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Abstract
A coincident D-brane - anti-D-brane pair has a tachyonic mode. We present an ar-
gument showing that at the classical minimum of the tachyonic potential the negative
energy density associated with the potential exactly cancels the sum of the tension of
the brane and the anti-brane, thereby giving a configuration of zero energy density and
restoring space-time supersymmetry.
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It has been known for sometime that a coincident D-brane — anti-D-brane pair contains
a tachyonic excitation[l], B, B, fl]. In a previous paper[fj] it was conjectured that at the
minimum of the tachyon potential, the negative contribution to the energy density from
the potential exactly cancels the sum of the tensions of the brane and the anti-brane,
thereby giving a configuration of zero energy density (and hence restoring space-time
supersymmetry). Although this proposal might sound radical, there are many known
examples where tachyon condensation restores space-time supersymmetry[d, [, §], and
the present example is just an extension of these earlier examples. In this paper we shall
offer a ‘proof’ of this conjecture. Although this will not be a rigorous mathematical proof;
at least it should serve the purpose of putting this conjecture on a firmer footing.

The strategy that we shall adopt will follow closely that of [[; and indeed most of
the results we shall require are already contained there. (For earlier references related
to this subject, see [g].) For definiteness we shall focus on the Dirichlet 2-brane, but
the extension to other branes should be straightforward. We take the coincident 2-brane
anti-2-brane system, and wrap it on a two dimensional torus 7% = S* x S!, of radii R; and
Rs respectively. (For simplicity we shall set o’ = 1 and measure all lengths and masses
in string units.) We now introduce one unit of magnetic flux on both the brane and the
anti-brane; and the signs of the magnetic fields are chosen such that each corresponds to

+1 unit of DO-brane charge. The strength of the magnetic field on each brane is given by:

2
Fip = v (1)

where V = 472 R R, is the area of the torus. In the limit R, — oo, Ry — 00, the magnetic
field strength goes to zero and we expect to recover the physics of the original brane —
anti-brane system.

We shall however begin by analyzing this system in the R;, R, — 0 limit. In this
limit the system is best described by going to the T-dual version, in which we make
R; — (1/R;) duality transformation on both the circles. This gives a dual torus 72 with
radii

1=1,2, (2)

and coupling constant
~ g
g= (3)



where g is the coupling constant of the original theory] Under this duality transformation
the 0-brane and the 2-brane charges get interchanged. Thus the wrapped D2-brane with
one unit of magnetic flux gets converted to a wrapped D2-brane with 1 unit of magnetic
flux, whereas the wrapped anti-D2-brane with one unit of magnetic flux gets converted
to a wrapped D2-brane with —1 unit of magnetic flux. When R; and R, are large, this
system may be described by an effective supersymmetric U(2) gauge theory on this dual
torus[[[(] in the presence of a background gauge field of the form:
_ 2malos

A =0, Ay=T"79 4
' p = (4)

where 2!, 22 denote the directions of the two circles of T2, A, denotes the component of
the U(2) gauge field along the uth circle, o; are the Pauli matrices, and V = 47?R\ R, is
the volume of the dual torus T2. This gauge field A satisfies the boundary conditions

A(z' = 27Ry,2%) = Qo0 A(z' =0,27),
A(z', 22 = 27Ry) = Qo A(zt,2? =0), (5)

where ), are gauge transformation parameters:
Q= exp(z':)s203/}~22) , Qy=1, (6)
and €2, o A denotes the gauge transform of A by €,. €2, and ) satisfy the relation:
Qo' = 27RO (22 = 0) = Q) (2 = 27 Ry) (2! = 0). (7)

From eq.(f]) we see that the gauge field configuration lies fully inside the SU(2) part of
the gauge group, and does not have any U(1) component. If we now consider fluctuations
of the SU(2) gauge fields around the background gauge field configuration given in ({),
satisfying the boundary conditions given in (f), (), we shall find tachyonic modes[[]. It is
easy to verify that the mass spectrum of the tachyonic modes is identical to that calculated
directly from the spectrum of the original string theory before duality transformation. In
the gauge theory the presence of these tachyonic modes simply reflect the fact that the
gauge field configuration given in (), which gives rise to a non-vanishing field strength

and hence a positive definite energy density on the brane, does not correspond to the

2During the process of varying the parameters Ry and Ry to take various limits, we shall keep both g
and ¢ small, so that the classical description is good in the original theory as well as in the dual theory.
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minimum energy configuration subject to the boundary conditions (f), (f). To see this
let us note that with the help of a gauge transformation g(z', 2?) on A4,(z), we can make
both €2; and €2 to be identity, since, as can be seen from ([f]), there is no obstruction to

this choice[[[T]. In particular, we can choose g(z!, z?) such that

g(l’l = 0’1’2) = eXp(ilQO'g/ég) s g(:lfl = 2W§1,$2) =1 y

gz, 2% = 2nRy) = g(at, 22 = 0), (z',2%) = 0 at 2! = 0,27R; . (8)

@9
The existence of a g(x!,2?) satisfying these conditions can be proved by noting that
g(z' = 0, 2?) describes a map from S* to the SU(2) group manifold. Since SU(2) is simply
connected, it is possible to find an interpolating map g(z', #2) such that g(z' = 27 Ry, 2)
is the identity element of the group. The transformed field g o A, satisfies periodic
boundary condition along z* and 2, and thus the lowest energy configuration corresponds
to go A, = 0 and hence go F),, = 0. We can go back to the original gauge in which €,
are given by (f) with the help of a reverse gauge transformation ¢g=!(z!,x?). This will
give rise to a non-trivial gauge field configuration, but the field strength F},,, will continue
to vanish.

This shows that the classical minimum energy configuration after ‘tachyon conden-
sation” corresponds to zero field strength for both the U(1) and the SU(2) gauge fields,
and hence the energy per unit area will be given by the sum of the tensions of the two
D2-branes. Since in the unit we are using each D-brane has tension 1/(47%g), g being
the string coupling constant, and the total area of each brane is 47?2]%];’2, we see that the
total mass of this system is given by:

M= 2R R ' ()

9

Note that this saturates the BPS bound for a pair of D2-branes wrapped on the dual torus
T2. It is also possible to argue that once quantum fluctuations are taken into account,
there is a quantum ground state of the system with exactly the same mass[[3, [J).f
Since the classical ground state of the system saturates BPS bound, we would expect
that it would continue to saturate BPS bound as we change the parameters of the theory

continuously, and hence its mass at the classical minimum will continue to be given by

3These states are needed for U-duality, as they are related to the Kaluza-Klein modes carrying two
units of momentum along the internal directions of the torus.



(B). Let us now express the mass formula (f]) in terms of the original variables Ry, Ry
and g. Since the string metric does not change under a T-duality transformation, eq. (),

when expressed in terms of the original variables using eqs.(), (§), takes the form:

2
M= (10)

Now recall that the original system was a D2-brane and an anti-D2-brane wrapped on a
torus T2 of area 472R; Ry, with one unit of magnetic flux on each of the branes. Thus
from ([[() we see that at the minimum of the tachyon potential, the energy per unit area

on the brane — anti-brane system is given by:

M 1
AT2Ri Ry 2m2R1Rag

(11)

If we now take the limit Ry, Ry — oo, the energy per unit area goes to zero. On the other
hand, as has already been argued before, in this limit the magnetic field strength on the
brane and the anti-brane goes to zero and we expect to recover the physics of the brane
— anti-brane system without any magnetic flux. Thus we deduce that at the classical
minimum of the potential, the energy per unit area of the brane — anti-brane system
vanishes.

This concludes our ‘proof’. If we assume that a similar result holds for the D-string
anti-D-string pair in type I string theory, then in the spirit of [J] we can identify the
stable non-BPS SO(32) spinor states in type I theory|[[4] as the ‘tachyonic soliton’ on
the D-string - anti-D-string pair in which the tachyon field changes from —7 to +7j as
we go from far left to the far right on the string. Here +7§ denote the locations of the
minima of the tachyonic potential at which the tension of the D-string anti-D-string pair
is canceled by the tachyon potential. In order to see that this represents an SO(32) spinor
state, we can compactify type I theory on a circle of large radius, and consider a D-string
anti-D-string pair wound around that circle. If one of them carries a non-trivial Zs Wilson
line[[5] and the other carries trivial Z; Wilson line, then the combined system represents
an SO(32) spinor, being a combination of a spinor and a singlet state. In this case the
tachyon associated with the open string stretched between the D-string and the anti-D-
string must be anti-periodic as we go around the circle. The kink solution described above
precisely satisfies such a boundary condition. Bound states of wound D-strings carrying

spinorial and winding charges have been discussed recently in [[[f].
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