whole (Fig. 3 A). The same set of inputs
of varying duration were applied, and the threshold was
calculated in terms of the total Ca2� flux. Under all regu-
latory conditions, the threshold started out rather low for
short strong stimuli. At intermediate stimulus durations the
thresholds were high, and then there was a decline again for
long stimulus durations. As expected, this tuning curve is
qualitatively the inverse of that seen in Fig. 2 for the
activation ratio at different durations. Regulators signifi-
cantly affected tuning. The highest thresholds were for Gs
stimulation and the lowest for Glu stimulation, which again
could be predicted from the results in Fig. 2. Surprisingly,
regulatory inputs shift the duration at which the threshold is
highest. This shift spans nearly an order of magnitude from
5 s for Glu to 40 s for Gs. This contrasts with the situation
for activation ratio tuning in Fig. 2, B and D, where the
minimum activation ratio was at �100 s for all regulatory
inputs. Another surprising observation is that the largest
tuning factor for thresholds occurs for Gs regulation and the
lowest for Glu input. This reverses the situation from Fig. 2,
B, D, and F where the tuning was quite weak for Gs and
strong for Glu regulation. Clearly the integrated response of
the bistable feedback loop is a complex function of the
individual pathway inputs.

As another way of visualizing the tuning to stimulus
duration, the threshold stimulus amplitude is plotted as a
function of stimulus duration (Fig. 3 B). Here it appears that
the required Ca2� amplitude remains nearly constant (and
very large) for a range of brief stimulus durations and then
drops sharply and commences a nearly linear decline with

increasing stimulus duration. Regulators change the dura-
tion at which the sharp decline occurs.

Interval tuning

Repetitive stimuli are a common form of natural stimulus
patterning. This was modeled using two 1-s Ca2� pulses
separated by different intervals (Fig. 4). The 1-s Ca2� input
has a time course shorter than any of the signaling path-
ways, and thus the responses of the pathways are not a
function of its duration or shape, only of the Ca2� influx.
This is a way of determining nonlinearity in summation of
temporal responses. The response to the second pulse could

FIGURE 3 Threshold plots for the MAPK-PLA2-PKC feedback loop for
different stimulus durations. Threshold is the stimulus level required to
switch the feedback loop from the basal to the active state. A high threshold
means that the stimulus is ineffective in activating the loop, whereas a low
threshold means that the loop is activated even for relatively low values of
the stimulus. (A) Threshold Ca2� flux at different stimulus durations. There
is a steady increase followed by a sharp drop in required flux for durations
of over 100 s. Regulators shift both the peak threshold and the stimulus
duration at which the threshold drops. Gs (1 nM) acts in an inhibitory
manner, raising thresholds. EGF and Glu (0.1 nM each) act in an excitatory
manner. Both lower the threshold and reduce the duration for the threshold
drop. (B) Threshold Ca2� amplitude at different stimulus durations. These
plots are related to those in A by the formula flux � amplitude � duration.
The initial threshold Ca2� amplitude remains almost constant and then
drops rapidly before commencing a nearly linear decline with increasing
duration. Again the threshold and the stimulus duration for the threshold
drop are functions of regulatory inputs.
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also be regarded as a measure of the history dependence of
the signaling system.

Three responses had a simple unimodal time course:
PLC� (as measured by DAG), MAPK, and CaM-CaMKII
(Fig. 4, left column). AA has a sharp initial response to the
calcium transient through direct activation of PLA2 by
Ca2�, and a slower response, which closely follows the
MAPK activation. PKC has a very brief and sharp direct
response to Ca2� and a much smaller and slower response
to AA. PKA has a “shoulder” in its response curve where
the initial CaM elevation declines and thus CaM-phospho-
diesterase ceases to hydrolyze cAMP. Autonomous
CaMKII has an initial dip because of calmodulin trapping
after the initial Ca2� elevation (Meyer et al., 1992). Subse-
quently the autophosphorylation builds up at a slower time-
scale. Visual inspection of the responses suggests that the
summation of the second pulse is nearly linear in most cases
except MAPK and AA, where the peak amplitudes are
distinctly supralinear.

A more quantitative measure of summation is to take the
activation ratio, defined as the ratio of instantaneous re-
sponse to baseline averaged over the entire response dura-
tion (Fig. 4, right column, square symbols for basal respons-
es). The Ca2� ratio is uniform as expected. AA, MAPK, and
PKC, which are tightly coupled, show a small amount of
basal tuning for interpulse intervals around 300 to 600 s.
PLC�/DAG shows no tuning. The basal responses for PKA
and the two states of CaMKII are lower at short intervals
than at intervals longer than their intrinsic time-courses.
This implies that when responses to successive stimuli
overlap, the total response is smaller than when the two
stimuli are well separated in time. Thus, the responses of
these pathways sum sublinearly.

Increased stimulus amplitudes (� symbols, Fig. 4, right
column) had large effects on the AA/MAPK/PKC combi-
nation. The response at an interval of 600 s was much larger
than at other times, as the feedback loop crossed threshold
for this stimulus interval. PKA activation ratio also jumped
at 600-s stimulus intervals, as a downstream effect of
PKC3AC23AMP3PKA. The two CaMKII forms had
modest increases in activation ratio.

Regulatory inputs altered temporal tuning in a variety of
ways. A striking example of different tuning effects is seen
for two different combinations of EGF and stimulus ampli-
tude (10 �M Ca and 0.1 nM EGF, open triangles; 2 �M Ca
and 0.5nM EGF, filled triangles in Fig. 4, right column).
The AA/MAPK/PKC combination responds strongly to a
range of intervals between 180 and 600 s for the EGF1
stimulus (open triangles). In the case of EGF2 (filled trian-
gles) the response is high until 600-s interval, and then it
drops. Another case of contrasting tuning is seen for PKA,
where the response to EGF2 stimulus (filled triangles) is
almost the exact inverse of the baseline response tuning
(open squares). The glutamate stimulus (10 �M Ca and 0.1
nM Glu) increases the amplitude of the responses and
broadens the range of intervals to which the system re-
sponds in all cases except DAG and CaM-CaMKII. The Gs
stimulus appears to nearly null out any interval tuning, and
it suppresses the response amplitudes except for PKA and
autonomous CaMKII. None of the regulators affected DAG
tuning and effects on its activation levels were small.

The feedback loop threshold calculation was used as a
measure of integrated network responses to different inter-
pulse intervals and regulators (Fig. 5). The threshold de-
clines steadily to a minimum at an interval of �600 s and
then rises again. Regulators strongly affect thresholds. The
highest threshold is in the presence of Gs and the lowest in
the presence of EGF as was the case for duration thresholds.
Unlike the case for duration, regulators do not appear to
shift the time of the lowest threshold. Overall, the network
appears to be tuned to an interpulse interval of �600 s.

Weighted combination of inputs

The tuning properties seen above emerge from a network of
several pathways. I wished to address the mechanistic basis
of this tuning at the single-pathway level. From the re-
sponses of the pathways in Figs. 2 and 4, it appeared likely
that complex responses might arise from summation of
inputs from multiple pathways, each with different time-
courses. I therefore considered three illustrative pathways,

FIGURE 4 Responses of representative enzymes to 1-s Ca2� pulses, separated by different intervals. Left column is the time-courses of responses to
5-�M Ca2� pulses. Right column is the ratio of averaged activity to basal activity, which can be interpreted as a tuning curve for different stimulus intervals.
�, Tuning curves for the basal signaling network stimulated at 10 �M Ca without any applied regulators; �, Basal conditions with a 20-�M Ca stimulus;
‚, 10 �M Ca stimulus and steady 0.1 nM EGF; Œ, 2 �M Ca stimulus and steady 0.5 nM EGF; �, 10 �M Ca and 0.1 nM steady Glu. F, 10 �M Ca and
steady 5 nM Gs. (A) Ca2� stimulus. (B) AA as a measure of PLA2 activity. Strong stimuli and excitatory regulators (Glu and EGF) cause the MAPK-
PLA2-PKC loop to switch to a state of high activity, and thus high activation ratios are observed for some stimulus intervals for which the system is well
tuned. The tuning depends on regulatory input as well as stimulus strength. (C) DAG as a measure of PLC� activity. The response (left column) is very
brief and follows the Ca2� stimulus almost perfectly. Activation ratio (right column) is nearly flat with respect to stimulus interval but regulators do cause
small differences in activation ratio. (D) MAPK activity matches the slow phase of AA activity very closely. In the right column the ratio of averaged
activity is also very similar in shape to AA, but the fold tuning is quite large. MAPK is upstream of PLA2. (E) PKA activity. Basal activation ratio increases
at larger intervals. Regulatory effects are superimposed on this due to the input from PKC3AC3AMP. The Gs regulator gives rise to very high,
Ca-stimulus-independent PKA activity with an activation ratio of �38 (data not shown.) (F) PKC follows the Ca2� response closely, but the second pulse
rides on the slow second phase of the PKC response and is consequently higher at an interval of 600 s. Activation ratios act similarly to AA and MAPK.
(G) Autonomous CaMKII activation. The activation ratio follows that of PKA. (H) CaM-CaMKII activation. Regulators have relatively little tuning effect,
but they shift the activation ratio up (EGF and Glu) or down (Gs). The activation ratio rises with longer stimulus intervals.
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PKA, PKC, and PLA2 (as measured by AA production) to
dissect out their responses to different inputs. Fig. 6 A illus-
trates the responses of PKA to a 1-s Ca2� pulse. Ca2� activates
PKA through two signaling sequences: Ca2�3CaM3AC1/
83cAMP3PKA and Ca2�3PKC3AC23cAMP. It
seemed likely that the initial sharp PKA transient lasting
less than 1 min might be due to the rapid Ca2�-dependent
elevation of PKC activity, and the slower “shoulder” might
be due to the CaM pathway. This was tested by buffering
either PKC or Ca4.CaM to basal levels (Fig. 6, B and C,

respectively). Contrary to the initial expectation, almost the
entire response to a brief Ca2� pulse was due to the CaM
pathway. The efficacy of the PKC input was demonstrated
by elevating PKC activity using a steady input through the
metabotropic glutamate receptor (mGluR)3DAG3PKC
pathway (Fig. 6 D). This elevates steady PKA activity by a
factor of two but has little effect on the initial transient or
shoulder in the PKA response. Overall, it appears that PKA
responds rapidly to Ca2� through the CaM pathway, but its
response to PKC behaves like a low-pass filter. The net
response of PKA is a sum of both these inputs.

I next examined PKC and PLA2 responses to the same 1-s
Ca2� stimulus. In these simulations PKC has a large, transient
response to Ca2� stimulus through direct activation, and a
much lower amplitude but broader response around 600 s
following the stimulus. PLA2, as measured by AA production,
also has a transient response followed by a distinct slow peak
around 600 s (Fig. 7 A, i and ii). I first tested whether the
slower activation of PKC is due to its activation by AA. When
AA was buffered to baseline, the PKC response was confined
to the initial rapid transient (Fig. 7 B). Conversely, when the
Ca2� input to PKC was held at baseline and Ca2� inputs to
PLA2 were enabled, the PKC initial transient was abolished
and the slow response was reinstated (Fig. 7 C). This
simulation also indicates that the contribution of the
Ca2�3PLC�3DAG3PKC pathway is very small. Thus,
the biphasic PKC response is a composite of its direct
activation by PLA2 and direct activation by Ca2�.

FIGURE 5 Ca2� stimulus threshold for turning on the feedback loop, as
a function of stimulus interval. The system is most sensitive at intervals of
300 to 600 s. This tuning occurs for all regulatory conditions, although the
thresholds shift up and down.

FIGURE 6 PKA responses dissected into upstream activators of AC1 and AC2 (Ca4.CaM and PKC, respectively). The AA input to PKC has been
buffered so that the PKC response only has an initial Ca2� mediated phase. (A) Basal level responses of PKA (i), Ca4.CaM (ii), and PKC (iii) to a 1-s,
10 �M Ca2� stimulus. (B) PKC buffered to baseline. The PKA response is nearly unchanged. (C) Ca4.CaM buffered to baseline. The PKA response to
PKA is minimal. (D) Elevation of PKC basal activity. Although the transient response of PKA is hardly affected, its baseline has been raised by a factor
of two. Thus, PKA filters out the rapid PKC inputs but does respond to brief Ca4.CaM inputs and also to prolonged PKC inputs.
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How could a pathway switch from one time course of
response to another? One mechanism could be to alter the
weights of inputs having different time-courses. This was
modeled by raising activation in the PLA2 pathway through
steady EGF input: EGF3EGFR3Sos3Ras3MAPK3
PLA2. The AA response, as expected, was elevated and
magnified by the MAPK input, but its time course was not
changed. The slow phase of the PKC response was consid-
erably magnified (Fig. 7 D).

The contributions to the AA response were also inves-
tigated. Again, it seemed plausible that the initial sharp
response of AA was due to direct Ca2� activation of
PLA2, and the slower long-lasting response due to the
Ca2�3CaM3Ras3MAPK pathway. This was con-
firmed by first blocking the action of CaM on Ras (Fig.
7 E) and then reinstating CaM3Ras while blocking the
direct action of Ca2� on PLA2 (Fig. 7 F). Thus, PLA2

itself is a locus for weighted summation of inputs having
different time-courses.

Tuning by feedback loops

By analogy with electrical circuits, feedback in chemical
circuits is a likely site of temporal tuning and filtering
(Horowitz and Hill, 1989). Both the MAPK-PLA2-PKC and
CaMKII autophosphorylation loops were tested for the time
course of their response to a 1-s Ca2� pulse under various
regulatory conditions. I first tested the response of the
MAPK- PLA2-PKC feedback loop by applying Ca2� stim-
uli of 1, 2, 5, 10, and 20 �M for 1 s. Although all these
stimuli are well below the threshold for activation of the
feedback loop (�50 �M from Fig. 3), there is a shift in the
time of peak response (Fig. 8 A). Application of EGF
increases the response amplitude (Fig. 8 B). Glu input
affects both response amplitude and time course, especially
of decay following the stimulus (Fig. 8 C). To see if the shift
in time course was a consistent outcome of response am-
plitude, Gs was applied to lower MAPK activity through the
inhibitory action of PKA on Ras (Fig. 8 D). Consistent with
the trend, the time course was indeed reduced as the am-
plitude diminished. These effects are summarized in Fig. 8
E. The MAPK-PKC feedback loop response time course is
therefore a function both of stimulus strength and of applied
regulators. There is a general positive correlation between
time course and stimulus amplitude.

I next tested if the amplitude and time course of the response
to a single pulse determines how successive pulses will build
up. In Fig. 8 F the longer interpulse interval of 600 s gives rise
to a larger response under basal conditions. In Fig. 8 G the
regulator Gs is applied that makes the time course faster, and
now the shorter interpulse interval of 180 s has the larger peak.
Thus, changes in the response dynamics of feedback loops can
lead to temporal tuning. For example, if downstream pathways
act as peak detectors (e.g., they have sharp activation thresh-
olds) then they will be tuned to interpulse intervals where the

FIGURE 7 PKC and AA responses dissected in terms of upstream
activators. The feedback from PKC to MAPK has been blocked for these
simulations so that the responses are not complicated by feedback. (Left
column) PKC. (Right column) AA, as a measure of PLA2 activity. (A)
Basal level responses of PKC and AA to a 1-s, 10 �M Ca2� stimulus. Both
PKC and AA exhibit an initial Ca2�-stimulated transient, followed by a
slower response. (B) AA is buffered to its resting level of 5.6 �M. PKC
response is confined to the initial direct activation by Ca2�. (C) Direct
Ca2� input to PKC is held at baseline (80 nM). The initial Ca2�-stimulated
transient is lost, but the slower late phase of response remains. In combi-
nation with the result from B, this suggests that the slow phase of the PKC
response is due to AA stimulation. (D) AA activity elevated through
steady EGF stimulation of the MAPK pathway. MAPK then phosphor-
ylates and activates PLA2. The time course of the AA response is nearly
unchanged but the baseline and the amplitude of the peak both increase.
The PKC initial response is not affected, but the late phase of PKC
response is considerably magnified. (E) Dissection of components of
AA response. The direct stimulation of PKC by Ca2� is blocked, and
the stimulation of MAPK by Ca4.CaM is blocked. The remaining small
transient in the AA response is due to direct Ca2� stimulation of PLA2.
The PKC response is negligibly small. (F) Confirmation of the
Ca2�3CaM3MAPK3PLA23AA3PKC pathway for slow activa-
tion of PLA2 and PKC. The direct Ca2� activation of PKC and PLA2
is blocked in these simulations. Only the late phase of both responses is
observed.
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peak response is maximal. Figs. 4 and 5 illustrate several
examples of interpulse interval tuning where this mechanism
may be important.

A similar series of Ca2� stimuli (1, 2, 5, and 10 �M for
1 s) was applied to the CaMKII feedback loop. The activity
of both the autophosphorylated, Ca2�-autonomous form of
CaMKII, as well as of the CaM-bound forms was compared.
In contrast to the results for the MAPK loop, autonomous
CaMKII responses shift to the left with increasing stimulus
amplitude (Fig. 9 A). The regulatory effect of Gs is to

increase CaMKII activity, and this further lowers the re-
sponse time (Fig. 9 B). The CaM bound active forms of
CaMKII have a very rapid activation time course, and the
decay times decrease as the stimulus amplitude increases
(Fig. 9 C). In this case Gs regulation has little effect (Fig. 9 D).

Overall, the simulations with the two feedback loops show
that the response time course can be adjusted both by stimulus
strength and by regulatory inputs. Interestingly, stronger stim-
uli increase the time course of the MAPK-PKC loop, whereas
they decrease the time course for CaMKII. Thus feedback
loops can also act as inputs (albeit with complex regulation) for
weighted summation by downstream pathways.

DISCUSSION

Signaling networks are versatile computational machines.
Their roles in processing information through summation,

FIGURE 8 Subthreshold timing responses of the MAPK3PKC3PLA2

feedback loop to a 1-s Ca2� stimulus, under basal and three regulatory
conditions and stimulus intensities from 1 to 20 �M Ca2�. (A) Basal
conditions. The time to the peak of the response increases with stimulus
intensity. (B) Responses with 0.1 nM EGF stimulation. (C) Responses
with 0.1 nM Glu stimulation. In addition to the increase in peak
amplitude and timing, the width of the response is also wider. (D)
Responses with 5 nM Gs regulation. Gs inhibits MAPK through the
sequence Gs3AC3cAMP3PKA3Ras3MAPK. Note the reduced
y-axis scale and the faster and narrower response. (E) Composite plot of
peak timings at stimulus intensities of 1, 2, 5, 10, and 20 �M Ca2�.
Each regulator shifts both the peak amplitude and time, but the largest
effect is due to Gs, which reduces both. (F and G) Summation of
successive stimuli is a function of peak time and width. One-second Ca
pulses at 16 �M are separated by 180 and 600 s in each panel. (F) Basal
conditions. The 600-s peak is larger. (G) Regulation by 5-nM Gs. The
180-s peak is larger in this case.

FIGURE 9 Responses of the CaMKII autophosphorylation feedback loop
to 1-s Ca2� stimulus of 1, 2, 5, and 10 �M. (A) Basal responses. As stimulus
strength increases the time to peak decreases. (B) Responses in the presence of
1 nM Gs. The pathway Gs3AC3cAMP3PKA3PP13CaMKII leads to a
net increase in CaMKII activity. (C) Responses of CaM-activated CaMKII.
The turn-on is almost immediate, but the time course of removal decreases
slightly with increasing stimulus amplitude. (D) Responses of CaM-activated
CaMKII in the presence of Gs. There is a slight decrease in available CaMKII
because some of the kinase is basally phosphorylated. Otherwise the responses
are not affected by the regulator. (E) Composite plot of time-courses for A and
B. Response time decreases sharply as stimulus strength is increased from 1
�M Ca2� to 10 �M Ca2�. The decrease is less pronounced in the presence of
basal Gs stimulation (�). At larger stimulus amplitudes the peak timing is not
much affected by the presence of Gs.
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integration, information storage, as logic elements, and as
parts of the cellular machinery itself are all well docu-
mented (Alberts et al., 1994; Bray, 1995; Lauffenburger and
Linderman, 1993; Roberson and Sweatt, 1999; Thron,
1997). This paper examines their role in temporal compu-
tation, and in particular in the operations of tuning and
filtering in the intermediate time-scale, from around a sec-
ond to an hour. More rapid events appear to be the domain
of biophysical processes such as electrical signaling and
calcium diffusion, and very slow events merge into the
realm of genetics and cell biology. The kinds of temporal
processing that may fall in the domain of signaling path-
ways include pattern recognition, storage of information
(Sejnowski, 1999), and context-sensitive switching of tun-
ing preference (Stanton, 1996). Signaling pathways in iso-
lation are relatively uninteresting as timing devices as they
typically have characteristic on and off response times to
inputs. This paper examines how this simple timing behav-
ior may scale into complex, and computationally relevant
network timing properties. I report that: 1) there are two
primary mechanisms for stimulus pattern decoding:
weighted summation of signals from signaling pathways
with different time-courses and alteration of dynamics of
feedback loops; 2) regulators typically control timing in
linear pathways by altering the amplitudes and baseline
activity of pathways, rather than by altering the time course
itself; and 3) both regulators and stimulus amplitude can
change time-courses of feedback loops.

Mechanisms for stimulus tuning:
weighted summation

Signaling pathways have characteristic time-courses, aris-
ing from the chemical rate constants of the individual reac-
tion steps that comprise the pathway. A simple mechanism
for tuning is weighted convergence of these characteristic
responses onto downstream pathways. The output of this
pathway will typically be a complex function of all the
inputs, but to first order it can be thought of as a summation
of the inputs with a different weight given to each input.

The first step in tuning may be a selection for inputs of
different duration (Figs. 2 and 3). Two opposing effects
shape these responses. First, the response tends to build up
with increasing stimulus duration. Second, the stimulus
amplitude itself declines in inverse proportion to the dura-
tion of the stimulus, when the total calcium flux is held
constant. A variety of responses are observed as the stimu-
lus duration increases (Fig. 2). Similar forms of tuning have
previously been suggested in the completely different sig-
naling context of bacterial chemotaxis (Bray, 1995).

The next step is the combination of such responses by
convergence on downstream pathways. Wu et al. (2001a)
report such a situation in hippocampal neurons where fast
and slow pathways converge onto cyclic AMP response
element-binding protein phosphorylation. Such composite

responses could give rise to interval tuning if the interpulse
interval is the same as the time between successive phases
of the response (Figs. 4 and 5). This form of tuning may
have particular relevance for repetitive stimulus protocols
used in studies on synaptic plasticity (Bliss and Col-
lingridge, 1993). A number of experimental studies suggest
that strong bursts of synaptic activity at an interval of 5 to
10 min may be particularly effective in activating the
MAPK pathway (Wu et al., 2001b) and inducing synaptic
potentiation (Blitzer et al., 1995; Winder et al., 1999). The
simulations appear to match this interval. Several pathways
in Fig. 4 have a peak in this time range, and the threshold for
activating the MAPK-PLA2-PKC feedback loop is lowest at
600 s (Fig. 5).

Three examples of response summation were considered
in more detail by dissecting the signaling network into
linear but converging cascades (Figs. 6 and 7). In each case
it was possible to isolate the components of a complex
downstream time course. Thus, the combined effects of
duration filtering by individual pathways, and downstream
weighted summation, can give rise to temporal tuning.

Mechanisms for stimulus tuning: feedback loops

The second mechanism of temporal tuning involves feed-
back loops. This is an expected outcome from analogy with
electrical circuits (Horowitz and Hill, 1989). Numerous
examples of complex temporal dynamics, including oscil-
lations, have been reported for various kinds of positive and
negative signaling feedback loops (Baier and Sahle, 1998;
Kholodenko, 2000; Ngo and Roussel, 1997; Tang et al.,
1996). A specific examination of the relationship between
signaling time-courses and signal intensity was reported for
a negative feedback loop in the MAPK system, using both
experiments and simulations (Asthagiri and Lauffenburger,
2000). In the current paper, two positive feedback loops
(MAPK-PLA2-PKC and CaMKII autophosphorylation)
were examined. Both exhibited a dependence of peak time
and width on regulators and on the amplitude of the stim-
ulus. Interestingly, increasing stimulus strength had oppo-
site effects on peak time in the two cases (Figs. 8 and 9).
The optimal interpulse-interval for summation of successive
stimuli is related to the peak timing, and this is a function of
regulatory inputs (Fig. 8, F and G). Combining these results
with those previously reported (Asthagiri and Lauffen-
burger, 2000) it seems likely that feedback loops can be
tuned to different combinations of intensity, duration, and
interpulse interval. Tuning has also been reported for
CaMKII autophosphorylation after repetitive Ca2� pulses
(Hanson et al., 1994).

What is the role of other emergent properties of feedback
loops in temporal tuning? Two such properties are oscilla-
tions and bistability. These effects have been considered in
detail in several other studies (Ferrell and Machleder, 1998;
Kholodenko, 2000; Scheper et al., 1999; Thron, 1999).
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Periodicity and its corollary of tuning to periodic stimuli are
an outcome of oscillatory feedback (Ermentrout, 1994).
Bistability has previously been shown to result in both
long-term history effects as well as thresholding (Bhalla and
Iyengar, 1999; Lisman, 1989). Long-term switching of tun-
ing properties could be one outcome of bistability. In the
current study the phenomenon of thresholding is used as a
measure of integrated network response and to illustrate
how temporal tuning could give rise to network selectivity
between input patterns.

Regulation of stimulus tuning

The current simulations illustrate some possible mecha-
nisms for regulation of temporal tuning by signaling path-
ways. The obvious mechanism would be for the regulator to
directly change the time course of one or more inputs. For
example, it might seem plausible that a steady regulatory
input might alter the rate of production of a second mes-
senger and thereby alter its time course. Unexpectedly, none
of the regulatory inputs tested in this study functioned in
this manner. Instead, tuning changes appear to occur due to
changes in baseline and “gain” of inputs with different
timings (Figs. 6 and 7). Downstream responses become
dominated by the time course of the signal whose amplitude
has been boosted by the regulator. In effect, the regulators
appear to alter the weights of converging inputs with dif-
ferent time-courses.

A second mechanism for tuning regulation operates on
feedback loops. This is more difficult to dissect out because
such loops are inherently nonlinear. Several such analyses
have previously been carried out (Baier and Sahle, 1998;
Ermentrout, 1994). Even in the subthreshold and nonoscil-
latory regime of the current analysis, there were clear shifts
in time course of response due to the presence of regulatory
inputs (Figs. 8 and 9).

Interpretation and caveats

These simulations are at an early phase of quantitative
model building, so there are gaps in the roster of signaling
pathways, and abstractions with regard to spatial and ge-
netic interactions. Thus, the observed tuning mechanisms
are probably a subset of those present in nature. The tem-
poral domain of this model is in a window of a few seconds
to approximately an hour, excluding both the detailed cal-
cium dynamics and biophysics that underlies synaptic en-
hancement due to coincidence in pre- and postsynaptic
spike timings (Markram et al., 1997) and late events in
long-term potentiation (Frey and Morris, 1998). To the
extent that the current pathways and mass-action kinetics
represent a common denominator of far more complex
signaling events, it seems plausible that the mechanisms

discussed here may underlie more sophisticated forms of
temporal tuning in biological signaling networks.

One of the major limitations of mass-action models arises
from the reliance on test-tube chemical data. Despite this
limitation, such parameters are valuable in capturing some
of the key interactions in the relevant range of time-scales,
and in prediction of likely signaling mechanisms that form
the basis for interesting cellular events. This study suggests
a possible abstraction of synaptic signaling (Fig. 10). The
signaling network could be represented as a bank of tem-
poral filters and tuning elements with different time-
courses, in series with thresholding and bistable elements,
feeding into downstream effector processes. There is al-
ready considerable evidence that the selection between dif-
ferent forms of synaptic change is not just a function of
stimulus intensity and that stimulus pattern also plays a
critical role (Abbott and Nelson, 2000; Fields et al., 1997;
Grover and Teyler, 1990). The current study approaches the
system from a bottom-up description of rate constants and
chemistry, and suggests that the same conclusion could be
drawn from completely different premises.

This paper identifies an unexpectedly simple mechanism
for temporal tuning based on weighted convergence of
inputs from pathways with different time-courses. Tuning
changes appear to involve changes in the weights for dif-

FIGURE 10 Schematic for temporal tuning by synaptic signaling path-
ways. Temporally patterned synaptic input is integrated by cellular bio-
physical processes and Ca2� dynamics to give patterned Ca2� signals. The
network of signaling pathways acts as a bank of filters and tuners, each
with a distinctive time course. The weight of each of these tuning processes
is altered by various regulatory inputs. The temporally filtered signals are
then summed by downstream pathways. Further signaling events such as
thresholding and initiation of synaptic change eventually feed back to the
inputs and the signaling network.
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ferently timed inputs, rather than changing time-courses of
elements in the same circuit. Feedback-loops exhibit some-
what more complex temporal filtering properties and can
also act as tuned inputs converging onto downstream path-
ways. These mechanistic principles for signaling network
tuning may suggest target points for regulation and provide
a useful abstraction for thinking about temporal response
properties of signaling networks.
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